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ABSTRACT

Koyutürk, Mehmet Ph.D., Purdue University, December, 2006. Comparative Anal-
ysis of Biological Networks. Major Professors: Ananth Grama and Wojciech Sz-
pankowski.

Recent developments in molecular biology have resulted in experimental data that

entails the relationships and interactions between biomolecules. Biomolecular inter-

action data, generally referred to as biological or cellular networks, are frequently

abstracted using graph models. In systems biology, comparative analysis of these

networks provides understanding of functional modularity in the cell by integrating

cellular organization, functional hierarchy, and evolutionary conservation. In this

dissertation, we address a number of algorithmic issues associated with comparative

analysis of molecular interaction networks.

We first discuss the problem of identifying common sub-networks in a collection

of molecular interaction networks belonging to diverse species. The main algorithmic

challenges here stem from the exponential worst-case complexity of the underlying

mining problem involving large patterns, as well as the NP-hardness of the subgraph

isomorphism problem. Three decades of research into theoretical aspects of this

problem has highlighted the futility of syntactic approaches to this problem, thus

motivating use of semantic information. Using a biologically motivated ortholog-

contraction technique for relating proteins across species, we render this problem

tractable. We experimentally show that the proposed method can be used as a

pruning heuristic that accelerates existing techniques significantly, as well as a stand-

alone tool that conveys significant biological insights at near-interactive rates.

With a view to understanding the conservation and divergence of functional mod-

ules, we also develop network alignment techniques, grounded in theoretical models
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of network evolution. Through graph-theoretic modeling of evolutionary events in

terms of matches, mismatches, and duplications, we reduce the alignment problem to

a graph optimization problem and develop effective heuristics to solve this problem

efficiently.

We probabilistically analyze the existence of highly connected and conserved sub-

graphs in random graphs, in order to assess the statistical significance of the patterns

identified by our algorithms. Our methods and algorithms are implemented on various

platforms and tested extensively on a comprehensive collection of molecular interac-

tion data, illustrating the effectiveness of the algorithms in terms of providing novel

biological insights as well as computational efficiency. The source code of the soft-

ware described in this dissertation is available in the public domain and has been

downloaded and effectively used by several researchers.
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1. INTRODUCTION

Increasing availability of experimental data relating to biological sequences coupled

with efficient tools such as BLAST and CLUSTAL have contributed to fundamental

understanding of a variety of biological processes [1, 2]. These tools help in under-

standing relationships as well as differences between sequences and associated organ-

isms. Common subsequences and motifs discovered by such tools are used to derive

functional, structural, and evolutionary information.

Recent developments in molecular biology have resulted in a new generation of

experimental and computational data that entails the relationships and interactions

between biomolecules [3]. With the availability of high-throughput screening meth-

ods [4–7] and computational prediction techniques [8, 9], interaction data for various

organisms is available in the form of several abstractions. These abstractions include

metabolic pathways, protein-protein interaction (PPI) networks, and gene regula-

tory networks. These abstractions and associated data facilitate understanding of

cellular organization in a systems framework. These networks are organized in pub-

lic databases, which provide simple search queries as well as bulk data downloads

making molecular interaction data available and accessible to a broad class of re-

searchers [10–12]. Although vast amounts of data is becoming increasingly available,

efficient analysis counterparts to BLAST and CLUSTAL are not readily available for

such abstractions.

Biomolecular interaction data, generally referred to as biological or cellular net-

works, are frequently abstracted using graph models [13, 14]. As is the case with

sequences, two key problems on graphs are: aligning multiple graphs, and finding fre-

quently occurring subgraphs in a collection of graphs. Analysis of biological networks

in terms of these problems provides understanding of several biologically interesting

concepts such as common motifs of cellular interactions, evolutionary relationships
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and differences among cellular network structures of different organisms, organization

of functional modules, relations and interactions between sequences, and patterns of

gene regulation. In this study, we develop algorithms for discovering conserved sub-

structures in a collection of networks and alignment of interaction networks, and

provide statistical analyses for assessing the significance of conserved and densely

connected subgraphs in biological networks.

Preliminary studies on molecular interaction data show that functional conser-

vation is likely to manifest itself in terms of conservation of interactions [15]. Such

observations, coupled with the availability of interaction data for tens of species, mo-

tivate comprehensive investigation of conserved substructures in interaction networks

belonging to a diverse range of species. In terms of the graph-theoretical abstraction

of biological networks, the corresponding computational problem can be described as

one of identifying common (frequent) subgraphs in a collection of graphs.

The main algorithmic challenges in identification of conserved substructures stem

from the exponential worst-case complexity of the underlying mining problem involv-

ing large patterns, as well as the NP-hardness of the subgraph isomorphism problem.

Three decades of research into theoretical aspects of this problem has highlighted the

futility of syntactic approaches to this problem – thus motivating use of semantic in-

formation. Using an innovative graph simplification technique based on ortholog con-

traction, which is ideally suited to biological networks, we develop an algorithm that

renders these problems computationally tractable and scalable to large numbers of

networks. We show, experimentally, that the resulting software, Mule1, can extract

frequently occurring patterns in metabolic pathways and PPI networks collected from

several databases within seconds [16]. When compared to existing approaches, our

graph simplification technique can be viewed either as a pruning heuristic, or a closely

related, but computationally simpler task [17]. When used as a pruning heuristic, our

technique reduces effective graph sizes significantly, accelerating existing techniques

1The source code of Mule is publicly available at http://www.cs.purdue.edu/homes/koyuturk/

pathway and is already downloaded by more than a hundred researchers.
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by several orders of magnitude! Indeed, for most of the available networks, existing

techniques can not even be applied without our pruning step. When used as a stand-

alone analysis technique, Mule is shown to convey significant biological insights at

near-interactive rates.

Detection of conserved interaction patterns on a collection of biological networks

may be thought of as the counterpart of multiple sequence alignment in the network

domain. Another important and useful class of tools in comparative genomics is

pairwise sequence alignment, which makes it possible to search for sequences similar

to a query sequence in a database of protein or DNA sequences. Similarly, pairwise

network alignment is promising in terms of understanding the conservation and diver-

gence of interactions and modular tasks in two different species, as well as searching

for “orthologs” of a given functional module or protein complex in a large network

database.

The main challenge in PPI network alignment is to define a graph theoretical

measure of similarity between graph structures that captures underlying biological

phenomena accurately. In this respect, modeling of conservation and divergence of

interactions, as well as the interpretation of resulting alignments are important design

parameters. We develop a framework for comprehensive alignment of PPI networks,

which is inspired by duplication/divergence models that focus on understanding the

evolution of protein interactions. We propose a mathematical model that extends

the concepts of match, mismatch, and gap in sequence alignment to that of match,

mismatch, and duplication in network alignment, and evaluates similarity between

graph structures through a scoring function that accounts for evolutionary events [18].

By relying on evolutionary models, the proposed framework facilitates interpreta-

tion of resulting alignments in terms of not only conservation but also divergence of

modularity in PPI networks. Furthermore, as in the case of sequence alignment, our

model allows flexibility in adjusting parameters to quantify underlying evolutionary

relationships. Based on the proposed model, we formulate PPI network alignment as
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an optimization problem and present a fast algorithm, MaWISh2, to solve this prob-

lem [19]. Detailed experimental results show that our algorithm is able to discover

conserved interaction patterns very effectively, both in terms of accuracies and com-

putational cost. MaWISh is acknowledged as the only network alignment tool that

incorporates evolutionary models into algorithms, and is viewed as the counterpart

of evolutionarily motivated scoring matrices (e.g., PAM and BLOSUM) in sequence

alignment in the network domain [20].

In spite of algorithmic advances, development of a comprehensive infrastructure

for interaction databases is in relative infancy compared to corresponding sequence

analysis tools. One critical component of this infrastructure is a measure of the statis-

tical significance of a match or a dense subcomponent. Corresponding sequence-based

measures such as E-values are key components of sequence matching tools. In the

absence of an analytical measure, conventional methods rely on computer simulations

based on ad-hoc models for quantifying significance. We propose a statistical model

and analysis to analytically quantify statistical significance of dense components and

matches in reference model graphs [21].

We consider two reference graph models, a G(n, p) model in which each pair of

nodes has an identical likelihood, p, of sharing an edge, and a two-level G(n, p) model,

which accounts for high-degree hub nodes generally occurring in PPI networks. Exper-

iments performed on a rich collection of PPI networks show that the proposed model

provides a reliable means of evaluating statistical significance of dense patterns in

these networks. We also adapt existing state-of-the-art network clustering algorithms

by using statistical significance as an optimization criterion [22]. Comparison of the

resulting significantly dense subgraph identification algorithm, SiDeS3, with existing

methods shows that SiDeS outperforms existing algorithms in terms of sensitivity

2The source code of MaWISh is publicly available at http://www.cs.purdue.edu/homes/

koyuturk/mawish.
3The source code of SiDeS is publicly available at http://www.cs.purdue.edu/homes/koyuturk/
sides.
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and specificity of identified clusters with respect to available Gene Ontology (GO) [23]

annotation.

The rest of this dissertation is organized as follows. In the next chapter, we pro-

vide a brief overview of molecular interaction networks, their modeling, and analysis.

In Chapter 3, we present algorithms for identifying conserved subgraphs in a large

collection of biological networks. In Chapter 4, we present our PPI network align-

ment algorithm, which is grounded in theoretical models of network evolution. In

Chapter 5, we provide analytical results on statistical significance of connectivity in

molecular interaction networks, and present algorithms for identification of signifi-

cant dense subgraphs. We conclude our discussion with a summary and directions

for future research in Chapter 6.
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2. MOLECULAR INTERACTION NETWORKS

In the hierarchical organization of living organisms, cellular interactions form the

bridge between individual molecules (e.g., genes, mRNA, proteins, metabolites) and

large-scale organization of the cell [3, 24]. Understanding these interactions provides

an integrated view of the living cell, where individual molecules are dynamically or-

chestrated to perform cellular tasks as a system [25]. Efforts aimed at modeling,

inferring, organizing, and analyzing cellular interactions have been motivated by sig-

nificant advances in the understanding of genomics and have recently been the focus

of considerable research attention in systems biology.

2.1 Graph Theoretic Formalisms for Biological Networks

Graph models are commonly encountered in computational analysis of cellular

interactions [13, 14]. The structure of the orchestration of cellular tasks through

pairwise as well as multi-way interactions between biomolecules is abstracted using

various network models. Generally, in these models, molecules are represented by

nodes in the network and their interactions are represented by edges (links) between

these nodes. These links indicate interactions in various forms, ranging from physical

binding to computationally predicted functional association, such as phylogenetic sim-

ilarity. Common abstractions for molecular interactions include protein interaction

networks, gene regulatory networks, metabolic pathways, and signaling pathways.

While the interactions modeled using these abstractions are closely interrelated, and

the underlying components of the network cannot be isolated from each other, indi-

vidual models provide a simplified view of different modes of interaction, facilitating

efficient organization and analysis of these interactions.
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2.1.1 Protein Interaction Networks

An important class of molecular interaction data is in the form of protein-protein

interactions. Knowledge of these interactions provides an experimental basis for un-

derstanding modular organization of cells, as well as useful information for predicting

the biological function of individual proteins [26]. High throughput screening meth-

ods such as two-hybrid analysis [6], mass spectrometry (MS) [5], and tandem affinity

purification (TAP) [4] provide large amounts of data on the interactome of an in-

creasing number of species. These data are organized into public databases, making

PPI networks available for more complicated analysis tasks. Such databases include

BIND [10], DIP [12], MIPS [27,28], and MINT [29].

Experimental data may reveal either pairwise or multi-way interactions between

a group of proteins, depending on the nature of screening technique. Pairwise in-

teractions are conveniently modeled using simple undirected graphs in which nodes

represent proteins and an edge between two nodes represents the interaction between

the corresponding proteins, as shown in Figure 2.1(a). Multi-way interactions are

either modeled with hypergraphs, in which edges are replaced by hyperedges [13],

or inserted into simple graphs by contracting the multi-way interaction into a star

network (spoke model) or a clique (matrix model) [30].

Protein-protein interactions can also be inferred using various computational tech-

niques. These methods use different sources of experimental data to assess the like-

lihood of functional association between a pair of proteins. Common computational

techniques used for predicting protein-protein interactions include phylogenetic pro-

filing [31, 32] and analysis of gene expression [33, 34], based on the premise that

interacting proteins are likely to have co-evolved or be co-expressed as their cooper-

ative task would require existence of both proteins. Since protein interaction data

obtained from high-throughput screening is highly error-prone [7, 26], it is common

to combine several experimental and computational sources of interaction data to

obtain a reliable set of putative interactions. Such aggregated interaction networks
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Protein

Interaction

Enzyme

Substrate

Product

Compound

Gene

Down-regulation

Up-regulation

(a) (b) (c)

Fig. 2.1. Graph models for molecular interactions: (a) Protein interaction
networks, (b) Metabolic pathways, (c) Gene regulatory networks.

are modeled using weighted graphs, where edge weights represent the likelihood of

interaction between proteins and are estimated using various statistical models and

techniques [8, 35–38].

2.1.2 Metabolic Pathways

Metabolic pathways comprise a historically well-studied abstraction for biological

networks. They characterize the process of chemical reactions that, together, perform

a particular metabolic function. With the recent progress in application of compu-

tational methods to cell biology, there have been successful attempts at modeling,

synthesizing [39] and organizing metabolic pathways into public databases such as

KEGG [11], MetaCyc [40], and EMP [41].

Metabolic pathways are chains of reactions, in which reactions are linked to each

other by chemical compounds (metabolites) through product-substrate relationships.

A natural mathematical model for metabolic pathways is a directed hypergraph in

which each node corresponds to a compound, and each hyperedge corresponds to a

reaction (or equivalently enzyme) [42]. The direction of a pin of a hyperedge indicates
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whether the compound is a substrate or product of the reaction. This model is

illustrated in Figure 2.1(b). It is possible to replace this model by a simpler directed

graph if, for instance, we are only interested in relations between enzymes. In such

a model, enzymes correspond to nodes of the graph and a directed edge from one

enzyme to another indicates that a product of the first enzyme is a substrate of

the second. Indeed, metabolic pathways are represented in terms of various binary

relations in KEGG [43].

2.1.3 Gene Regulatory Networks

Gene regulatory networks, also referred to as genetic networks, represent regula-

tory interactions between pairs of genes [44]. Gene expression is regulated in various

phases, including transcription [45,46], translation [47], post-transcription, and post-

translation, through various mechanisms such as mRNA degradation [48]. Regulatory

interactions between genes are generally inferred from gene expression data through

microarray experiments [49–51] as well as sequence analysis such as identification of

regulatory motifs [52,53]. A simple and common model for gene regulatory networks is

the Boolean network model. In this model, nodes correspond to genes and a directed

edge from one gene to the other represents the regulatory effect of the first gene on the

second. Here, edges are labeled by the mode of regulation, which may be one of up-,

down-, or dual regulation. This model is illustrated in Figure 2.1(c). More compli-

cated computational models that capture the degree of regulation through weighted

graphs and/or differential equations are also used.

2.1.4 Other Abstractions

There exist various other abstractions for modeling molecular interactions. These

include signal transduction pathways, which model the mechanisms for the cell to

receive, process, and respond to information through signal transfer between pro-

teins [54] and gene co-expression networks, which pack relations in complex expres-
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sion patterns into pairwise associations between genes [34]. In the Molecule Pages

database [55], proteins involved in cell signaling are represented in various states and

transitions between these states, as an important step in abstracting cellular processes

via state diagrams and eventually modeling the cell as a state machine.

2.2 Computational Analysis of Molecular Interaction Networks

Graph-theoretic modeling of biological networks provides a framework for the

solution of various problems aimed at understanding modular and/or hierarchical or-

ganization of biological processes [56]. Algorithmic questions that facilitate extraction

of organized and annotated information from molecular interaction networks range

from simple queries to more complicated analysis tasks.

