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Abstract—A comprehensive understanding of cancer 
progression may shed light on genetic and molecular 
mechanisms of oncogenesis, and it may provide much needed 
information for effective diagnosis, prognosis, and optimal 
therapy. However, despite considerable effort in studying 
cancer progressions, their molecular and genetic basis 
remains largely unknown. Microarray experiments can 
systematically assay gene expressions across genome, 
therefore they have been widely used to gain insights on 
cancer progressions. In general, expression data may be 
obtained from different stages of the same samples. More 
often, data were obtained from individuals at different stages. 
Existing methods such as the Student’s t-test and clustering 
approaches focus on identification of differentially expressed 
genes in different stages, but they are not suitable for 
capturing real progression signatures across all progression 
stages. We propose an alternative approach, namely a 
multicategory logit model, to identify novel genes that show 
significant correlations across multiple stages. We have 
applied the approach on a real data set concerning prostate 
cancer progression and obtained a set of genes that show 
consistency trends across multiple stages. Further analysis 
based on Gene Ontology (GO) annotations, protein-protein 
interaction networks and KEGG pathways databases, as well 
as literature search demonstrates that our candidate list not 
only includes some well-known prostate cancer related genes 
such as MYC and AMACR, but also consists of novel genes 
(e.g. CKS2)that have been confirmed by very recent 
independent studies. Our results illustrate that ordinal 
analysis of cancer progression data has the potential to 
obtain a set of promising candidate genes. Such a list can be 
further prioritized by combining other existing biomedical 
knowledge to identify therapeutic targets and/or biomarkers 
of cancer progressions. 
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I.  INTRODUCTION 
Understanding the biology of disease progression at the 

genetic and molecular level may provide much needed 
information for effective diagnosis and optimal therapy. 
However, the biological and genetic basis of cancer 
progression is usually poorly understood. The past few 
years have witnessed tremendous interests in investigating 
genetic signatures of cancer progression using high-
throughput gene expression experiments [1,6,8,18]. Some 
commonly used approaches include clustering analysis to 
group genes with similar expression profiles, ANOVA 
(analysis of variance) analysis to compare gene 
expressions across stages, and t-test to identify 
differentially expressed gene in the different stages. For 
example, a two-sample t-test has been used in analyzing 
prostate [6] and breast [1] cancer progressions. Clustering 

methods (such as principal component analysis and 
ensemble consensus clustering) have been used in 
investigating portraits of breast cancer progression [8].  
Most of the previous studies focused on discovering the 
most up- or down-regulated genes within each stage, or 
discovering genes with different expressions across two 
different stages. Therefore, such analyses can only obtain 
different sets of genes from different stages that show 
significant over or under expressions, but neglect an 
important feature from progression data that cancer stages 
develop in an ordinal fashion. In contrast, our hypothesis is 
that genes with expression levels showing concordance or 
discordance with cancer development stages are more 
likely to reveal cancer progressions, and they may sever as 
genetic biomarkers for diagnosis, prognosis and selection 
of treatments. Therefore, our goal is to identify one set of 
such genes that will show consistently increasing/ 
decreasing expressions with the cancer progression and 
development. 

Notice that in most cases, expression data on cancer 
progression are different from time-series expression data 
because studies usually collect different samples from 
different stages. Though it is expected that in general there 
should be an ordinal relationship in expression levels of 
genes responsible for cancer progression, real observations 
can be very noisy and one cannot directly apply techniques 
used in time-series data analysis. In this study, we propose 
an alternative approach to address this issue and compare 
its performance with a few commonly used approaches. 
We use a multi-category logit model that takes ordinal 
response with continuous explanatory variables. Logit 
models have been commonly used for binary response 
variables such as disease status. Here we use its extension 
to ordinal response variables with multiple levels because 
it can capture the natural ordinal relationship among 
development stages. Different from a commonly used 
statistical technique Analysis of Variance (ANOVA), 
which takes stages as explanatory variables and compares 
the expression levels in different stages, logit models take 
progression stages as response variables and gene 
expression as explanatory variables. Tomlins et al [18] is 
one of few studies that also considered the ordinal 
relationship among stages though the authors mainly 
emphasized the “concept analysis” in their paper. The 
authors stated that they used Pearson’s correlation for their 
multiclass ordinal analyses but no details were given in 
their paper. We suspect that their approach is equivalent to 
a modified χ2 test of independence that also incorporates 
the order of each class. (But our results turn out that results 
from these two approaches are quite different.) A major 
difference between the modified χ2 test and the ordinal 
logit model is that the χ2 test only takes categorical inputs. 