Simple queries comprise of individual and composite graph operations related to

topological properties that hint on individual function as well as functional corre-

spondence, including the following:

• Reachability is measured by the minimum number of interactions that sepa-

rate any given pair of proteins and provides an understanding of functional

association between proteins [57–59].

• Connectivity may be of interest for a single node (e.g., degree or clustering

coefficient) as well as the entire network (e.g., bisection width) and provides

insights on lethality of proteins and robustness of the (sub-)network [57,59–62].

• Density measures the relative intensity of interactions among a given set of

biomolecules and provides understanding of modularity [59,63,64].

More complicated analysis techniques target identification of patterns that ex-

hibit certain interesting or unusual – hence potentially meaningful characteristics

(e.g., in terms of frequency, density, or conservation), based on the expectation that

such unusual patterns reveal underlying functional requirements and/or evolutionary

pressure. Such analysis techniques include the following:
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• Graph clustering targets identification of dense subgraphs in the network and

is commonly used for identification of functional modules and complexes [58,

63–65]. These algorithms are based on the notion that a group of function-

ally related entities are likely to densely interact with each other while being

somewhat separated from the rest of the network [58].

• Hierarchical decomposition methods rely on the observation that organization

of cellular processes can be modeled using hierarchical modularity [66]. These

methods use hierarchical clustering algorithms for identification of functional

modules [67,68].

• Motif finding is based on identification of specific topological motifs that are

observed significantly more often than they would be observed at random in a

network of interactions. These algorithms reveal common regulatory motifs and

coherent interaction patterns as putative building blocks of biological networks.

They also provide insights into the functional topology of interaction networks,

facilitating compact modeling and reverse engineering of these networks [45,69–

72].

• Inferring function of individual proteins and assigning complex memberships

based on proximity, topological similarity, or other more detailed network char-

acterists also provide a useful computational tool for extracting information

from interaction data [35,36,73–75].

• Impact analysis studies the effect of alterations in specific genes, proteins, or

interactions on the overall characteristics of pathways or networks and has sig-

nificant importance in cancer and drug research, and engineering of cellular

processes [76–78].

As more interaction data becomes available for diverse species, comparative net-

work analysis becomes useful in extracting information from interaction networks [20].

Comparative network analysis provides understanding of conservation and divergence
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of the modularity of cellular processes in an evolutionary framework for systems

biology [79] and facilitates projection of functional, structural, and modular an-

notation for model organisms onto a diverse set of species. As in the case of se-

quences, key problems relating to comparative analysis of networks include aligning

multiple graphs [18, 80–83], finding frequently occurring subgraphs in a collection of

graphs [16, 82, 84], discovering highly conserved subgraphs in a pair of graphs, find-

ing good matches for a subgraph in a database of graphs [85], and identification of

common topological motifs [69]. In this dissertation, we emphasize on the problem

of identifying conserved substructures using two different algorithmic approaches:

frequent subgraph discovery and network alignment. Frequent subgraph discovery,

which is discussed in Chapter 3, targets identification of unusually frequent, hence

putatively conserved modular structures in a large collection of networks. Pairwise

network alignment, on the other hand, compares a pair of networks to find approx-

imate matches through evolutionary means of assessing subgraph similarity, and is

discussed in Chapter 4.

An important component of computational analysis in systems biology, as well as

in many other areas of molecular biology, is the assessment of the statistical signif-

icance of identified patterns. In general, for an identified pattern, it is necessary to

quantify how meaningful the pattern is with respect to a reference model, in order to

assess the biological relevance of the pattern [21, 86, 87]. Development of statistical

methods to assess significance requires accurate choice of a reference model and rigor-

ous probabilistic analysis. Such methods are quite limited for analysis of interaction

networks. In Chapter 5 of this dissertation, we address this problem and present

statistical models and detailed analysis for assessing the significance of connectivity

and conservation in molecular interaction networks.
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2.3 Relation to Other Sources of Biological Data

In addition to being inseparable from each other, molecular interactions are closely

related to other sources and abstractions of biological data in various ways. In many

cases, networks are inferred from other sources of data such as microarray experi-

ments or nucleotide/aminoacid sequences. For example, while the expression of genes

is modeled using a matrix in the space of genes and time, condition, or tissue, the

underlying process that generates this matrix is modeled using gene regulatory net-

works [49], as discussed in Section 2.1.3. Furthermore, regulatory interactions, such as

those involving transcriptional regulation, are commonly identified through sequence

analysis and motif search [52]. Knowledge of protein structure and molecular inter-

actions is employed mutually to derive information about each other, wherein known

interactions are used to extract domains and known domain structures are used in

prediction of interactions [88–90].

It is common to represent information derived from other sources of data us-

ing network models, as in the case of gene co-expression [34] networks. Such data

sources are coupled with interaction data obtained from high-throughput experiments

to identify modular structures such as protein complexes, functional modules, and

pathways [91–93].

A reliable source of data and analysis technique that sheds light on modularity

of cellular interactions is the assessment of phylogenetic relationships between pro-

tein sequences. Based on the observation that interacting proteins are likely to have

co-evolved because of evolutionary constraints, the idea of predicting protein inter-

actions and assigning functions to proteins through analysis of phylogenetic profiles

has been widely employed [32,94]. The phylogenetic profile for a protein is a vector,

each entry of which signifies the existence of an ortholog in one particular genome.

Hence, the basic approach in phylogenetic interaction prediction is the detection of

correlated phylogenetic profiles. This idea is also extended to profiles on phyloge-

netic trees [95, 96] and protein family profiles [97], and enhanced through analysis of
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domain profiles [31, 98] in order to capture the underlying evolutionary relationships

more accurately. Recent studies reveal that the relation between co-evolution and

interaction / functional association generalize from protein pairs to groups of pro-

teins, i.e., functional modules and protein complexes [99, 100]. Indeed, clustering of

phylogenetic profiles for detection of functional modules is successfully applied in the

analysis of prokaryotic metabolic pathways [101].

It should also be noted that combinatorial abstractions discussed in this chap-

ter often overlook the dynamics of the cellular interactions and provide a simplified

overview of the structure of the organization. Consequently, for accurate model-

ing, simulation, and engineering of cellular systems, it is necessary to combine these

combinatorial models and the information gained from analysis of such models with

dynamic analysis techniques that target understanding of how a system behaves over

time under various conditions [25].



15

3. IDENTIFICATION OF CONSERVED SUBGRAPHS IN

BIOLOGICAL NETWORKS

In this chapter, we address the problem of finding frequently occurring molecular

interaction patterns among different organisms, i.e., mining a collection of biologi-

cal networks for frequent subgraphs. This problem, sometimes referred to as graph

mining, is particularly challenging because it relates to the NP-hard subgraph iso-

morphism problem. Consequently, domain-specific abstractions are necessary in order

to simplify the problem. We use an abstraction based on contraction of nodes that

correspond to orthologous biomolecules. We show that this simplifies the frequent

subgraph discovery problem considerably, while being able to capture the underlying

biological information accurately.

We devise an efficient algorithm, Mule, which is based on frequent itemset ex-

traction to discover frequent subgraphs among these graphs taking into account the

nature of molecular interaction data. Existing formulations of isomorphism based

frequent subgraph extraction suffer from exponential increase in problem size due

to NP-hardness of both mining and subgraph isomorphism problems. In contrast to

such extant approaches, Mule avoids repeated solution of NP-hard subgraph isomor-

phism problem while preserving the biological relevance of identified patterns. Using

the proposed algorithm, we mine protein-protein interaction networks and metabolic

pathways derived from DIP, BIND, and KEGG databases. We show that Mule is

able to discover biologically meaningful patterns within seconds. We also compare

the computational efficiency of Mule with existing graph mining algorithms. As a

stand-alone analysis technique, Mule conveys significant biological insights at rates

several orders of magnitude faster than isomorphism-based graph mining algorithms.

We also establish our graph simplification technique as a pruning heuristic, which

may be used to discover contracted patterns to filter the data to be mined for iso-
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morphic patterns. When used as a pruning heuristic, Mule reduces effective graph

sizes significantly, accelerating existing techniques by several orders of magnitude.

The rest of this chapter is organized as follows. In Section 3.1, we formalize the

problem, present challenges, and overview existing algorithms for frequent subgraph

discovery. We present the ortholog contraction technique and establish its theoretical

and biological validity in Section 3.2. In Section 3.3, we present algorithms for mining

ortholog-contracted graphs. Finally, we present and discuss the interaction patterns

that result from mining KEGG metabolic pathways, and DIP and BIND protein inter-

action networks, and illustrate the runtime characteristics of the proposed algorithm

in Section 3.4.

3.1 Frequent Subgraph Discovery Problem

This study addresses the frequent subgraph discovery problem in the context of

biological networks. The input to the problem is a set of graphs in which nodes corre-

spond to biomolecules and edges correspond to interactions between these molecules.

Over this set of graphs, we are looking for frequent subgraphs that are connected and

isomorphic to each other. In the general setting for graph mining, isomorphism is

defined with respect to the labeling of nodes. In the context of biological networks,

labeling is based on the assessment of functional correspondence, as suggested by

sequence homology or more comprehensive methods of functional annotation. For

metabolic pathways, the hierarchical classification of enzymes provides a means for

labeling nodes. In the context of protein interaction networks, proteins of different

species are functionally associated through ortholog clustering. Without loss of gen-

erality, we refer to nodes as proteins, and label these nodes based on the assignment

of these proteins into ortholog groups. Assessment of functional correspondence be-

tween biomolecules is discussed in detail in the next section. We do not consider

edge labels (e.g., compounds for metabolic pathways) for simplicity since it is rela-

tively straightforward to extend typical graph mining algorithms to this case. We also
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assume that the graphs are directed, since some molecular interactions are directed

(e.g., enzyme-enzyme interactions) and any undirected graph may be represented as

a directed graph.

Definition 3.1.1 Interaction network. Given a set of biomolecules V in one par-

ticular organism, a set of interactions E between these molecules, and a many-to-

many mapping of these biomolecules into a set of ortholog groups L = {l1, l2, ..., ln},
the corresponding interaction network is modeled using a labeled graph G = (V,E,L).

Each v ∈ V (G) is associated with a set of ortholog groups L(v) ⊆ L. Each edge

uv ∈ E(G) represents an interaction between u and v.

We define node labeling flexibly to allow proteins to be associated with more

than one ortholog group. This is motivated by the fact that some proteins may be

involved in more than one cellular process. Specifically, if domain families [102, 103]

are used to relate proteins, multi-label nodes are necessary for handling multi-domain

proteins. Furthermore, since observed interaction networks represent a superposition

of dynamically organized interactions in spatial and temporal dimensions [76], this

model accurately captures the dynamic and complex modular organization of cellular

processes.

Definition 3.1.2 Subgraph of an interaction network. A graph S is a subgraph

of interaction network G, i.e., S ⊑ G, if there is an injective mapping φ : V (S) →
V (G) such that for all v ∈ V (S), L(v) ⊆ L(φ(v)) and for all uv ∈ E(S), φ(u)φ(v) ∈
E(G).

A subgraph S is connected if and only if for any subset U ⊂ V (S), ∃ u ∈ U and

v ∈ V (S) \ U such that uv ∈ E(S) or vu ∈ E(S). In molecular interaction networks,

a connected graph may be interpreted as a set of interactions related to each other

through at least one molecule. Therefore, interactions that are related to a particular

cellular process are expected to form a connected subgraph. Such subgraphs may also

be connected to each other as a reflection of crosstalk between different processes. For
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this reason, we define the frequent subgraph discovery problem as one of identifying all

connected subgraphs that exist in at least an interesting number of organisms. This

allows us to understand the conservation functional modules in different organisms

and identify conserved links between different cellular processes.

Definition 3.1.3 Closed frequent subgraph discovery.

Input: A set of interaction networks G = {G1 = (V1, E1,L), G2 = (V2, E2,L), ...,

Gm = (Vm, Em,L)}, each belonging to a different organism, and a support threshold

σ∗.

Problem: Let H(S) = {Gi : S ⊑ Gi} be the occurrence set of graph S. Find all

connected subgraphs S such that ξ(S) = |H(S)| ≥ σ∗|G|, i.e., S is a frequent subgraph

in G and for all S ′ ⊐ S, H(S) 6= H(S ′), i.e., S is closed.

In this framework, one is interested in discovering all subgraphs that are frequent

and closed. A closed subgraph is a frequent subgraph such that none of its supersets

occur in the same set of organisms as itself. In other words, since the subgraphs

of a pattern that occur in the same set of networks can be inferred from the larger

pattern, reporting such subgraphs as frequent patterns would be redundant. Hence,

by requiring the identified frequent subgraphs be closed, we ensure maximality of

discovered patterns to avoid redundancy. This also allows us to identify conserved

patterns for any subset of networks,taking into account the identity of each network,

hence facilitating phylogenetic analysis of modularity in molecular interaction net-

works. This approach may also be viewed as a symmetric mining problem, where for

any sufficiently large set of organisms, all maximal subgraphs that are common to

the corresponding networks are of interest.

As can be inferred from the definition of a subgraph, our graph mining prob-

lem requires repeated solutions to the subgraph isomorphism problem. There exist

significant literature aimed on addressing this problem and developing efficient algo-

rithms for identifying frequent patterns in graph structured datasets [104]. Existing

techniques are mostly based on syntactic approaches, providing limited performance,
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which may not be adequate for many realistic applications, because of the com-

putational challenges associated with the intractability of the problem components.

Indeed, in typical applications of biological network analysis, it is necessary to run re-

peated queries interactively with different parameters until a satisfactory set of results

is obtained. Therefore, as we elaborate in the following sections, direct application of

graph mining algorithms is not feasible in the current problem setting.

3.1.1 Computational Challenges in Frequent Subgraph Discovery

Most graph mining algorithms in the literature are based on the well-studied asso-

ciation rule mining, or more generally, the frequent itemset discovery problem [105].

This problem can be defined as follows. Given a set of items S = {i1, i2, ..., in} and a

set of transactions T = {T1, T2, ..., Tm} over S, i.e., Ti ⊂ S for all i, find all subsets t

of S such that σ(t) = |{Ti∈T :t⊂Ti}|
|T | ≥ σ∗. Here, σ(t) is the support of itemset t and σ∗

is the prescribed threshold on support, signifying the desired frequency of patterns

to be mined. Frequent itemset mining algorithms are generally based on the lat-

tice or downward closure property of support. This property states that an itemset

cannot be frequent if even one of its subsets is not frequent [106]. Taking advan-

tage of this property, frequent itemset mining algorithms enumerate all potentially

frequent itemsets starting from smaller itemsets and effectively pruning the search

space in a bottom-up fashion. In terms of frequent subgraph discovery, downward

closure translates to the fact that a subgraph is frequent only if all of its subgraphs

are frequent.

Most existing frequent subgraph discovery algorithms generalize state-of-the-art

frequent itemset mining algorithms to structured data. However, this generalization

poses significant challenges for the following reasons:

• Subgraph isomorphism. While counting frequencies of subgraphs in the graph

database, one must verify whether a given structure is a subgraph of a graph
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in the database [104]. This requires solution of the NP-complete subgraph

isomorphism problem [107] at all explored points of the solution space.

• Canonical labeling. Frequent itemset mining algorithms dictate a lexicographic

order on items and represent itemsets as ordered sets to ensure that no itemset

is considered more than once. However, such an ordering of nodes and/or edges

in graphs is not trivial. Furthermore, computing canonical labels for graphs

in order to sort them in a unique and deterministic manner is equivalent to

testing isomorphism between graphs [108]. Therefore, graph mining algorithms

generally aim to minimize redundancy caused by duplicate consideration of

subgraphs [109].

• Connectivity. While taking advantage of the downward closure property in fre-

quent itemset mining, candidate itemsets are generated in a bottom-up fashion

by extending itemsets with addition of items one by one. In the case of graph

mining, extension of subgraphs is not trivial since it is necessary to maintain

connectivity of candidate subgraphs, since the target frequent patterns are de-

sired to be connected, in general.

3.1.2 Existing Algorithms for Frequent Subgraph Discovery

One of the earliest frequent subgraph discovery algorithms, Subdue [110], is based

on recursively finding a subgraph that provides the best compression based on the

Minimum Description Length (MDL) principle. At each step of the algorithm, the

subgraph that provides maximal compression, hence is most frequent, is discovered

via a beam search heuristic and replaced by a single node. This mining process is

carried on recursively. In contrast to this greedy algorithm, other existing graph

mining algorithms are aimed at discovering all frequent subgraphs, searching the

entire space of subgraphs.

AGM [111] adapts the well-known a-priori algorithm for frequent itemset min-

ing [106] to the identification of vertex sets that induce frequent subgraphs in a graph
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database. The main feature of this algorithm is that it provides a canonical labeling

for graphs based on an adjacency-matrix representation. This might be computa-

tionally infeasible for applications involving large graphs, as is the case for biological

networks. FSG [108], on the other hand, provides a canonical representation based

on sparse adjacency list data structure and adopts a breadth-first enumeration algo-

rithm for discovering frequent subgraphs. Other graph mining techniques are aimed

at improving these algorithms by developing more efficient canonical representations

that reduce redundancy in candidate generation along with several optimization tech-

niques to help prune the search space more efficiently.

gSpan [112] reduces the overhead introduced by the problems discussed in the

previous section through a DFS-based canonical representation of graphs and enu-

merates the search space in a depth-first manner to achieve significant speed-up over

earlier algorithms. CloseGraph [109] is an extension of gSpan designed to discover

only those subgraphs that do not have a supergraph of same support to avoid re-

dundancy in the output. FFSM [113] improves upon gSpan by reducing redundant

candidate generation through a vertical search scheme based on an algebraic graph

framework. SPIN [114], further speeds up frequent subgraph discovery by splitting

the process into two independent tasks of mining subtrees and extending these sub-

trees to frequent subgraphs. This is based on the observation that major problems in

graph mining are caused by the existence of cycles and a majority of these problems

can be handled efficiently by avoiding cycles. Gaston [115] relies on the same idea

to generate frequent substructures hierarchically by starting from paths, extending

frequent paths to trees, and further extending frequent trees to graphs.

Ghazizadeh and Chawate [116] present an alternate approach for pruning the

search space using summaries. In this method, graphs are summarized by superposing

identically-labeled nodes and assigning weights to edges based on this superposition.

Observing that the edges of a frequent subgraph must have weights greater than the

frequency threshold, it is possible to prune out many subgraphs immediately by simply

evaluating the weights of the edges. Our approach in this paper also relies on the
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idea of contracting identically-labeled nodes, however, our algorithm is particularly

designed for biological networks, in which labeling of nodes does not necessarily induce

a disjoint categorization. Appropriate labeling of nodes and subsequent contraction

allows us to completely avoid the subgraph isomorphism problem, while preserving the

underlying biological information. Furthermore, in the analysis of biological networks,

the database consists of several large graphs, while most of the existing graph mining

algorithms are devised for either a large number of smaller graphs [108,112] or a single

large graph [116].

The underlying source of the subgraph isomorphism problem in frequent subgraph

discovery in labeled graphs is the repetition of node labels. Since there exist many

proteins in an organism that are homologous to each other, this problem emerges

in the analysis of biological networks as well. Since most of the existing algorithms

discussed above are based on exhaustive enumeration of the search space, they are

not scalable to the analysis of biological networks, which contain thousands of nodes

and ten thousands of edges. However, as we shall show in the next section, if all

orthologous nodes are contracted into a single node, the problem can be considerably

simplified while the underlying biological information is preserved.

3.2 Algorithmic Insight: Ortholog Contraction

We propose an alternate setting for graph mining based on contraction of or-

thologous nodes. While simplifying the graph mining problem significantly, ortholog

contraction maintains not only the correctness by preserving the underlying frequent

subgraphs in the graph database, but also the biological relevance and interpretabil-

ity of the discovered patterns. Here, we show the fact that the underlying frequent

subgraphs in the database are preserved by ortholog contraction. Therefore, there is

no loss of information resulting from our ortholog contraction technique.

Definition 3.2.1 Ortholog-contracted graph. Given interaction network G =

(V,E,L) the ortholog-contracted representation of G, Υ(G) = Ḡ = (V̄ , Ē,L) is con-
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Fig. 3.1. A molecular interaction network and its ortholog-contracted
representation.

structed as follows. For 1 ≤ i ≤ |L|, there exists unique v̄ ∈ V̄ such that L(v̄) = {li}.
For each uv ∈ E and for all li ∈ L(u), lj ∈ L(v), there exists ūv̄ ∈ Ē such that

L(ū) = {li} and L(v̄) = {lj}.

A sample interaction network and its ortholog-contracted representation are shown

in Figure 3.1. Observe that the ortholog-contracted graph of an interaction network

is unique while the reverse is not necessarily true. However, all subgraphs of an

interaction network are preserved in its ortholog-contracted representation, as the

ortholog-contracted representations of all subgraphs of G are subgraphs of Ḡ, as

stated in the following theorem.

Theorem 3.2.1 Preservation of subgraphs. Given interaction network G, let Ḡ

be its ortholog-contracted representation. Then for any S ⊑ G, Υ(S) ⊑ Ḡ.

Proof. Take any S ⊑ G. Let S̄ = Υ(S) and φ be the appropriate mapping from

V (S) to V (G). For each v ∈ V (S) and li ∈ L(v), there exists a unique v̄ ∈ V (S̄)

such that L(v̄) = {li}. Since L(v) ⊆ L(φ(v)), li ∈ L(φ(v)). Therefore, there also

exists a unique φ(v) ∈ V (Ḡ) such that L(φ(v)) = {li}. Then, there is a unique

injective mapping φ̄ : V (S̄)→ V (Ḡ), where φ̄(v̄) = φ(v) for any v ∈ V (S). Hence, for

any ūv̄ ∈ E(S̄) that results from uv ∈ E(S), since ∃ φ(u)φ(v) ∈ E(G), there exists

φ̄(ū)φ̄(v̄) = φ(u) φ(v) ∈ E(Ḡ). Therefore, S̄ ⊑ Ḡ. �
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In Figure 3.1, the ortholog-contracted representation of the bold subgraph of G is

also shown in bold in Υ(G).

Corollary 1 Preservation of frequent subgraphs. For a set of interaction net-

works G = {G1, G2, ..., Gm}, let Ḡ = {Υ(G1), Υ(G2), ..., Υ(Gm)} be the corresponding

set of ortholog-contracted graphs. If S is a frequent subgraph in G, then Υ(S) is a

frequent subgraph in Ḡ.

We can interpret this result as follows. If we mine the set of ortholog-contracted

graphs instead of the original set of interaction networks, we will discover a superset of

the frequent subgraphs of the original set. In other words, we do not miss any frequent

patterns that exist in the dataset. Therefore, it is always possible to recover the actual

frequent subgraphs from the set of frequent ortholog-contracted subgraphs using an

isomorphism-based graph mining algorithm. This is significantly more efficient than

running the isomorphism-based algorithm on the original dataset, since mining the

ortholog-contracted graph prunes out most of the infrequent substructures, thus the

resulting set is significantly smaller both in terms of graph size and number of graphs.

Furthermore, the idea of ortholog-contraction does not conflict with the purpose of

mining molecular interaction data; as we shall show, it is very useful by itself. We

elaborate on this point in the context of protein interaction networks and metabolic

pathways.

3.2.1 Ortholog Contraction in Protein Interaction Networks

Recent studies on the evolution of protein interaction networks suggest that or-

thologous proteins that result from recent duplications are likely to share common

interactions [117]. In other words, conservation of interactions between orthologous

proteins translates into conservation of function. Therefore, while mining protein in-

teraction networks for common network patterns among different species, proteins in

different organisms must be related to each other through orthology.
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Fig. 3.2. Ortholog contraction in protein interaction networks: (a) A
portion of yeast PPI network, (b) network of ortholog groups that results
from contraction of proteins in the same COG cluster.

Since proteins that are evolutionarily or functionally related show significant se-

quence homology, a reasonable way of detecting protein families relies on sequence

clustering [118,119]. A problem with inter-species protein sequence clustering is that

out-paralogs, which do not possess any significant functional or evolutionary relation-

ship since they predate the split of species, are also clustered together along with

orthologs and in-paralogs [120].

Recently, ortholog families have been identified through more comprehensive in-

silico analysis and organized into several databases, such as COG [121] and Ho-

mologene [122]. There has been relevant efforts to comprehensively identify domain

families as well, including PFAM [102] and ADDA [103]. Such databases provide

a reliable basis for labeling nodes in PPI networks. However, while relating nodes

through domain families, interacting domains should be considered in order to avoid

over-populating the contracted network.

Node contraction in protein interaction networks reduces interactions between pro-

teins into those between ortholog groups. This is illustrated in Figure 3.2. A 5-node

portion of S. Cerevisiae protein interaction network is shown in Figure 3.2 (a). In

this figure, the common names of each protein are shown in the oval representing that

protein. The nodes are labeled by their COG clusters. As a result of ortholog con-
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Fig. 3.3. Ortholog contraction in metabolic pathways: (a) A portion of
glycolysis pathway, (b) a network of pairwise enzyme interactions that
results from ortholog contraction based on enzyme nomenclature.

traction, 3’5’ exoribonuclease (Mtr3) and 3’5’ phosphorolytic exoribonuclease (Ski6),

which belong to the same COG cluster, are contracted into single node, as shown in

Figure 3.2 (b). Therefore, the interaction of these proteins with Csl4 is represented

as a single interaction between ortholog groups KOG1068 and KOG3409.

3.2.2 Ortholog Contraction in Metabolic Pathways

In the directed graph model for metabolic pathways, node labels correspond to

enzymes that catalyze the respective reactions. Although the biochemical proper-

ties of enzymes differ from organism to organism, enzymes are classified based on

metabolic functions and protein orthology. Currently, there exists a comprehensive

enzyme nomenclature that provides hierarchical classification of enzymes based on

biochemical function [123]. In this enzyme nomenclature system, each enzyme is

identified by its Enzyme Commission (EC) number. The numbers in the squares that

represent reactions in Figure 3.3 are the EC numbers of the enzymes that catalyze

these reactions.
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An enzyme may catalyze multiple reactions in a particular pathway. Therefore,

an enzyme class may be attached to more than one node in the corresponding graph

model. However, since the edges in the directed graph model signify the producer-

consumer relation between two enzymes, contracting nodes corresponding to the or-

thologous enzymes (i.e., enzymes that belong to the same class) preserves this infor-

mation [16].

The ortholog-contracted representation of the metabolic pathway graph of Figure

3.3 (a) is shown in Figure 3.3 (b). In this representation, although the node that cor-

responds to enzyme EC:2.7.1.2 is contracted, we do not lose the information that this

enzyme not only consumes the product of EC:5.1.3.3, but also produces a compound

that is consumed by the same enzyme. The only information that is hidden by this

model is the fact that these two interactions between this pair of enzymes are derived

from two successive reactions, which may be extracted by post-processing, as shown

in the previous section.

3.3 Discovering Frequent Edgesets in Ortholog-Contracted Graphs

Once we contract orthologs into a single node for each graph, the frequent sub-

graph discovery problem is reduced to a generalized form of frequent itemset mining.

We elaborate on this point in the following lemma.

Lemma 1 Equivalence of ortholog-contracted graphs to edge sets. For or-

tholog contracted graph Ḡ, define edge set Ẽ(Ḡ) = {(li, lj) : ∃uv ∈ E(Ḡ) such that L(u) =

{li}, L(v) = {lj}}. If S̄ is also an ortholog-contracted graph, then S̄ ⊑ Ḡ if and only

if Ẽ(S̄) ⊆ Ẽ(Ḡ).

Proof. It is straightforward to see that if S̄ ⊑ Ḡ, then Ẽ(S̄) ⊆ Ẽ(Ḡ). Now assume

that Ẽ(S̄) ⊆ Ẽ(Ḡ). For any (li, lj) ∈ Ẽ(S̄), there exist unique u, v ∈ V (S̄) such that

L(u) = {li}, L(v) = {lj}, and uv ∈ E(S̄). Furthermore, (li, lj) ∈ Ẽ(Ḡ). Therefore,

there exist unique u′, v′ ∈ V (Ḡ) such that L(u′) = {li}, L(v′) = {lj}, and u′v′ ∈ E(Ḡ).

Letting φ(u) = u′ and φ(v) = v′, we have S̄ ⊑ Ḡ. �
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We can generalize this lemma to conclude that an ortholog-contracted graph is

uniquely determined by the set of its edges. Therefore, mining frequent subgraphs in

a collection of ortholog-contracted graphs is equivalent to mining frequent edgesets

in a collection of graphs that are uniquely determined by the set of their edges. Since

we are interested only in connected subgraphs, we define an edgeset to be the set of

label pairs that correspond to the edges of a connected graph.

Definition 3.3.1 Edgeset. Given a set of ortholog labels L = {l1, l2, ..., ln}, an

edgeset F = {e1, e2, ..., ek} is a set of ordered pairs ei = {ls, lt}, where for any subset

F ′ ⊂ F , there exists ei ∈ F ′, ej ∈ F \ F ′ such that ei ∩ ej 6= ∅.

Definition 3.3.2 Closed frequent edgeset discovery.

Input: Set of ortholog contracted graphs Ḡ = {Ḡ1, Ḡ2, ..., Ḡm} and a support threshold

σ∗.

Problem: For edgeset F , let H(F ) = {Ḡi : F ⊆ Ẽ(Ḡi)} be the occurrence set of F .

Find all closed edgesets F that are frequent in Ḡ, i.e., ξ(F ) = |H(F )| ≥ σ∗|Ḡ| and for

all F ′ ⊃ F , H(F ′) 6= H(F ).

Observe that this problem is a generalized version of the frequent itemset mining

problem. Indeed, frequent itemset mining is a special case in which the underlying

graph is a clique. Therefore, a simple approach to solving this problem is to remove

the connectivity constraint, and find all frequent subgraphs using a frequent item-

set mining algorithm. The connected components of all frequent subgraphs provide

the set of all frequent connected subgraphs. However, this approach has two draw-

backs. First, although it ensures that all frequent edgesets will be discovered, it does

not ensure that the discovered edgesets will be closed. Second, since the number

of connected subgraphs of a clique is much larger than that of a sparse graph, this

relaxation will enlarge the search space significantly, degrading computational effi-

ciency. Therefore, a specialized algorithm for this problem, which takes into account

the connectivity and maximality constraints, along with the nature of data that is

derived from molecular interactions is necessary.
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3.3.1 Adapting Itemset Mining to Edgeset Mining

Since frequent edgeset mining problem is closely related to the frequent itemset

mining problem, we base our algorithm design on existing itemset mining algorithms

taking into account the specific characteristics of biological networks.

As discussed earlier, frequent itemset mining algorithms enumerate the space of

possible itemsets, exploiting the downward closure property to prune out the search

space. Starting from the smallest itemsets, the occurrence of each itemset in the

input transaction set is counted. Smaller frequent itemsets are extended with other

frequent itemsets to generate larger itemsets that are potentially frequent. Repetitions

are avoided by inducing a lexicographic ordering of items.

Two major design choices for frequent itemset mining algorithms are, the order of

traversal of the enumeration tree and the method for determining the support of each

itemset [124]. It is possible to traverse the itemset tree in depth-first or breadth-first

fashion. Breadth-first traversal, which generates the nodes of the tree level by level,

is efficient in the sense that it eliminates the maximum number infrequent itemsets

at each level. However, it requires a larger memory since it stores all nodes at each

level of the tree. Therefore, breadth-first traversal becomes inefficient as the tree gets

deeper. Depth-first traversal, on the other hand, expands a node immediately after

its itemset is discovered to be frequent, keeping storage requirement to a minimum,

at the expense of exploring extra itemsets [105].