Therefore valuable information can be lost during the 
discretization step of microarray data. 

We use false discovery rate (Q-value) as a control of 
significance level. From a total of 20,000 probes, we 
identify a set of robust progression signatures comprising 
genes whose expression increase or decrease during the 
progression. We further investigate the gene lists based 
GO enrichment analysis, and results show that the set of 
genes with increased expressions returned by the logit 
model is extremely enriched with genes related to “cell 
cycles”, while none significant GO terms have been found 
from the set returned by the χ2 test. We also examine the 
distribution of the genes in existing biological networks 
(protein-protein interactions and pathways). Results show 
that these genes are more tightly connected than random in 
these networks. 

The remainder of the paper is organized as follows. We 
discuss our methods in Section 2. We then apply these 
methods to a data concerning prostate cancer progression 
obtained from [18] and present our results in Section 3. We 
conclude our work in Section 4. 

II. MATERIALS AND METHODS 

A. Data Source and Preprocessing 
We first obtained normalized gene expression data of 

prostate cancer progression [18] from Gene Expression 
Omnibus at NCBI (GSE6099). The data set contains 84 
cell populations from four different stages (22 are benign 
epithelium, 13 are prostatic intraepithelial neoplasia (PIN), 
32 are prostate cancer (PCA) and 17 are metastatic prostate 
cancer). The expression profile of each cell population 
consists of 20,000-cDNA microarrays. We first filtered the 
data using two criteria.  Probes with low values (less than 
the 10th percentile of all values) and probes with small 
variances (less than the 10th percentile of all the variances) 
were removed before further analysis. The quality of data 
with low expression values is usually bad due to large 
quantization errors or poor spot hybridization. Genes with 
small variances could be housekeeping genes which are 
out of our interest. After this filtering step, the number of 
cDNA probes was reduced to 17,904. 

B. Multicategory Logit Model for Ordinal Response 
The goal of the study is to identify robust progression 

signatures showing consistent increasing or decreasing 
patterns across cancer stages. We take cancer stages as the 
response variable and gene expressions as the explanatory 
variable. An ordered categorical response such as cancer 
progression stages, can be analyzed using the 
multicategory logit model for ordinal response [2], also 
known as the proportional odds model. Briefly, suppose 
that a certain cancer has 1 to J progression stages. The 
probability of an individual is in stage j is denoted as πj. 
The cumulative probability of a response Y less than j (1≤ 
j ≤ J-1) is: 
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It mimics a binary logistic regression model while stages 
1 to j form one new category and stages j+1 to J form a 
new category. The cumulative log odd is then explained 
by a linear combination of the explanatory variable (i.e., 
expression level of a gene) x for each j, where 1 ≤ j ≤ J-1. 
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Notice that the model shares a common coefficient for the 
predictor variable across j with different intercepts. 
Essentially it assumes that the effect of x is identical for all 
J-1 cumulative logits. More detailed treatment about the 
model can be found in [2]. Many statistical tools such as 
Matlab provide functions for the above model under 
generalized linear models. Parameters including α’s and β 
can be estimated through numerical methods. Statistical 
significance for the null hypothesis H0: β=0 is reported 
using a one-sample t-test (which is equivalent to the Wald 
test). 

It is well known that for gene expression analysis, one 
has to correct the significance level due to the multiple 
testing problem. A commonly used solution is the false 
discovery rate (FDR) Q instead of the p-value based on 
single tests. In this study, we use the Benjamini-Hochberg 
procedure [5] to obtain Q-values based on p-values. 
Basically, probes are ordered based on their p-values in the 
increasing order, and the Q-value of each probe is just its 
p-value weighted by the ratio of the total number of probes 
and its rank. Theoretical justifications about FDR can be 
found in [17]. A threshold of 0.05 is used to identify gene 
signatures with increasing (up-expressed) or decreasing 
(down-expressed) expressions during cancer progression. 