There are two possible methods for computing the support of each itemset as well.

One approach is the set counting method, which makes a pass over the transaction

set at each node of enumeration tree to count the number of transactions that con-

tain the corresponding itemset. This approach is memory-efficient and well-suited to

breadth-first traversal. Set intersection, on the other hand, stores the identifiers of

all transactions that contain each itemset and computes the intersection of identifier

sets while extending an itemset. This approach minimizes the number of passes over
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the transaction set at the expense of additional memory for storing the identifier sets.

This method is more appropriate for depth-first traversals.

Most closed frequent itemset mining algorithms use a depth-first traversal along

with set intersection, since depth-first traversal provides the opportunity of deciding

whether an itemset is closed upon its expansion [125, 126]. This combination is also

appropriate for the closed frequent edgeset mining problem in biological networks for

the following reasons:

• Occurrence of subgraphs. In contrast to association rule mining, in mining bio-

logical networks, the identity of organisms that contain the particular subgraph

is of interest as well as its frequency. This is because, this set of organisms

provides considerable information about the conservation of pathways, mod-

ules, and complexes, evolutionary relations between species, and the functional

annotation of discovered interaction patterns. Therefore, for each edgeset ex-

plored by the algorithm, it is necessary to store the identifiers of organisms that

contain this edgeset.

• Graph size vs. database size. In biological applications, the size of the graphs

is larger than the size of typical transactions in association rule mining. For

instance, a protein interaction network generally contains thousands of edges.

This is also true for the cardinality of identified patterns. On the other hand,

while typical data mining applications involve millions of transactions, the num-

ber of biological networks to be mined is smaller. Therefore, in mining biological

networks, the enumeration tree is wider and deeper, while the amount of data

to be processed at each enumeration node is smaller. This makes depth-first

enumeration along with set intersection feasible and memory efficient.

3.3.2 Mule: An Efficient Algorithm for Frequent Edgeset Discovery

The key difference between frequent edgeset mining and frequent itemset mining is

that in the former, we are only interested in connected subgraphs. In order to generate
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procedure MineOrthologContractedGraphs (G, σ∗)

⊲ Input G: Set of ortholog-contracted graphs

⊲ Input σ∗: Support threshold

⊲ Output MFS: Set of closed frequent subgraphs

1 ξ∗ ← σ∗|G|
2 E ← {e = {ls, lt} : ∃ G ∈ G s.t. u, v ∈ V (G), uv ∈ E(G), L(u) = ls, L(v) = lt}
3 for each e = {ls, lt} ∈ E do

4 H(e) ← {G ∈ G : ∃ u, v ∈ V (G) s.t. uv ∈ E(G), L(u) = ls, L(v) = lt}
5 F ← {e ∈ E : |H(e)| ≥ ξ∗}
6 MFS ← ∅
7 for each ei ∈ F do

8 N(ei) ← {ej ∈ F : ej ∩ ei 6= ∅}
9 ExtendFrequentEdgeset (F , ξ∗, MFS, {ei}, N(ei), {e1, e2, ..., ei−1})
10 return MFS

Fig. 3.4. Main procedure for mining ortholog-contracted graphs.

all connected subgraphs in the database, we perform depth-first search on the graph

constructed from all frequent edges. To avoid repetitions, we induce a lexicographic

order on the edges and remember previously visited edges at each enumeration node.

Assume, at any stage of the algorithm, that we have a frequent edgeset of k edges,

denoted by Fk. We define the candidate set Ck to be the set of edges that are

connected to the edges in Fk, but have not been previously visited. The set of edges
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previously visited by the depth-first enumeration algorithm is denoted by Dk. For

any candidate edge c ∈ Ck, we extend Fk as follows:

Fk+1 = Fk ∪ c Dk+1 = Dk = Dk ∪ c,

N(c) = {e ∈ F : e ∩ c 6= ∅} Ck+1 = (Ck ∪N(c)) \Dk.

Here, F denotes the set of all frequent edges in the graph database.

The resulting algorithm for Mule is shown in Figure 3.4. This algorithm makes

use of a recursive subroutine to extend frequent edgesets, which is shown in Figure

3.5. The main procedure, MineOrthologContractedGraphs performs prepro-

cessing by determining the set of frequent edges in the input graph set. It then

generates each portion of the frequent edgeset tree rooted at each frequent edge by

calling ExtendFrequentEdgeset. Upon each invocation, ExtendFrequent-

Edgeset tries to extend the edgeset (subgraph) by all edges in the candidate set,

one by one. If the extended edgeset is frequent, then the procedure is invoked again

for the extended edgeset. The algorithm stops whenever an edgeset cannot be further

extended. This edgeset is then recorded, if it is not subsumed by any other recorded

frequent edgeset. Upon invocation, ExtendFrequentEdgeset checks whether the

current frequent tree is already subsumed by other closed frequent edgesets that have

previously been discovered, if so, it stops the search process. This optimization helps

prune out the search space in chunks. MFS is empty on first invocation of Extend-

FrequentEdgeset, and is input to the procedure at each subsequent invocation,

wherein it is extended with newly discovered frequent subgraphs.

Consider the input graph set shown in Figure 3.6(a). These graphs have 6 edges in

all, ab, ac, bd, ce, de, and ea. Figure 3.6(b) shows the frequent edgeset tree for mining

subgraphs that exist in at least 3 of the input graphs. Procedure ExtendFrequent-

Edgeset is invoked for ab, ac, de, and ea, since these are the only frequent edges.

The edgeset F , candidate set C, and the set H of identifiers of graphs that contain

this edgeset are shown at each node of the edgeset tree. The sets of visited edges (D)

label the branches of the tree, since these sets are shared by parent and children. At

any instant, set D for a node is the one at its right-most branch. On first invocation,



33

procedure ExtendFrequentEdgeset (F , ξ∗, MFS, Fk, Ck, Dk)

⊲ Input F : Set of frequent edges

⊲ Input ξ∗: Frequency threshold

⊲ Input, Output MFS: Set of maximal frequent edgesets

⊲ Input Fk: Frequent edgeset with k edges

⊲ Input Ck: Set of candidate edges for edgeset extension

⊲ Input Dk: Set of already visited edges

1 Rk ← set of all unvisited edges reachable from Fk

2 if ∃F ′ ∈MFS s.t. Rk ⊆ F ′ and H(Fk) ⊆ H(F ′) then return

3 closed ← true

4 for each c ∈ Ck do

5 Dk+1 ← Dk ← Dk ∪ {c}
6 Fk+1 ← Fk ∪ {c}
7 H(Fk+1) ← H(Fk) ∩H(c)

8 if |H(Fk+1)| ≥ ξ∗ then

9 if H(Fk+1) = H(Fk) then closed← false

10 Ck+1 ← (Ck ∪N(c)) \Dk+1

11 ExtendFrequentEdgeset(F , ξ∗, MFS, Fk+1, Ck+1, Dk+1)

12 if closed then

13 if 6 ∃F ′ ∈MFS s. t. Fk ⊆ F ′ and H(Fk) ⊆ H(F ′) then MFS ←M FS ∪ Fk

Fig. 3.5. Recursive procedure for extending a frequent edgeset.

the algorithm starts with edgeset {ab}, whose candidate set is N(ab) = {ac, ea} and

extends it with edge ac since the edgeset {ab, ac} is frequent. This set cannot be
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Fig. 3.6. Sample execution of Mule: (a) A collection of four ortholog-
contracted graphs, (b) edgeset tree resulting from depth-first enumeration
of edgesets for identification of subgraphs with frequency three.

extended by the only edge in its candidate set, ea, since the edgeset {ab, ac, ea} is a

subgraph of only two input graphs. Therefore, this edgeset is recorded as a closed

frequent subgraph. Note that extension of the edgeset with edge de is not considered

since this edge is not connected to the edgeset under consideration. Therefore, it

never gets into the candidate edge set. Furthermore, extension of the edgeset {ac}
with edge ab is not considered since this edge has already been visited. Upon termi-

nation, the algorithm reports four closed frequent subgraphs shown in boxed nodes

in the figure, which are {ab}, {ab, ac}, {ab, ea} and {de}. Note that {ab} is reported

since its occurrence set is different from its superset {ab, ac}, hence it is closed. Al-

though edgesets {ac} and {ea} are also frequent, they are not reported since they are

contained in other frequent edgesets with the same occurrence set.

3.4 Experimental Results

In this section, we first present molecular interaction patterns discovered by Mule and

discuss their biological interpretation. We then illustrate the runtime efficiency of
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Mule, compare its execution characteristics with those of FSG and gSpan, and show

that it is possible to recover actual frequent subgraphs from the contracted patterns

discovered by Mule very quickly using an isomorphism-based graph mining algo-

rithm.

3.4.1 Conserved Interaction Patterns Identified by Mule

DIP and BIND Protein Interaction Networks

We use Mule to identify conserved interaction patterns in nine eukaryotic pro-

tein interaction networks gathered from BIND [10] and DIP [12]. In order to re-

late the proteins in different organisms and compute ortholog-contracted graphs, we

use ortholog groups derived from COG, Homologene, and sequence clustering us-

ing BLASTCLUST. We compare each homolog group in Homologene with ortholog

groups in COG. If a Homologene group shares at least one protein with a COG or-

tholog group, we merge the Homologene group into the corresponding COG group.

We then compare each protein that is not yet assigned to an ortholog group with

the existing ortholog groups using BLAST. If the protein has significant sequence

similarity with at least half of the proteins in a group, then we assign the protein

to that ortholog group as well. For the remaining proteins, we run BLASTCLUST

and create a new ortholog group from each cluster identified by BLASTCLUST. We

then compute the ortholog-contracted graphs based on these ortholog groups, con-

sidering both direct and one-hop indirect interactions. The statistics of the original

PPI networks and the ortholog-contracted graphs are shown in Table 3.1.

When we mine the nine PPI networks for patterns that occur in at least four

of the input networks, i.e., those of frequency four, we are able to identify 41 fre-

quent connected subgraphs. The largest subgraph that is common to H. sapiens,

D. melanogaster, C. elegans, and S. cerevisiae contains 18 interactions between 19

ortholog groups, which is shown in Figure 3.7(a). These interactions are associated

with zinc-finger domains (KOG1721). For any combination of three organisms among
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Table 3.1
Statistics of analyzed PPI networks and corresponding ortholog-
contracted graphs.

PPI network Ortholog-contracted graph

Organism # proteins #interactions # ortholog # direct # indirect

groups interactions

A. thaliana 288 424 151 133 63

O. sativa 301 340 219 333 217

S. cerevisiae 5157 18192 1679 5327 43420

C. elegans 3345 5988 1494 2818 12968

D. melanogaster 8577 28829 2849 11088 65540

H. sapiens 4541 8577 1940 3868 23916

B. taurus 195 265 89 126 21

M. musculus 2479 2959 1213 1730 2284

R. norvegicus 696 881 445 714 761

these four, we are able to obtain larger subgraphs that are related to zinc-finger pro-

teins. For example, H. sapiens, D. melanogaster, and C. elegans share 115 interactions

related to zinc-finger among 83 ortholog groups, while H. sapiens, D. melanogaster,

and S. cerevisiae share 81 interactions among 66 ortholog groups. The star shape

of this interaction network is probably due to (1) numerous cellular activities that

zinc-finger proteins participate in (e.g., cell division, transcription, MAP Kinase sig-

naling, actin polymerization, and others) and (2) the large number of proteins with

zinc-finger domains, both in higher and lower eukaryotes (about 1% of proteins in

mammals [127]). Surprisingly, there is a significant degree of conservation of inter-

actions among zinc-finger proteins and their partners across these diverse organisms.

An interesting followup investigation would be to see how DNA binding specificities

of these zinc-finger domains have evolved.
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Fig. 3.7. Frequent interaction patterns that are common to four organ-
isms.

Using the same number of organisms for the threshold, a portion of a large protein

complex, TFIID, involved in transcription by RNA Polymerase II is identified as a

conserved subnet in M. musculus, H. sapiens, D. melanogaster, and S. cerevisiae [128].

This conserved subnet is shown in Figure 3.7(b). The mapping of these interactions

on each organism are also shown in the figure, where direct and indirect interactions

are shown by solid and dashed edges, respectively. In S. cerevisiae, this protein com-
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plex consists of one TATA-Binding Protein (TBP) and at least 14 TATA-Associated

Factors (TAFs); yet in the conserved subnetwork, only 4 are found [128]. One hypoth-

esis explaining this observation is that the TAFs present in the conserved network

have greater role in promoting transcription relative to other TAFs that are absent.

When we lower the frequency threshold to 3, Mule identifies much larger number

of conserved interaction patterns, specifically 158 frequent subgraphs. Four of these

patterns and their mapping on the corresponding organisms are shown in Figure 3.8.

Almost all proteins involved in these conserved subnets are well-annotated for S.

cerevisiae, which facilitates mapping of these annotations to other organisms that

share these interaction patterns. The subnet in Figure 3.8(a) is a pathway associated

with small nuclear ribonucleoprotein complex and is conserved in D. melanogaster,

C. elegans, and S. cerevisiae. Proteins Lsm1-7 make up a complex that participates

in mRNA degradation and splicing [129]. Proteins Smx3 and Smd2 are sequence

homologs of subunits in this complex. The interactions among components of Actin-

related protein Arp2/3 complex, conserved in B. taurus, H. sapiens, and S. cerevisiae,

are shown in Figure 3.8(b). This complex is involved in actin nucleation. There are 7

components known in all for this complex in S. cerevisiae, where Arc18 is missing in

the conserved subnet [130]. In the same study, Arc40 is indicated to be essential for

viability, which may explain why Arc40 has greater number of interacting partners

than the other proteins present in the conserved network. In Figure 3.8(c), two

endosomal sorting complexes, ESCRT-II (Vps22, Vps25, and Vps36) and ESCRT-III

(Vps20, Vps24, and Vps32), are shown to be conserved together in D. melanogaster, S.

cerevisiae, and H. sapiens. These two complexes take part in the multivesicular-body

pathway and act downstream of another protein complex, ESCRT-I [131]. Finally, in

Figure 3.8(d), dense interactions between a collection of proteins involved in vesicle

transport are detected [132]. These interactions are conserved in D. melanogaster, S.

cerevisiae, and R. norvegicus.
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Fig. 3.8. Sample interaction patterns that are conserved in three organ-
isms.

Frequent Sub-pathways in KEGG Metabolic Pathways

Using the proposed algorithm, we mine several pathway collections extracted from

the KEGG metabolic pathway database. KEGG currently contains a large database
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Fig. 3.9. Sample frequent subgraphs in Glutamate and Alanine-Aspartate
metabolic pathways.

of pathway maps for several metabolic processes, including carbohydrate, energy,

lipid, nucleotide, and aminoacid metabolism for 157 organisms. We mine several

pathways belonging to different metabolisms for different organisms. Sample frequent

sub-pathways discovered in pathway collections that belong to glutamate and alanine

metabolisms are shown in Figure 3.9. The nodes of the displayed graphs are labeled

by KEGG ID’s of enzymes, which can be queried on KEGG web site for detailed

information.

We are able to observe fairly large sub-pathways that are frequent. For example,

a sub-pathway of glutamate metabolism that contains 4 nodes and 6 edges occurs in

45 (29%) of the 155 organisms. This sub-pathway is shown by bold nodes and edges

in Figure 3.9(a). It is composed of enzymes glmS (2.6.1.16 - glucosamine-fructose-6-

phosphate-aminotransferase), guaA (6.3.5.2 - GMP synthase), nadE (6.3.5.1 - NH(3)-

dependent NAD(+) synthetase), and purF (amidophosphoribosyltranferase). In this

sub-pathway, all enzymes are related by L-Glutamine.
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Mining the pathways for different support thresholds allows evaluation of frequent

sub-pathways in a multi-level fashion. For instance, when we reduce the required

support threshold to 19.3% (30 organisms) for glutamate metabolism, the largest

sub-pathway we are able to discover consists of 5 nodes and 10 edges, which is a

supergraph of the previous one. This sub-pathway is shown in the figure by solid

nodes and edges. As seen in the figure, this pathway contains enzyme glnA (6.3.1.2

- glutamine synthetase), which is also related to the other enzymes by L-glutamine.

Further reducing the support threshold to 14.2% (22 organisms), we are able to

discover a sub-pathway of 6 nodes and 13 edges, which is the entire graph shown in

the figure. This pathway is also a supergraph of the previous one, with gltX (6.1.1.17 -

glutamyl-tRNA synthetase) added, which interacts bidirectionally with glnA through

L-Glutamate. The self-loop for gltX implies that this enzyme takes part in two

consecutive reactions, which are part of the observed frequent sub-pathways. The

original frequent sub-pathway extracted from this largest frequent ortholog-contracted

subgraph is shown in Figure 3.10(a).

In Figure 3.9(b), largest of the frequent sub-pathways that are discovered in

alanine-aspartate metabolism for three different levels of support threshold are shown.

The bold sub-pathway of 5 nodes and 8 edges occurs in 50 (32.1%) of the 156 or-

ganisms, the solid one with 5 nodes and 11 edges occurs in 30 (19.2%) of the or-

ganisms, and the entire graph of 6 nodes and 16 edges occurs in 18 (11.5%) of the

organisms. Note that enzyme purB (4.3.2.2 - adenylosuccinate lyase) and its inter-

action with purA (6.3.4.4 - adenylosuccinate synthetase) through adenylosuccinate

(N6-(1,2-Dicarboxyethyl)-AMP), shown in dotted lines in the figure, is included in

the most frequent sub-pathway of alanine-aspartate metabolism but is excluded from

the larger sub-pathways of lower frequency, which is interesting to note. The orig-

inal frequent sub-pathway extracted from the largest frequent ortholog-contracted

subgraph is shown in Figure 3.10(b).
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Fig. 3.10. Frequent sub-pathways of Glutamate and Alanine-Aspartate
metabolism, extracted from frequent subgraphs discovered by Mule.

3.4.2 Runtime Efficiency

In this section, we compare Mule to two existing graph mining algorithms, FSG

[108] and gSpan [112] to illustrate the effectiveness of node-contraction in terms of

runtime performance. All experiments reported in this section are performed on a

Pentium-IV 3.0 GHz workstation with 512 MB RAM.

To evaluate runtime efficiency, we compare the performance of isomorphism-based

algorithms and Mule on metabolic pathways. We choose metabolic pathways as they

are smaller than PPI networks, for which the isomorphism-based algorithms generally

do not scale. Furthermore, metabolic pathways are available for a larger number of

species, providing an appropriate setting for evaluation of scalability to a large num-
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Table 3.2
Comparison of runtime performances of an isomorphism-based frequent
subgraph discovery algorithm, FSG, and Mule, which is based on or-
tholog contraction.

FSG Mule

Min. Runtime Subg. # Runtime Subg. #

Dataset Sup. (%) (secs.) size pats. (secs.) size pats.

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

ber of networks. In all of our experiments, we observe that Mule runs much faster

than both FSG and gSpan on the graph collections obtained from metabolic pathway

datasets. First, we are not able to obtain results from gSpan on the raw directed

graphs obtained directly from KEGG metabolic pathways. We suspect that gSpan is

not able to respond to these queries because of memory limitations. However, as we

illustrate further in this section, gSpan runs very quickly on datasets that are filtered

using Mule. The performance comparison of Mule and FSG is shown in Table 3.2.

The runtimes of Mule and FSG along with the number of frequent subgraphs (pat-

terns) and the size of (number of edges in) the largest pattern are shown in the table.

As is evident from the figures in the table, Mule runs much faster than FSG by

several orders of magnitude. Note that FSG always returns maximal frequent sub-
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Table 3.3
Extraction of contracted patterns discovered by Mule using isomorphism-
based algorithms.

Glutamate metabolism, σ∗ = 8% Alanine metabolism, σ∗ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contd. (secs.) extd. contd. (secs.) extd.

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

# of patterns: 56 # of patterns: 34

Total runtime

FSG: 138.9 secs. FSG: 215.1 secs.

Mule+FSG: 0.99+100.5 secs. Mule+FSG: 1.72+160.6 secs.

Mule+gSpan: 0.99+16.8 secs. Mule+gSpan: 1.72+31.0 secs.

graphs. Mule, on the other hand, sometimes returns supersets of frequent subgraphs

because of contraction. In our experiments on metabolic pathways, we notice that

these supersets are rare and can be easily identified upon examination. Observe that

in Table 3.2, the number of frequent subgraphs discovered by FSG and Mule are the

same for all support values in both datasets. This shows that the frequent patterns

discovered by the two algorithms correspond to the same set of patterns, while some

of these patterns are smaller in Mule, since an edge that actually appears at different

locations in the subgraph is contracted into one edge by Mule.

The supersets returned by Mule can be reprocessed through FSG or gSpan and

exact frequent subgraphs can be extracted very quickly. This is illustrated in Ta-

ble 3.3. In the table, we display the extraction of five largest subgraphs that are
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discovered by Mule for both datasets. These results show that Mule can be used

in a different setup for analysis of biological networks as well. In this setup, a user

first mines the graph collection of interest using Mule. Note that, since Mule is

fast enough, this can be done repeatedly to tune the minimum support value to ob-

tain the most interesting set of discovered patterns. Upon examination of frequent

subgraphs discovered by Mule, the user may choose the patterns of special interest

among these. Then, the actual patterns that correspond to these contracted patterns

can be extracted by filtering the database and running one of the isomorphism-based

graph mining algorithms such as FSG and gSpan. Filtering the graph database re-

duces the size of the search space substantially in terms of both number and size of

graphs to be mined. Indeed, as evident from Table 3.3, the largest subgraphs that are

discovered by Mule are extracted within seconds. In addition, extracting the entire

set of frequent subgraphs discovered by Mule takes much less time than mining the

original dataset directly, using one of the isomorphism-based algorithms without any

preprocessing. As seen in the table, we are able to discover all frequent (σ∗ = 8%)

subgraphs on Glutamate pathway collection in 17.8 seconds through preprocessing

with Mule followed by isomorphism-based mining with gSpan. Recall that we are

not able to mine the original datasets with gSpan alone. Similarly, a combination of

Mule and FSG is able to mine this dataset in 101.5 seconds, while FSG alone spends

138.9 seconds to complete the same task. This improvement in runtime (factor of

roughly 8) increases rapidly with database size. As databases grow, node contraction

is the only known viable approach. In conclusion, while Mule is established as a fast

tool for discovering frequent patterns in biological networks in a biologically inter-

pretable fashion, it can also be used to improve other graph mining algorithms. Note

also that in the case of protein interaction networks, node contraction is generally

necessary for understanding evolutionary relationships.
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3.4.3 Discussion

Mule is able to detect known functional modules from the interaction networks

by exploiting their conservation among different organisms (Figures 3.7 and 3.8). Al-

though our results are limited by the availability of the interaction data, it appears

that the conservation of functional modules is a wide-spread phenomenon observed

in numerous cellular activities. Interactions among subunits of protein complexes

involved in transcription, mRNA degradation and splicing, actin nucleation, endo-

somal sorting, and vesicle transport are significantly conserved in yeast and higher

eukaryotes, such as humans. This suggests that as more interaction data becomes

available, Mule can be used to automatically map functional organization of proteins

of a query organism based on the interaction networks of others.

In terms of runtime efficiency, Mule outperforms existing graph mining algo-

rithms by demonstrating scalability to increasing network and pattern size. Further-

more, in contrast to existing multiple alignment algorithms, Mule is scalable to a

very large number of organisms (networks), which makes it applicable for real-time

analysis in realistic settings. Existing multiple network alignments are based on net-

work cartesian product, i.e., they create a new node for every group of homologous

proteins from each species [82]. For instance, while aligning m networks, if an ortholog

group contains k proteins in each species, then a cartesian-product based alignment

algorithm represents this group with km nodes. Such exponential time complexity in

terms of the number of organisms make such algorithms infeasible for a large number

of networks; indeed such algorithms are applied to at most three organisms up to

date. Mule, on the other hand, represents such a group of homologous proteins with

only m nodes, and demonstrates scalability to hundreds of organisms. However, in

contrast to multiple alignment algorithms, Mule identifies only exact matches rather

than approximate matches.

An important problem in large-scale analysis of interaction networks for a grow-

ing number of networks arises from the fact that interaction data is noise laden [26].
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Through the ortholog contraction approach in a graph mining based framework,

Mule provides robustness and error-correction ability in two ways: (i) interactions

that are conserved across a large set of networks are unlikely to arise from noise, (ii)

false negatives (existing interactions missing in the data) are likely to be corrected

through ortholog contraction, since if two proteins interact, proteins in the same

organism that are similar to those in function and sequence are also likely to inter-

act [117]. A limitation of Mule, however, is the modeling of interaction networks

using unweighted graphs, whereas weighting interactions provides a more reliable way

of accounting for noise [82].
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4. ALIGNMENT OF PROTEIN INTERACTION

NETWORKS

While frequent subgraph discovery algorithms provide fast identification of conserved

patterns in biological networks, approximate matching algorithms that target identi-

fication of similar subgraphs that are of certain evolutionary proximity are also neces-

sary [20]. In the case of sequences, this problem is known as the sequence alignment

problem, and is one of the fundamental tools in comparative genomics [1,133]. As is

the case with sequences, pairwise and multiple alignment of graphs [18,80–83], as well

as finding good matches for a subgraph in a database of graphs [85] are important

problems in comparative network analysis.

A publicly available tool, PathBLAST, adapts the ideas in sequence alignment

to PPI networks to discover conserved protein pathways across species [85, 134].

By restricting the alignment to pathways, i.e., linear chains of interacting proteins,

this algorithm simplifies the problem, while preserving the biological implication of

discovered patterns. PathBLAST accounts for gaps and mismatches by allowing

non-repeated jumps and matching of non-orthologous proteins, based on the notion

that the orthologous counterpart of a pair of interacting proteins in one species will,

likely, be indirectly interacting in the other [134]. Similarly, Pinter et al. [135] align

metabolic pathways based on subtree homeomorphism, observing that this model not

only simplifies the problem by avoiding cycles, but also can describe variations in

metabolic pathways effectively.

In addition to pathways and trees, a more general pattern structure is in the form

of subgraphs induced by a group of proteins. Such subgraphs may provide insight into

the conservation of functional modules and protein complexes, since these building

blocks of cellular processes manifest themselves as dense or highly connected sub-

graphs in the PPI network [63,92]. Indeed, in a recent study, Sharan et al. [81] show



49

that cross-species network comparison in terms of general subgraphs provides novel

biological insights through incorporation of knowledge about two different networks.

Specifically, they identify conserved complexes in bacteria and yeast by constructing

an orthology graph with nodes that correspond to pairs of orthologous proteins, one

from each species. The edges of the orthology graph are weighted according to a

probabilistic framework that compares null and conserved complex models based on

log-likelihood, which takes into account the conservation and density of interactions.

The idea of constructing product graphs by joining orthologous nodes is also applied

to the comparative analysis of PPI networks that belong to multiple species [82].

Based on the understanding of the structure of PPI networks that are available for

several species, theoretical models that focus on understanding the evolution of pro-

tein interactions are developed [136–140]. Among these, the duplication/divergence

model is shown to be promising in explaining the power-law nature of PPI net-

works [139]. In this paper, we propose a framework for alignment of PPI networks

based on these evolutionary models. As in [81, 82, 85, 134], we construct product

graphs by matching pairs of orthologous nodes. In contrast to these studies, however,

our framework is based on concepts of matches, mismatches, and duplications, and

edges are weighted in order to reward or penalize these evolutionary events. This

can be viewed as an extension of the concept of alignment in the sequence domain

to that in network domain. Hence, our model provides a general framework that

allows selection of parameters based on existing information about the conservation

and divergence of proteins and their interactions, which can be refined in the light

of a diverse range of mathematical models for network evolution [62, 138, 141–144].

According to a recent survey of comparative network analysis [20], on the timeline of

network alignment algorithms, our method corresponds to similarity matrices (e.g.,

PAM, BLOSUM), which had a significant impact on sequence alignment methods by

incorporating evolutionary information in sequence alignment. Indeed, our method

is pointed out to be the sole network alignment tool that incorporates evolutionary

models into its algorithms.



50

We reduce the alignment problem to a graph-theoretic optimization problem and

propose efficient heuristics to solve this problem. Experimental results based on an

implementation of our framework show that the proposed algorithm is able to discover

conserved interaction patterns very effectively. The proposed algorithm, MaWISh,

can also be straightforwardly adapted to finding matches for a subnet query in a

database of PPI networks.

The rest of this chapter is organized as follows: we start with a brief overview

of duplication/divergence models for the evolution of PPI networks in Section 4.1.

In Section 4.2, we define the alignment problem based on these models of evolution.

We then formulate the problem as a graph optimization problem in Section 4.3, and

propose efficient heuristics for the solution of the problem in Section 4.4. In Sec-

tion 4.5, we discuss possible extensions for the proposed model. Finally, we illustrate

the effectiveness of the proposed framework on comprehensive pairwise alignment of

the PPI networks for three eukaryotic species in Section 4.6.

4.1 Theoretical Models for Evolution of PPI Networks

There exist a number of studies aimed at understanding the general structure of

PPI networks. These studies suggest that PPI networks can generally be modeled

using power-law graphs, i.e., the relative frequency of proteins that interact with k

proteins is roughly proportional to k−γ, where γ is a network-specific parameter [60].

In order to explain this power-law nature, Barábasi and Albert propose [60] a network

growth model based on preferential attachment, which is able to generate networks

with degree distribution similar to PPI networks. According to this model, networks

expand continuously by addition of new nodes and these new nodes prefer to attach

to well-connected nodes when joining the network. Observing that older proteins

are better connected, Eisenberg and Levanon [137] explain the evolutionary mech-

anisms behind such preference by the strength of selective pressure on maintaining

connectivity of strongly connected proteins and creating proteins to interact with
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them. Furthermore, in a relevant study, it is observed that the interactions between

groups of proteins that are temporally close in the course of evolution are likely to be

conserved, suggesting synergistic selection during network evolution [144].

A common model of network evolution that explains preferential attachment is

the duplication/divergence model, which is based on gene duplications [117,138–140].

According to this model, when a gene is duplicated in the genome, the node corre-

sponding to the product of this gene is also duplicated together with its interactions.

An example of protein duplication is shown in Figure 4.1. A protein loses many as-

pects of its functions rapidly after being duplicated. This translates to divergence of

duplicated (paralogous) proteins in the interactome through elimination and emer-

gence of interactions. Elimination of an interaction in a PPI network implies the loss

of an interaction between two proteins due to structural and/or functional changes.

Similarly, emergence of an interaction in a PPI network implies the introduction of

a new interaction between two non-interacting proteins, caused by mutations that

change protein surfaces. Examples of elimination and emergence of interactions are

also illustrated in Figure 4.1. In the example shown in this figure, starting with

three interactions between three proteins, protein u1 is duplicated to add u′
1 into the

network together with its interactions (dashed circle and lines). Then, u1 loses its

interaction with u3 (dotted line). Finally, an interaction between u1 and u′
1 is added

to the network (dashed line). If an elimination or emergence is related to a recently

duplicated protein, it is said to be correlated; otherwise, it is uncorrelated [138]. Since

newly duplicated proteins are more tolerant to interaction loss because of redundancy,

correlated elimination is generally more probable than emergence and uncorrelated

elimination [139]. It is also theoretically shown that network growth models based on

node duplications generate power-law distributions [136].