C. Modified χ2 Test for Ordinal-Categorical Analysis 
Tomlins et al [18] used Pearson’s correlation for their 
multiclass ordinal analyses but no details were given in 
their paper. Here we use a modified χ2 test, which should 
be equivalent to Pearson’s correlation. But results show 
these two approaches actually return different sets of 
genes. We compare the results of the logit model with 
those obtained from the modified χ2 test and those from 
[18]. Different from the traditional χ2 test of independence, 
which treats both variables as nominal, the modified χ2 
test [2] can treat one or both variables as ordinal with a 
score being assigned to each category. Therefore, it can 
naturally capture the ordinal trend of cancer progression 
stages. To construct a contingency table for each probe, 
we have to discretize the expression levels first. A probe 
is regarded as over-expressed (or under-expressed), if its 
expression level is greater than the third (first) quartile of 
all expression values. Then a 2×N contingency table can 
be built for each probe, where N is the number of 
progression stages. The statistics based on the 
contingency table is defined as M , where n is 
the sample size and correlation r is defined as  
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In the above formula for correlation r, ui denotes the score 
value for the ith row in the contingency table and vj denotes 
the score value for the jth column. Because we only use 



two levels for gene expression, ui can take any two values 
(e.g., 0 or 1) without affecting the final result. However, 
choosing an appropriate column-wise score scale is 
important and it is sometimes the main obstacle of this 
approach. In the case of prostate cancer, we believe that 
Gleason score would be a good candidate for this score, 
which is adopted in our analysis. The number nij is the 
number of observations in each cell, and ni+/n+j are the 
column/row summations. The null hypothesis is the 
independence of the two variables. Large statistic indicates 
that expression levels of the probe tend to be increasing or 
decreasing as cancer progresses. For large sample sizes, 
the test statistic follows approximately a χ2 distribution 
with 1 degree of freedom. 

D. Gene Ontology Enrichment Analysis 
Statistically analyses of microarray data usually return 

a large list of candidate genes. To gain insights of the 
functional characteristics of these genes, a Gene Ontology 
(GO) enrichment analysis is usually followed.  Basically, 
in order to identify significantly enriched GO terms, for 
each GO term, one compares the number of genes 
annotated with the GO term (say k) in the list of n genes 
with the total number of K genes with the annotation in a 
reference list of N genes. A statistic based on the 
hypergeometric distribution can be used. Then significance 
of enrichment for a given GO term is determined as
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E. Network Analysis 
In addition to gene expression data, other existing data 

sources may provide additional information to further 
prioritize the gene list. Towards that end, we first construct 
gene co-expression networks based on the returned lists. 
Two additional networks (protein-protein interactions and 
molecular pathways) are then compiled from existing 
databases. In this study, we just perform some preliminary 
studies by examining the overlaps between the co-
expression networks and the other two networks. In 
addition, for directly linked gene pairs in the co-expression 
networks, we examine the distributions of their shortest 
distances in other two networks. 

III. RESULTS 
To verify our hypothesis, we first tried some 

commonly used approaches for microarray data analysis 
including the hierarchical clustering algorithm, a two-
sample t-test for each adjacent pair of stages, and the 
standard χ2 test of independence on the prostate cancer 
progression data from [18]. For the clustering analysis, 
Pearson’s correlation coefficient between each pair of 
genes was used as the similarity measure. An inherited 
difficulty in such an analysis is that one cannot 
automatically determine which groups are associated with 
the progression (results now shown). The t-tests for benign 
epithelium samples vs. PIN samples, PIN samples vs. PCA 
samples, and PCA samples vs. metastatic prostate cancer 
samples, which were also performed in [18], each returned 
a set of “significant” genes. However, those genes (at 
Q=0.01) actually do not have any overlaps, indicating that 
they may not serve as the signature across stages. The 

standard χ2 test can identify some genes that seem not 
independent (Fig.S1) from cancer stages. However their 
expressions may not necessarily be concordant with cancer 
progression stages (Fig.S1). Therefore, these commonly 
used algorithms may not work well for our problem. 

A. Overlaps between Different Approaches 
We further applied the logit model and the modified χ2 

test on the dataset, and compared the significant gene 
signatures with those from the original paper [18] using 
multiclass Pearson’s correlation. To declare significance, 
all three methods used Q-value of 0.05. Among the three 
approaches, the logit model was more sensitive than the 
other two. It returned 733/853 probes with 
increasing/decreasing expression patters across cancer 
stages. The modified χ2 test was the most insensitive one 
and the numbers are 358/438 respectively for 
increasing/decreasing expression patters, while the 
numbers of genes from [18] were in-between (490/680). 
The number of overlaps among these three sets can be 
found in Fig 1. Though they share a significant portion, 
they do show some differences, especially for the modified 
χ2 test and the Pearson’s correlation approach in [18]. Due 
to lack of details in [18], we do not totally understand what 
caused the difference between these two. 