Since the elimination of interactions is related to sequence-level mutations, one

can expect a positive correlation between similarity of interaction profiles and se-

quence similarity for paralogous proteins [117]. Indeed, the interaction profiles of

duplicated proteins tend to almost totally diverge in about 200 million years, as
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Fig. 4.1. Duplication/divergence model for evolution of PPI networks.

estimated on the yeast interactome. On the other hand, the correlation between in-

teraction profiles of duplicated proteins is significant for up to 150 million years after

duplication, with more than half of interactions being conserved for proteins that are

duplicated less than 50 million years back [117]. Consequently, when we consider the

PPI networks that belong to two separate species, the in-paralogs will be likely to

have more common interactions than out-paralogs. Here, we use the terms in-paralog

and out-paralog for proteins that are duplicated before and after speciation, respec-

tively. While comparatively analyzing the proteome and interactome, it is important

to distinguish in-paralogs from out-paralogs since the former are more likely to be

functionally related. This, however, is a difficult task since out-paralogs also show

sequence similarity.

In order to accurately identify and interpret conservation of interactions, com-

plexes, and modules across species, we base our framework for the local alignment

of PPI networks on duplication/divergence models. While searching for highly con-

served groups of interactions, we evaluate mismatched interactions and paralogous

proteins in light of the duplication/divergence model. Introducing the concepts of

match (conservation), mismatch (emergence or elimination) and duplication, which

are in accordance with widely accepted models of evolution, we are able to discover

alignments that also allow speculation about the structure of the network in the

common ancestor.
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4.2 PPI Network Alignment Problem

A PPI network is conveniently modeled using an undirected graph G(U,E), where

U denotes the set of proteins and uu′ ∈ E denotes an interaction between proteins

u ∈ U and u′ ∈ U . For pairwise alignment of PPI networks, we are given two

PPI networks belonging to two different species, denoted by G(U,E) and H(V, F ).

The homology between a pair of proteins is quantified by a similarity measure that is

defined as a function S : (U∪V )×(U∪V )→ ℜ. For any u, v ∈ U∪V , S(u, v) measures

the degree of confidence in u and v being orthologous, where 0 ≤ S(u, v) ≤ 1. If u

and v belong to the same species, then S(u, v) quantifies the likelihood that the two

proteins are in-paralogs. S is expected to be sparse, i.e., each protein is expected

to have only a few potential orthologs. We discuss the methodology for deriving

similarity scores from sequence alignments in Section 4.2.3.

For PPI networks G(U,E) and H(V, F ), a protein subset pair P = {Ũ , Ṽ } is

defined as a pair of protein subsets Ũ ⊆ U and Ṽ ⊆ V . Any protein subset pair P

induces a local alignment A(G,H, S, P ) = {M,N ,D} of G and H with respect to S,

characterized by a set of duplications D, a set of matchesM, and a set of mismatches

N . The biological analog of a duplication is the duplication of a gene in the course

of evolution. Each duplication is associated with a score that reflects the divergence

of function between the two proteins, estimated using their similarity. A match

corresponds to a conserved interaction between two orthologous protein pairs, which

is rewarded by a match score that reflects our confidence in both protein pairs being

orthologous. A mismatch, on the other hand, is the lack of an interaction in the PPI

network of one organism between a pair of proteins whose orthologs interact in the

other organism. A mismatch may correspond to the emergence of a new interaction

or the elimination of a previously existing interaction in one of the species after the

split, or an experimental error. Thus, mismatches are penalized to account for the

divergence from the common ancestor. We provide formal definitions for these three

concepts to construct a basis for the formulation of local alignment as an optimization
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problem. Note that although PPI networks are undirected graphs, interactions are

regarded as ordered pairs in the following definitions for convenience, i.e., for an

interaction uu′ ∈ E, there is also an interaction u′u ∈ E, which is essentially the

same interaction.

Definition 4.2.1 Local Alignment of PPI networks.

Given protein interaction networks G(U,E), H(V, F ), let functions ∆G(u, u′) and

∆H(v, v′) denote the distance between two corresponding proteins in the interaction

graphs G and H, respectively. Given a pairwise similarity function S defined over

the union of their protein sets U ∪ V , and a distance cutoff ∆̄, any protein subset

pair P = (Ũ , Ṽ ) induces a local alignment A(G, V, S, P ) = {M,N ,D}, where

M = { u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0,

((uu′ ∈ E ∧∆H(v, v′) ≤ ∆̄) ∨ (vv′ ∈ F ∧∆G(u, u′) ≤ ∆̄)) }
(4.1)

N = { u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0,

((uu′ ∈ E ∧∆H(v, v′) > ∆̄) ∨ (vv′ ∈ F ∧∆G(u, u′) > ∆̄)) }
(4.2)

D = { u, u′ ∈ Ũ : S(u, u′) > 0 } ∪ { v, v′ ∈ Ṽ : S(v, v′) > 0 } (4.3)

Each match M ∈ M, mismatch N ∈ N , and duplication D ∈ D are associated with

scores µ(M), ν(N) and δ(D), respectively.

Following the definition of match and mismatch, while assessing the conservation

of interactions, we take into account not only direct but also indirect interactions. If

two proteins directly interact with each other in one organism, and their orthologs

are reachable from each other via at most ∆̄ interactions in the other, we consider

this a match. Conversely, a mismatch corresponds to the situation in which two pro-

teins cannot reach each other via ∆̄ interactions in one network while their orthologs

directly interact in the other. This approach is motivated by two observations. First,

proteins that are linked by a short alternate path are more likely to tolerate losing their

interaction because of relaxation of evolutionary pressure. Second, high-throughput

methods such as TAP [4] identify complexes that are associated with a single central
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protein and these complexes may be recorded in the interaction database as star net-

works with the central protein serving as a hub. Therefore, all proteins that are part

of a particular complex can be viewed as interacting by setting ∆̄ = 2.

4.2.1 Scoring Match, Mismatch, and Duplications

For scoring matches and mismatches, we define the similarity between two protein

pairs as follows:

S(uu′, vv′) = S(u, v)S(u′, v′) (4.4)

S(uu′, vv′) quantifies the likelihood that the interactions between u and v, and u′ and

v′ are orthologous. Consequently, a match that corresponds to a conserved pair of

orthologous interactions is rewarded as follows:

µ(uu′, vv′) = µ̄S(uu′, vv′) (4.5)

Here, µ̄ is the match coefficient that is used to tune the relative weight of matches

against mismatches and duplications, based on the evolutionary distance between the

species that are being compared.

A mismatch may correspond to the functional divergence of either interacting

partner after speciation. It might also be due to a false positive or negative in one

of the networks that is caused by incompleteness of data or experimental error [26].

However, considering indirect interactions as matches compensates for the second case

to a certain extent. According to Wagner [117], after a duplication event, duplicate

proteins that retain similar functions in terms of being part of similar processes are

likely to be part of the same subnet. Furthermore, since conservation of proteins

in a particular module is correlated with interconnectedness [72], we expect that

interacting partners that are part of a common functional module will at least be

linked by short alternate paths. Based on these observations, we penalize mismatches

for possible divergence in function as follows:

ν(uu′, vv′) = −ν̄S(uu′, vv′) (4.6)
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As for match score, mismatch penalty is also normalized by a coefficient ν̄ that de-

termines the relative weight of mismatches with respect to matches and duplications.

While aligning PPI networks, the motivation is to identify conserved patterns of

interactions between orthologous proteins. For assessing the likelihood of orthology

between proteins, the similarity score defined above relies on sequence homology.

However, out-paralogs, which are proteins that are duplicated before the species split

hence cannot be considered orthologs, often show sequence similarities as well [120].

Since duplicated proteins rapidly lose their interactions, it is more likely that in-

paralogs, i.e., the proteins that are duplicated after a split, will share more interacting

partners than out-paralogs do [117]. Therefore, penalizing mismatches implicitly fa-

vors real orthologs by penalizing the out-paralogs for each interaction that is lost after

duplication. Furthermore, we employ sequence similarity as a means for distinguish-

ing in-paralogs from out-paralogs. This is based on the observation that sequence

similarity provides a crude approximation for the age of duplication [140]. With the

expectation that recently duplicated proteins, which are more likely to be in-paralogs,

show more significant sequence similarity than older paralogs, we define duplication

score as follows:

δ(u, u′) = δ̄(S(u, u′)− d̄) (4.7)

Here d̄ is the cut-off for being considered in-paralogs. If S(u, u′) > d̄, suggesting that

u and u′ are likely to be in-paralogs, the duplication is rewarded by a positive score.

If S(u, u′) < d̄, on the other hand, the proteins are considered out-paralogs, therefore

the duplication is penalized.

4.2.2 Alignment Score and the Optimization Problem

The above formulation of match, mismatch, and duplication translates the prob-

lem of distinguishing orthologs and in-paralogs from out-paralogs to an optimization

problem that accounts for the trade-off between conservation of sequences and interac-

tions. This enables accurate identification of conserved interactions between ortholog
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Fig. 4.2. An instance of the pairwise network alignment problem: (a) Two
PPI networks, (b) alignment induced by a pair of protein subsets.

protein pairs, while allowing us to define the pairwise local alignment for inter-species

comparison of PPI networks as an optimization problem.

Definition 4.2.2 Alignment Score and PPI Network Alignment Problem.

Given PPI networks G and H, the score of alignment A(G,H, S, P ) = {M,N ,D} is

defined as:

σ(A) =
∑

M∈M
µ(M) +

∑

N∈N
ν(N) +

∑

D∈D
δ(D). (4.8)

The PPI network alignment problem is one of finding all maximal protein subset pairs

P such that σ(A(G,H, S, P )) is locally maximal, i.e. the alignment score cannot be

improved by adding individual proteins to or removing proteins from P .

We aim to find local alignments with locally maximal score (drawing an analogy to

sequence alignment [133], high-scoring subgraph pairs).

We illustrate the concepts of match, mismatch, and duplication using a simple ex-

ample, shown in Figure 4.2. Two sample interaction networks G and H are shown in

Figure 4.2(a). The alignment induced by the protein subset pair Ũ = {u1, u2, u3, u4}
and Ṽ = {v1, v2, v3} is shown in Figure 4.2(b), where we set ∆̄ = 1. In the figure,

the proteins that have non-zero similarity scores (i.e., are potentially orthologous),

are colored the same. Note that S does not necessarily induce a disjoint grouping of

proteins in practice. Ortholog and paralog proteins are vertically aligned. Existing
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interactions are shown by solid lines, missing interactions that have an existing or-

tholog counterpart are shown by dotted lines. Solid interactions between two aligned

proteins in separate species correspond to a match, one solid one dotted interaction

between two aligned proteins in separate species correspond to a mismatch. Proteins

in the same species that are on the same vertical line correspond to duplications.

The only duplication in this alignment is (u1, u2). If this alignment is chosen to

be a “good” one, then, based on the existence of this duplication in the alignment,

if S(u2, v1) < S(u1, v1), we can speculate that u1 and v1 have evolved from the same

gene in the common ancestor, while u2 is an in-paralog that emerged from duplication

of u1 after split. The match set consists of interaction pairs (u1u1, v1v1), (u1u2, v1v1),

(u1u3, v1v3), and (u2u4, v1v2). Observe that v1 is mapped to both u1 and u2 in the

context of different interactions. This is associated with the functional divergence of

u1 and u2 after duplication. Furthermore, the self-interaction of v1 in H is mapped

to an interaction between paralogous proteins in G.

The mismatch set is composed of (u1u4, v1v2), (u2u2, v1v1), (u2u3, v1v3), and

(u3u4, v3v2). The interaction u3u4 in G is left unmatched by this alignment, since

the only possible pair of proteins in Ṽ that are orthologous to these two proteins are

v3 and v2, which do not interact in H. One conclusion that can be derived from this

alignment is the elimination or emergence of this interaction in one of the species after

the split. The indirect path between v3 and v2 through v1 may also serve as a basis

for the tolerance to the loss of this interaction. Indeed, if we set ∆̄ = 2, then this pair

of a direct and an indirect interaction would be considered a match. However, if we

include v4 in Ṽ as well, then the induced alignment is able to match u3u4 and v3v4.

This strengthens the likelihood that this interaction existed in the common ancestor.

However, v4 comes with another duplication since it is paralogous to v2. Hence, if

S(v2, v4) > d̄, the alignment that includes v4 will be favored over the present one.

However, if S(v2, v4) < d̄, then v4 must compensate for the duplication penalty with

the strength of its matching interactions in order to be included in the alignment.
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4.2.3 Estimation of Similarity Scores

The similarity score S(u, v) quantifies the likelihood that proteins u and v are

orthologous. We approximate this likelihood using the BLAST [1] E-value taking

existing ortholog databases as point of reference. Let O be the set of all orthologous

protein pairs derived from COG, or any other ortholog database. For proteins u and

v with BLAST E-value E(u, v) < Ẽ, we approximate the probability of u and v being

orthologous by

S(u, v) = P (E(u, v) < Ẽ|Ouv) =
|{u′v′ ∈ O : E(u′, v′) < Ẽ}|

|O| (4.9)

where Ouv represents the event that u and v are orthologous. If we assume that the

probability of a protein pair being orthologous (P (Ouv)) is a monotonically decreasing

function of the E-value, then this quantity provides a measure of the likelihood that

two proteins with E-value Ẽ are orthologous.

4.3 Alignment Graph and Maximum Weight Induced Subgraph Problem

It is possible to represent information regarding matches and mismatches between

two PPI networks using a single alignment graph. This graph is a modified version of

the graph Cartesian product that takes orthology into account. Assigning appropriate

weights to the edges of the alignment graph, the local alignment problem defined in

the previous section can be reduced to an optimization problem on this alignment

graph. We define alignment graph as follows:

Definition 4.3.1 Alignment Graph.

For a pair of PPI networks G(U,E), H(V, F ), and protein similarity function S, the

corresponding weighted alignment graph G(V,E) is computed as follows:

V = {v = {u, v} : u ∈ U, v ∈ V and S(u, v) > 0}. (4.10)
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In other words, we have a node in the alignment graph for each pair of ortholog

proteins. Each edge vv′ ∈ E, where v = {u, v} and v′ = {u′, v′}, is assigned weight

w(vv′) = µ(uu′, vv′) + ν(uu′, vv′) + δ(u, u′) + δ(v, v′). (4.11)

Here, µ(uu′, vv′) = 0 if (uu′, vv′) /∈ M, and similarly for mismatches and duplica-

tions.

Note that the alignment graph is conceptually equivalent to the global alignment

graph of [134] and the orthology graph of [81], with slight differences in formulation.

In all models, the nodes of the alignment/orthology graph is constructed from any

pair of potentially orthologous proteins in the two networks. On the other hand, in

the above-defined alignment graph, all evolutionary information is encoded into edge

weights through the concepts of matches, mismatches, and duplications.

Consider the PPI networks in Figure 4.2(a). To construct the corresponding align-

ment graph, we first compute the product of these two PPI networks to obtain five

nodes that correspond to five ortholog protein pairs. We then insert an edge be-

tween two nodes of this graph if the corresponding proteins interact in both networks

(match edge), interact in only one of the networks (mismatch edge), or at least one

of them is paralogous (duplication edge), resulting in the alignment graph shown

in Figure 4.3(a). Note that match scores, mismatch and duplication penalties are

functions of incident nodes, which is not explicitly shown in the figure for simplicity.

Observe that the edge between {u1, v1} and {u2, v1} acts a match and duplication

edge at the same time, allowing analysis of the conservation of self-interactions of

duplicated proteins. This construction of the alignment graph allows us to formulate

the alignment problem as a graph optimization problem defined below.

Definition 4.3.2 Maximum Weight Induced Subgraph Problem (MaWISh).

Given graph G(V,E) and a constant ǫ, find a subset of nodes, Ṽ ∈ V such that

the sum of the weights of the edges in the subgraph induced by Ṽ is at least ǫ, i.e.,

W (Ṽ) =
∑

v,v′∈Ṽ
w(vv′) ≥ ǫ.
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Fig. 4.3. Illustration of alignment graphs: (a) Alignment graph that rep-
resents the instance in Figure 4.2(a), (b) a subgraph of this alignment
graph, which corresponds to the alignment in Figure 4.2(b).