 

B. Top Ranked Genes 
We examined the top-ranked genes from each list. 

They were in general consistent with each other. For 
example, for the top 20 ranked genes in the up/down-
expressed list from [18], 15/13 were found by the logit 
model, and all of them are ranked above 31/33. In addition, 
further examinations indicated that many known prostate 
cancer related genes are ranked highly in both lists. These 
genes include AMACR (3rd/5th in the logit model/Tomlins 
et al. [18] ) and MYC(11th/17th) in the up-expressed lists 
and MME (17th/9th) in the down-expressed lists [9,15]. 
Gene CKS2(2nd/ 7th), has subsequently identified by other 
studies [14]. The logit model also found some genes 
related with other types of cancer which were not 
identified by Tomlins et al. For example, FLJ10849 (5th) is 
a septin family gene involved in the pathogenesis of 11q23 
associated leukemia [13] and EVA1 (2nd) is a papillary 
thyroid cancer (PTC) related gene [11]. Another 
interesting fact is that after randomly permuting the labels 
of samples, the logit model did not select any significant 
genes. This provides compelling evidences that gene 
signatures we identified indeed have some biological 
meaning. 

153
8 97 

100

332

148

181 

284 
20 30 

104 

268 

179 

247 

Figure 1. Overlaps of genes identified by three approaches: logit (top 
circle), modified χ2 (left circle), and Tomlins et al. (right circle). Left: 
up-expressed genes. Right: down-expressed genes. 



C. Gene Ontology Enrichment Analysis 
To systematically characterize the gene signatures, we 

performed Gene Ontology enrichment analysis as outlined 
in subsection 2.4 using an online tool named Ontologizer 
[4]. Gene Ontology (GO) is widely used system with 
annotations for gene products in many organisms. 
Ontologizer statistically computes a set of significant GO 
terms that are found to be enriched in a given gene list 
comparing to a set of reference genes. In our analysis, we 
first mapped probes to genes according to the information 
from GSE6099. Probes that could not be mapped to any 
genes were removed for this analysis. If multiple probes 
were mapped to a single gene, only the one with highest 
significance was retained. The reference gene list consisted 
of all the genes from our input data. We applied GO 
enrichment analysis to the up/down regulated genes from 
the logit model as well as the modified χ2 test. There were 
17 enriched terms from the list of up-regulated genes by 
the logit model, and about half of the germs were related to 
“cell cycles” including “cell cycle process”, “cell cycle 
phase” and so on (Fig.S2). This is consistent to the results 
from [18]. However, no significant terms were found from 
the list of up-regulated genes from the modified χ2 test. 
This may be due to the loss of information during 
discretization. For the down-regulated signatures from the 
logit model, 9 out of 13 were actually child nodes of the 
“cellular component” node (Fig.S2). This was also 
observed from the modified χ2 list (7/10) (Fig.S2). Based 
on these results, it makes more sense to focus on genes 
with increasing expression levels with cancer progression. 
But this may also be due to bias/incompleteness of GO. 
Due to page limitation, significant GO terms and their 
diagrams were provided as supplementary materials. 

D. Network analysis 
In order to further analyze the gene signatures by 

taking advantage of other existing sources, we have 
compiled two additional networks: one for human protein 
interaction pairs based on public sources including DIP 
[16], Reactome [19], BIND [3] and   MINT [7], and the 
other for human gene pairs that co-occur in any disease 
pathway in the KEGG database [12]. Our goal is to 
identify those highly co-expressed genes from the lists of 
gene signatures that also physically interact or co-occur in 
any disease pathways.  Therefore, we first constructed two 
gene co-expression networks from the up/down expressed 
gene lists returned by the logit model. To determine a 
proper threshold, we constructed a null distribution for 
each gene list by randomly permuting the stage labels 
among samples and took the 0.005 and 0.995 percentiles as 
our thresholds. We then examined the overlaps between 
our co-expression networks and the PPI/ pathway networks. 
For the up-regulated genes, we identified around 25 
connected components (Fig S5), with the largest one 
shown in Fig 2. We suspect that this set of genes are 
particularly relevant and need more attentions. In addition 
to the fact that their expressions are in concordance with 
cancer progression, further evidences suggest that they 
might be directly interact. We examined a few nodes in the 
largest component with high degrees of interactions. The 
gene in the middle with ID 4609 is MYC (v-myc 
myelocytomatosis viral oncogene homolog (avian)). The 
protein encoded by this gene is a multifunctional, nuclear 