Not surprisingly, this problem is equivalent to the decision version of the local

alignment problem defined in the previous section, as formally stated in the following

theorem:

Theorem 4.3.1 Given PPI networks G, H, and a protein similarity function S, let

G(V,E, w) be the corresponding alignment graph. If Ṽ is a solution to the maximum

weight induced subgraph problem on G(V,E, w), then P = {Ũ , Ṽ } induces an align-

ment A(G,H, S, P ) with σ(A) = W (Ṽ), where Ũ = {u ∈ U : ∃v ∈ V s.t. {u, v} ∈ Ṽ}
and Ṽ = {v ∈ V : ∃u ∈ U s.t. {u, v} ∈ Ṽ}.

Proof. Follows directly from the construction of alignment graph. �

The induced subgraph that corresponds to the local alignment in Figure 4.2(b),

Ṽ = {{u1, v1}, {u2, v1}, {u3, v3}, {u4, v2}}, is shown in Figure 4.3(b). Note that the

weights assigned to these edges, which are shown in the figure, are not constant, but

are functions of their incident nodes.

It can be shown that MaWISh is NP-complete by reduction from maximum-

clique, by assigning unit weight to edges and −∞ to non-edges. This problem is

closely related to the maximum edge subgraph [145] and maximum dispersion prob-

lems [146], which are also NP-complete. However, the positive weight restriction on
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these problems limits the application of existing algorithms to the maximum weight

induced subgraph problem. Nevertheless, the local PPI network alignment problem

aims to find all locally maximal alignments, consequently, locally optimal solutions of

MaWISh are sufficient. Observing the similarity between min-cut graph partition-

ing and MaWISh, we develop fast heuristics based on common graph partitioning

algorithms to identify locally maximal heavy subgraphs in the alignment graph.

4.4 Algorithms for Alignment of PPI Networks

In terms of protein-protein interactions, functional modules are likely to be densely

connected while being separable from other modules, i.e., a protein in a particular

module interacts with most proteins in the same module either directly or through a

common module hub, while it is only loosely connected to the rest of the network [92].

Since analysis of conserved motifs reveals that proteins in highly connected motifs are

more likely to be conserved, suggesting that such dense motifs are parts of functional

modules [72], high-scoring local alignments are likely to correspond to functional mod-

ules. Therefore, in the alignment graph, we can expect that proteins that belong to

a conserved module will induce heavy subgraphs, while being loosely connected to

other parts of the graph. This observation motivates the process of greedily grow-

ing a subgraph seeded at heavy nodes. This approach is shown to perform well in

discovering conserved [81] or dense [73] subnets in PPI networks.

For min-cut graph partitioning, the most commonly applied heuristics are based

on starting with a seed partition and repeatedly moving or swapping nodes with

maximum gain on the objective function [147]. The key point here is that the move

is performed even if it is associated with a negative gain in order to climb over poor

local optima. Observe that minimizing the total weight of the cut edges (min-cut) in

graph partitioning is equivalent maximizing the total weight of internal edges. This

is very similar to the objective function of MaWISh. The difference is that the total

weight of only one part is considered in MaWISh, and node balance is not an issue.
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Therefore, we apply this iterative improvement based heuristic to MaWISh in order

to find locally maximal heavy subgraphs. The initial heavy subgraph is constructed

by selecting the node with maximum number of matched interactions (i.e., a conserved

hub) and adding all nodes that share a match edge with this node to the subgraph.

A sketch of this iterative improvement based algorithm for finding a single con-

served subgraph on the alignment graph is shown in Figure 4.4. The procedures

Insert, ExtractMax, and Update used in the figure are typical priority queue

routines. Each pass (i.e., the loop between lines 3-14) of this algorithm works in linear

time. In practice, we also limit the number of contiguous moves with negative gain.

This allows us to tune the locality of identified patterns.

To find all non-redundant heavy subgraphs, we start with the entire alignment

graph and find a maximally heavy subgraph. We then record the alignment that cor-

responds to this subgraph and mark its nodes. We repeat this process by considering

only unmarked nodes. Once a new heavy subgraph is identified, we add the previously

marked nodes that are positively connected to this subgraph one by one, unless the

resulting subgraph becomes redundant. A subgraph is said to be redundant if there

exists a subgraph which contains r% of its nodes, where r is a user-defined threshold

that determines the extent of allowed overlap. This method allows identification of

overlapping alignments while avoiding redundancy. Finally, we rank all subgraphs

based on their score and report the corresponding alignments.

4.5 Extensions to the Model

The proposed model can be extended to account for data quality as well as algo-

rithm parameters.

4.5.1 Accounting for Experimental Error

PPI networks obtained from high-throughput screening are prone to errors in

terms of both false negatives and positives [26]. While the proposed framework can
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procedure HeaviestSubGraph(G)

⊲ Input G(V,E, w): Alignment graph

⊲ Output Ṽ: Subset of nodes that induces a maximally heavy subgraph in G

1 ṽ← argmax
v∈V
|{v′ ∈ V : (v,v′) is a match edge}|

2 Ṽ← {ṽ} ∪ {v ∈ V : (ṽ,v) is a match edge}
3 repeat

4 for v ∈ Ṽ do key(v)← −∑

v′∈Ṽ
w(v,v′), Insert(Q,v)

5 for v ∈ V \ Ṽ do key(v)←∑

v′∈Ṽ
w(v,v′), Insert(Q,v)

6 Wmax ← W (Ṽ)

7 while Q 6= ∅
8 v← ExtractMax(Q)

9 if v ∈ Ṽ then Ṽ← Ṽ \ {v} else Ṽ← Ṽ ∪ {v}
10 if W (Ṽ) > Wmax then Wmax ← W (Ṽ), bestmove← v

11 for all v′ such that vv′ ∈ E do Update(key(v′))

12 endwhile

13 roll back all moves after bestmove

14 until bestmove = NULL

15 return Ṽ

Fig. 4.4. Heuristic algorithm for finding maximal weight induced sub-
graphs.

be used to detect experimental errors through cross-species comparison to a certain

extent, experimental noise can also degrade the performance of the alignment algo-

rithm. In other words, mismatches should be penalized for lost interactions during

evolution, not for experimental false negatives. To account for such errors while
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analyzing interaction networks, several methods are developed to quantify the like-

lihood of an interaction or complex co-membership between proteins [35–37]. Given

the prior probability distribution for protein interactions and a set of observed in-

teractions, these methods compute the posterior probability of interactions based on

Bayesian models. Hence, PPI networks can be modeled using weighted graphs to

account for experimental error more accurately.

While the network alignment framework introduced in Section 4.2 assumes that

interactions are represented by unweighted edges, it can be easily generalized to a

weighted graph model as follows. Assuming that weight ̟uv represents the posterior

probability of interaction between u and v, we can define match score and mismatch

penalty in terms of their expected values derived from these posterior probabilities.

Therefore, for any u, u′ ∈ U and v, v′ ∈ V , we have

µ(uu′, vv′) = µ̄S(uu′, vv′)̟uu′̟vv′ (4.12)

ν(uu′, vv′) = ν̄S(uu′, vv′)(̟uu′(1−̟vv′) + (1−̟uu′)̟vv′). (4.13)

Note that match and mismatch sets are not necessarily disjoint here in contrast to

the unweighted graph model, which is a special case of this model.

4.5.2 Alternate Model Components and Parameters

Contracting Paralogs. An alternate approach to handling duplications is contract-

ing the proteins in the same species that are likely to be in-paralogs. This approach

fits into the alignment graph model since in-paralogs are expected to be consistently

orthologous to the same set of proteins in the other organism. It also reduces the

computational complexity since the number of nodes is decreased by node contraction

and the edges that correspond to duplications are eliminated. As also shown in the

previous chapter, contraction of nodes is effective for multiple alignment of metabolic

pathways using graph mining [16]. However, clustering proteins in the same organism

to identify in-paralogs requires preprocessing to solve a difficult problem. Clustering
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algorithms that are specifically designed for this purpose, such as INPARANOID [120]

serve as reliable tools. However, the resulting graphs may produce conservative align-

ments since the search space is narrowed down by the clustering of proteins [18]. In

contrast, accounting for duplications using duplication edges provides more flexi-

bility and uses conservation of interactions as additional information to distinguish

in-paralogs from out-paralogs, as discussed above.

Shortest-path mismatch model. In the above discussion, while we consider pro-

teins that are linked by at most ∆̄ interactions as interacting, we do not take into

account the distance while penalizing mismatches. We can extend this to a shortest-

path mismatch model, defined as follows:

ν(uu′, vv′) = ν̄S(uu′, vv′)(max{∆G(u, u′), ∆H(v, v′)} − ∆̄), (4.14)

While this model may improve the alignment algorithm, it is computationally ex-

pensive since it requires solution of the all pairs shortest path problem on both PPI

networks.

Linear duplication model. The alignment graph model forces each duplicate pair

in an alignment to be scored. For example, if an alignment contains n paralogous

proteins in one species,
(

n
2

)

duplications are scored to account for each duplicate pair.

However, in the evolutionary process, each paralogous protein is the result of a single

duplication, i.e., n paralogous proteins are created in only n− 1 duplications. There-

fore, we refer to the current model as quadratic duplication model, since the number of

scored duplications is a quadratic function of number of duplicates. While this might

be desirable as being more restrictive on duplications, to be more consistent with the

underlying biological processes, it can be replaced by a linear duplication model. In

this model, each duplicate protein is penalized only once, based on its similarity with

the paralog that is most similar to itself. This model can be incorporated into the

alignment graph model of Section 4.4 with a simple modification of the algorithm

that dynamically reassigns weights to edges that correspond to duplications.
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Table 4.1
Description of three eukaryotic PPI networks obtained from DIP and
BIND databases.

Organism # Proteins # Interactions

S. cerevisiae 5157 18192

C. elegans 3345 5988

D. melanogaster 8577 28829

4.6 Experimental Results

4.6.1 Data and Implementation

We implement the proposed algorithms in the C programming language and

test on PPI networks that belong to three commonly studied eukaryotic organisms.

The source code of the software is available at http://www.cs.purdue.edu/homes/

koyuturk/mawish/ along with detailed alignment results. The interaction data is

downloaded from BIND [10] and DIP [12] molecular interaction databases. The

statistics for the PPI networks of S. cerevisiae (yeast), C. elegans (nematode), and

D. melanogaster (fruit fly) are shown in Table 4.1.

We align all pairs of these three organisms using a fixed set of parameters to be

able to compare the results with each other. We set these parameters conservatively

in order to obtain a compact set of illustrative results. For any pair of PPI networks,

we set the E-value threshold adaptively based on the estimated similarity scores so

that the minimum similarity score for any pair of potential orthologs is 0.6. In other

words, two proteins that belong to two different species are considered potentially

orthologous only if they have a BLAST E-value less than 60% of ortholog pairs in

COG. On the other hand, we set d̄ = 0.9, i.e., two proteins in the same organism are

considered potential in-paralogs only if they have BLAST E-value less than 90% of

protein pairs in this organism that are in the same COG. For potential out-paralogs,
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Table 4.2
Alignment statistics for the pairwise alignment of three eukaryotic organ-
isms, S. cerevisiae (SC), C. Elegans (CE), and D. melanogaster (DM).

Organism # Node # Matched node # Match # Mismatch # Dup.

pair ∆̄ = 1 ∆̄ = 2 ∆̄ = 1 ∆̄ = 2 ∆̄ = 1 Org.1 Org.2

SC vs. CE 2746 312 1230 412 3007 40262 6107 6886

SC vs. DM 15884 1730 8622 2061 42781 1054241 6107 32670

CE vs. DM 11805 491 3391 455 6626 205593 6886 32670

we consider protein pairs that have a BLAST E-value less than 0.1 but greater than

10% of the ortholog pairs in COG. By setting these cut-off values on similarity score,

we only consider the homologous protein pairs that have the highest positive or neg-

ative contribution on the alignment score. This eliminates noise to a certain extent

while improving the computational efficiency. However, for more detailed analysis

and discovery of loosely visible patterns, it may be necessary to relax and set these

parameters based on the evolutionary distance between the two organisms being com-

pared.

4.6.2 Results and Discussion

We perform pairwise alignment of the three PPI networks by tuning the align-

ment parameters to µ̄ = 1.0, ν̄ = 1.0, and δ̄ = 0.1. Detailed statistics on alignment

of the three pairs of eukaryotic PPI networks are shown in Table 4.2. In the ta-

ble, the number of nodes in alignment graphs (# of orthologous pairs), number of

nodes with at least one matched edge, number of matches, number of mismatches

and number of duplications for both organisms are shown for each alignment. Num-

ber of mismatches for ∆̄ = 2 can be derived from other statistics. The number of

matches and the number matched nodes are shown for two values of ∆̄, where only
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direct interactions ∆̄ = 1 and indirect interactions through a single protein ∆̄ = 2

are considered as matches. In practice, we eliminate all nodes that do not have

any matching interactions from the alignment graph. As evident in the table, this

improves the computational performance of the algorithm significantly.

Note that the parameters are set in an ad-hoc manner for all results reported

in this section, by manually adjusting the balance between normalizing parameters

through repeated runs of the algorithm. A more reliable method for adjusting these

parameters is to employ a learning heuristic that tunes these parameters in such a way

that the conservation/divergence of known functional modules is captured by these

parameters, as in the case of sequence alignment. However, this requires knowledge

of biologically validated functional modules for both species being compared. We

anticipate that as such data becomes available, an accepted set of parameters can

easily be derived.

Alignment of S. cerevisiae PPI network with D. melanogaster PPI network results

in identification of 412 conserved subnets. Ten of the conserved subnets with highest

alignment scores are shown in Table 4.3. In this table, the rank of the identified

subnet among all conserved subnets, the number of alignment nodes and correspond-

ing number of proteins in each organism, total number of matches, mismatches, and

duplications in each organism are shown in a row. In the subsequent row, we report

the most dominant biological process identified according to the GO annotations of

the proteins that are in the conserved network, along with the percentage of proteins

that are associated with that biological process, for each organism. Similarly, sample

high-scoring conserved subnets identified by the alignment of S. cerevisiae vs. C.

elegans and C.Elegans vs. D. melanogaster PPI networks are shown in Tables 4.4

and 4.5, respectively. In total, 83 conserved subnets are identified on S. cerevisiae

and C. elegans, and 146 are identified on C. elegans and D. melanogaster.

While most of the conserved subnets are dominated by one particular processes

and the dominant processes are generally consistent across species, there also exist

different processes in different organisms that are mapped to each other by the dis-
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Table 4.3
Sample conserved subnets identified by the alignment of S. cerevisiae and
D. melanogaster PPI networks.

Rank Score # Proteins # Matches # Mismatches # Duplications

1 15.97 18 (16, 5) 28 6 (4, 0)

protein amino acid phosphorylation (69%) /JAK-STAT cascade (40%)

2 13.93 13 (8, 7) 25 7 (3, 1)

endocytosis (50%) / calcium-mediated signaling (50%)

5 8.22 9 (5, 3) 19 11 (1, 0)

invasive growth (sensu Sacc.) (100%) / O2 & reactive O2 species met. (33%)

6 8.05 8 (5, 3) 12 2 (0, 1)

ubiquitin-dependent protein catabolism (100%) / mitosis (67%)

8 6.83 6 (4, 4) 12 6 (0, 1)

protein amino acid phosphorylation (50%, 50%)

10 6.75 10 (7, 3) 24 12 (0, 1)

ubiquitin-dependent protein catabolism (100%)

14 5.69 11 (11, 2) 10 1 (0, 0)

regulation of progression through cell cycle (9%, 50%)

21 4.36 9 (5, 4) 18 13 (0, 5)

cytokinesis (100%, 50%)

22 4.22 7 (6, 6) 9 5 (1, 1)

protein folding (67%, 17%)

30 3.76 6 (3, 5) 5 1 (0, 6)

DNA replication initiation (100%, 80%)

covered alignments. This illustrates that the comparative analysis of PPI networks

is effective in not only identifying particular functional modules, pathways, and com-

plexes, but also in discovering relationships between different processes in separate

organisms and crosstalk between known functional modules and pathways.
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Table 4.4
Sample conserved subnets identified by the alignment of S. cerevisiae and
C. elegans PPI networks.