phosphoprotein that plays a role in cell cycle progression, 
apoptosis and cellular transformation. It functions as a 
transcription factor that regulates transcription of specific 
target genes. Mutations, overexpression, rearrangement 
and translocation of this gene have been associated with a 
variety of hematopoietic tumors, leukemias and 
lymphomas [provided by RefSeq]. A recent study shows 
that Nuclear MYC protein overexpression is an early 
alteration in human prostate carcinogenesis [10]. For the 
largest component with down-expressions, genes 7157, 
2033 and 1655 have high connectivities in the PPI network 
(Fig 2). Gene with ID 7157 is TP53 (tumor protein p53). 
This gene encodes tumor protein p53, which responds to 
diverse cellular stresses to regulate target genes that induce 
cell cycle arrest, apoptosis, senescence, DNA repair, or 
changes in metabolism. It is postulated to bind to a p53-
binding site and activate expression of downstream genes 
that inhibit growth and/or invasion, and thus function as a 
tumor suppressor. Gene with ID 2033 is EP300 (E1A 
binding protein p300), which is important in the processes 
of cell proliferation and differentiation. Defects in this 
gene play a role in epithelial cancer. Gene with ID 1655 is 
DDX5 DEAD (Asp-Glu-Ala-Asp box polypeptide 5). 
Based on their distribution patterns, some members of this 
family are believed to be involved in cellular growth and 
division [provided by RefSeq].  The overlaps with the 
pathway network actually consisted of more connected 
subgraphs. This is probably because we had compiled 
different disease pathways into one network. Further 
analysis using individual pathways may provide a clearer 
picture about their involvements in disease pathways. 

.    
 
 
 

Figure 2 Largest connected components from up-expressed  (left)
and down-expressed (right) genes  in the PPI network. See Fig.S3 for
all connected components.

For those nodes that do not direct interact with other 
nodes in the PPI/pathway networks, we further examined 
their shortest distances in the PPI/pathway networks and 
compared the distance distributions with those of a set of 
randomly selected nodes of equal size from the two 
networks. Our results (Fig.S4) show that the nodes are 
significantly condensed, comparing to randomly selected 
nodes of equal sizes. The p-values based on homogeneity 
χ2 tests are less than 2.2e-16 for all cases. This result 
further supports that the gene signatures identified in our 
study should have biological means associated with them. 

IV. CONCLUSIONS AND DISCUSSIONS  
Understanding of genetic basis of cancer progression is 

of practical importance for cancer diagnosis and prognosis. 
There have been tremendous efforts to identify gene 
signatures or biomarkers using high throughput microarray 
technology. Traditional statistical methods such as 
Student’s t-test or ANOVA analysis can only identify 
differentially expressed genes in different progression 
stages. In this study, we adopted the multi-class logit 



model for ordinal analysis to identify gene signatures that 
show consistent increasing or decreasing expressions in 
accordant with cancer progressions. We then applied the 
method to a real data set concerning about prostate cancer 
progressions. Our results show that the logit model is more 
sensitive than the modified χ2 test. Among top ranked 
genes, we have found several known prostate related genes, 
as well as other cancer related genes. We further 
performed GO enrichment analysis and network analysis 
to gain more information about our selected genes. Results 
from both analysis show that many genes do have distinct 
functions that are associated with cell cycles, and they are 
significantly condensed in other networks. Although 
biological validation is beyond the scope of the current 
study, our results provides compelling evidence that gene 
signatures identified by the approach represent biologically 
meaningful results. Though we chose prostate cancer data 
as an example, the method can be applied to any cancer 
progression data. 
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Fig S1. Hierarchical Clustering of genes selected by regular χ2 test of independence (left), multicategory logit model (middle), and modified χ2 test of 
independence (right). Samples are arranged from benign stage to metastatic stage. Genes may not show monotonic increasing/decreasing trends over 
stages in the regular χ2 test of independence. 
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