Rank Score # Proteins # Matches # Mismatches # Duplications

1 36.14 13 (5, 3) 65 24 (0, 3)

ubiquitin-dependent protein catabolism (100%) / reproduction (100%)

2 8.47 20 (11, 5) 19 4 (1, 1)

protein amino acid phosphorylation (82%, 40%)

3 6.28 8 (6, 3) 21 12 (0, 0)

ubiquitin-dependent protein catabolism (100%, 100%)

7 3.23 7 (7, 6) 7 2 (0, 0)

glyoxylate cycle (14%, 17%)

8 3.23 4 (3, 3) 4 1 (1, 1)

mismatch repair (67%, 67%)

A selection of interesting conserved subnets is shown in Figure 4.5. In the fig-

ure, orthologous and paralogous proteins are either vertically aligned or connected

by dotted lines. Existing interactions are shown by solid lines, missing interactions

that have an orthologous counterpart are shown by dashed lines. The rank of each

alignment in the set of alignments discovered for the respective pair of organisms

is indicated in its label. The alignments in the figure illustrate that the alignment

algorithm takes into account the conservation of interactions in addition to sequence

similarity while mapping orthologous proteins to each other. In all of the alignments

shown in the figure, the interactions of proteins that belong to the same orthologous

group are highly conserved, suggesting relatively recent duplications.

Detailed examination of the conserved subnets in S. cerevisiae and D. melanogaster

shows that many of them do correspond to functional modules. There are multiple

instances of 20S proteosome. All seven of the alpha subunits in the 20S proteosome,
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Table 4.5
Sample conserved subnets identified by the alignment of C. elegans and
D. melanogaster PPI networks.

Rank Score # Proteins # Matches # Mismatches # Duplications

1 26.75 17 (4, 9) 52 4 (1, 4)

thermosensory behav. (25%) / reg. of transc. RNA polymerase II prom. (44%)

2 4.65 9 (5, 3) 8 0 (2, 1)

translational initiation (60%, 67%)

4 4.37 11 (3, 6) 10 1 (1, 4)

determination of adult life span (33%, 67%)

5 4.29 5 (4, 4) 6 0 (1, 1)

regulation of transcription, DNA-dependent (50%, 25%)

6 4.00 6 (4, 6) 8 2 (0, 2)

signal transduction (50%, 17%)

a subcomplex of the 26S proteosome involved in protein degradation, are present in

the alignment #10 [148]. In addition, there is a subnet for the proteosome regulatory

particle (6) [149] as well as one for calcium induced pathways (2).

The method also detected a number of components involved in calcium-dependent

stress-activated signaling pathways (Cmd1, Cna1, Cna2 and Cnb1) as well as those

associated with budgrowth of yeast (Cmd1, Myo2 and Myo4) in alignment #2 [150].

Many of the subnets found for yeast are overlapping, possibly reflecting the fact that

drosophila uses a functional module in various contexts.

In some cases, the self-interaction of a single protein in one organism is aligned

with a clique of interactions between its orthologs that are part of a particular module.

For example, in one alignment, five proteosome regulatory particle proteins (Rpt1,

Rpt3, Rpt4, Rpt5, Rpt6) are mapped to one protein (Rpt4) in drosophila, while in

other alignments the same group of proteins are mapped to a different set of proteins



73

Rpt6

CG12010−PA CG12010−PB

CG7257

Rpt5

Rpt2

Rpt3

Rpt1
S.Cerevisiae D.Melanogaster

Y18D10A.8 CG2950

BACR42I17.1 CG8277

ife−3

R04A9.4

B0348.6

F5#A2.6

D.MelanogasterC.Elegans

(a) SC-DM.6 (d) CE-DM.2

Myo2 Myo3 Myo4 Myo5

Cmd1

Cna1 Cna2

Cnb1

Didum

CG31958Mlc−c And

CanA1

CanB

S.Cerevisiae D.Melanogaster

FRM−8

W05B10.4

CE03827

F28B4.2

CG31304

CG8965

D−Ras1

Rgl

D−Rap1 Rap2l

D.MelanogasterC.Elegans

(b) SC-DM.2 (e) CE-DM.6

Ste20

Bmh2

Leo

Raf

Par−1Psk1

14−3−3−epsilon

Bmh1

S.Cerevisiae D.Melanogaster

Pre8

Pre6

Pre9

Pre5

Pre10

CD4.6

Pup2
C36B1.4

D1054.2

S.Cerevisiae C.Elegans

(c) SC-DM.8 (f) SC-CE.3

Fig. 4.5. Sample conserved subnets identified by MaWISh.

in the drosophila network. This may be due to missing interactions in one of the

networks because of incompleteness or irregularities in the interaction data, including

coding of observed interactions into the databases (e.g., spoke vs. matrix model [30]).

By adjusting the mismatch and duplication coefficients, however, it is possible to

make positive duplications dominate the negative mismatches caused by these missing

interactions. This may be considered as a desirable feature of our algorithm, in

the sense that it allows flexibility for trading off conservation of interactions with



74

conservation of proteins. However, it might also be considered a drawback, since

setting the parameters in this manner causes over-representation of somewhat distant

proteins in one conserved subnet on another side of the network.

Based on these results, we establish pairwise alignment of PPI networks as a tool

for not only identifying conserved modules, but also assessing functional differences

and similarities of homologous proteins based on shared and missing interactions.

Furthermore, alignment results provide a means for discovery of new functional mod-

ules in relatively less studied organisms through mapping of functions at a modular

level rather than at the level of single protein homologies.
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5. STATISTICAL SIGNIFICANCE OF CONNECTIVITY

AND CONSERVATION IN BIOLOGICAL NETWORKS

There are two critical aspects of identifying meaningful structures in data – the al-

gorithm for the identification and a method for scoring an identified pattern. In this

context, the score of a pattern corresponds to its significance. A score is generally

computed with respect to a reference model – i.e., given a pattern and a reference

model, how likely is it to observe the pattern in the reference model. The less likely

such an occurrence is in the reference model, the more interesting it is, since it repre-

sents a significant deviation from the reference (nominal) behavior. One such score,

in the context of sequences is the E-value returned by BLAST matches [151]. This

score broadly corresponds to the likelihood that a match between two sequences is

generated by a random process. The lower this value, the more meaningful the match.

It is very common in a variety of applications to use a threshold on E-values to iden-

tify homologies across sequences. It is reasonable to credit E-value as one of the key

ingredients of the success of sequence matching algorithms and software.

While significant progress has been made towards developing algorithms on graphs

for identifying patterns (motifs, dense components), conservation, alignment, and

related problems, analytical methods for quantifying the significance of such patterns

are limited. Existing algorithms for detecting general patterns typically adopt simple

ad-hoc measures (such as frequency or relative density) [16,63], compute z-scores for

the observed pattern based on simplifying assumptions [18,81,82], or rely on Monte-

Carlo simulations [81] to assess the significance of identified patterns. Itzkovitz et

al. [87] analyze the expected number of occurrences of specific topological motifs in

a variety of random networks. This study represents, to the best of our knowledge,

the first effort at analytically quantifying the statistical significance of the existence

of a pattern with observed property, with respect to a reference model. Specifically,
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it presents a framework for analyzing the occurrence of dense patterns in randomly

generated graph-structured data (based on the underlying model) with a view to

assessing the significance of a pattern based on the statistical relationship between

subgraph density and size. This result is generalized in a straightforward manner to

the problem of assessing statistical significance of matches between two interaction

networks.

The selection of an appropriate reference model for data and the method of scor-

ing a pattern or match, are important aspects of quantifying statistical significance.

Using a reference model that fits the data very closely makes it more likely that

an experimentally observed biologically significant pattern is generated by a random

process drawing data from this model. Conversely, a reference model that is suffi-

ciently distinct from observed data is likely to tag most patterns as being significant.

Clearly, neither extreme is desirable for good coverage and accuracy. In this paper,

we consider two reference models (i) a G(n, p) model of a graph with n nodes, where

each pair of nodes has an identical probability, p, of sharing an edge, and (ii) a two

level G(n, p) model in which the graph is modeled as two separate G(n, p) graphs

with intervening edges. The latter model captures the heavy nodes corresponding to

hub proteins, typically observed in PPIs. For these models, we analytically quantify

the behavior of the largest dense subgraph and use this to derive a measure of signif-

icance. We show that a simple G(n, p) model can be used to assess the significance

of dense patterns in graphs with arbitrary degree distribution, with a conservative

adjustment of parameters so that the model stochastically dominates a graph gener-

ated according to a given distribution. In particular, by choosing p to be maximal,

we ensure that the largest dense subgraph in our G(n, p) model stochastically dom-

inates that of a power-law graph. Our two-level G(n, p) model is devised to mirror

key properties of the underlying topology of PPI graphs, and consequently yields

a more conservative estimate of significance. Finally, we show how existing graph

clustering algorithms [152] can be modified to incorporate statistical significance in

identification of dense patterns, resulting in an effective module identification algo-
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rithm, SiDeS. (SiDeS is available as a standalone application and as a plugin to

Cytoscape over the public domain from our lab.) We also generalize our results and

methods to the comparative analysis of PPI networks and show how the significance

of a match between two networks can be quantified in terms of the significance of the

corresponding dense component in a suitable specified product graph.

Our analytical results are supported by extensive experimental results on a large

collection of PPI networks derived from BIND [10] and DIP [12]. These results demon-

strate that the proposed model and subsequent analysis provide reliable means for

evaluating the statistical significance of highly connected and conserved patterns in

PPI networks. We also compare the resulting algorithmic technique, SiDeS, with

the module identification algorithm, MCODE [63] and show that SiDeS outperforms

this algorithm in terms of specificity and sensitivity of identified clusters with re-

spect to GO annotations. The framework proposed here can be extended to include

more general networks that capture the degree distribution of PPI networks more

accurately, namely power-law [140, 153], geometric [154], or exponential [155] degree

distributions.

The rest of this chapter is organized as follows: In the next section, we discuss

graph models for PPI networks. We then analyze the behavior of the largest dense

subgraph and derive measures for assessing statistical significance of highly connected

as well as highly conserved subgraphs in PPI networks. In Section 5.2, we introduce

the SiDeS algorithm. Finally, we present and discuss experimental results in Section

5.3.

5.1 Probabilistic Analysis of Dense Subgraphs

Since proteins that are part of a functional module are likely to densely interact

with each other, while being somewhat isolated from the rest of the network [92],

many commonly used methods focus on discovering dense regions of the network for

identification of functional modules or protein complexes [58, 63–65, 74]. Subgraph
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density is also central to many algorithms that target identification of conserved

modules and complexes [18, 81, 84]. In order to assess the statistical significance of

such dense patterns, we analyze the distribution of the largest “dense” subgraph

generated by an underlying reference model. Using this distribution, we estimate

the probability that an experimentally observed pattern will occur in the network by

chance. The reference model must mirror the basic characteristics of experimentally

observed networks in order to capture the underlying biological process correctly,

while being simple enough to facilitate theoretical and computational analysis.

5.1.1 Modeling PPI Networks

With the increasing availability of high-throughput interaction data, there has

been significant effort aimed at modeling PPI networks. The key observation on

these networks is that a few central proteins interact with many proteins, while most

proteins in the network have few interacting partners [61, 156]. A commonly ac-

cepted model that confirms this observation is based on power-law degree distribu-

tion [60,117,140,153]. In this model, the number of nodes in the network that have d

neighbors is proportional to d−γ, where γ is a network-specific parameter. It has also

been shown that there exist networks that do not possess a power-law degree distri-

bution [157,158]. In this respect, alternate models that are based on geometric [154]

or exponential [155] degree distribution have been also proposed.

While assessing the statistical significance of identified patterns, existing methods

that target identification of highly connected or conserved patterns in PPI networks

generally rely on the assumption that interactions in the network are independent

of each other [18, 81, 134]. Since degree distribution is critical to the generation

of interesting patterns, these methods estimate the probability of each interaction

based on the degree distribution of the underlying network. These probabilities can

be estimated computationally by generating several random graphs with the same

degree distribution via repeated edge swaps and counting the occurrence of each edge
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in this large collection of random graphs [81]. Alternately, they can be estimated

analytically, by relying on a simple random graph model that is based on a given

degree distribution [87,159]. In this model, each node u ∈ V (G) of graph G = (V,E) is

associated with expected degree du and the probability of existence of an edge between

u and v is defined as P (uv ∈ E(G)) = dudv/
∑

u∈V (G) d(u). In order for this function

to be a well-defined probability measure for simple graphs, we must have d2
max ≤

∑

u∈V (G) d(u), where dmax = maxu∈V (G) du. However, available protein interaction

data generally does not conform to this assumption. For example, based on the PPI

networks we derive from BIND [10] and DIP [12] databases, yeast Jsn1 protein has 298

interacting partners, while the total number of interactions in the S. cerevisiae PPI

network is 18193. Similarly, the D. Melanogaster PPI network with 28830 interactions

contains a protein (CG12470-PA ORF) with 207 interacting partners. Such problems

complicate the analysis of the significance of certain structures for models that are

based on arbitrary degree distribution.

While models that assume power-law [140, 153], geometric [154], or exponen-

tial [155] degree distributions may capture the topological characteristics of PPI

networks accurately, they require more involved analysis and may also require ex-

tensive computation for assessment of significance. To the best of our knowledge,

the distribution of dense subgraphs, even maximum clique, which forms a special

case of this problem, has not been studied for power-law graphs. In this paper, we

first build a framework for the simple and well-studied G(n, p) model and attempt to

generalize our results to more complicated models that assume heterogeneous degree

distribution.

5.1.2 Largest Dense Subgraph

Given graph G, let F (U) ⊆ E(G) be the set of edges in the subgraph induced

by node subset U ⊆ V (G). The density of this subgraph is defined as δ(U) =

|F (U)|/|U |2. Note here that we assume directed edges and allow self-loops for sim-
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plicity. PPI networks are undirected graphs and they contain self-loops in general,

but any undirected network can be easily modeled using a directed graph and this

does not impact the asymptotic correctness of the results. We define a ρ-dense sub-

graph to be one with density larger than pre-defined threshold ρ, i.e., U induces a

ρ-dense subgraph if F (U) ≥ ρ|U |2. For any ρ, we are interested in the number of

nodes in the largest ρ-dense subgraph. This is because any ρ-dense subgraph in the

observed PPI network with size larger than this value will be “unusual”, i.e., statis-

tically significant. Note that maximum clique is a special case of this problem with

ρ = 1.

We first analyze the behavior of the largest dense subgraph for the G(n, p) model

of random graphs. We subsequently generalize these results to the piecewise degree

distribution model in which there are two different probabilities of generating edges.

In the G(n, p) model, a graph G contains n nodes and each edge occurs independently

with probability p.

Let random variable Rn(ρ) be the size of the maximum subset of vertices that

induce a ρ-dense subgraph, i.e.,

Rn(ρ) = max
U⊆V (G):δ(U)≥ρ

|U |. (5.1)

The behavior of Rn(1), which corresponds to maximum clique, is well studied

for the G(n, p) model and its typical value is shown to be O(log1/p n) [160]. In the

following theorem, we derive a general result for the typical value of Rn(ρ) for any

ρ > p.

Theorem 5.1.1 If G is a random graph with n vertices, where every edge exists with

probability p and ρ > p, then

lim
n→∞

Rn(ρ)

log n
=

1

κ(p, ρ)
(a.s.), (5.2)

where

κ(p, ρ) = −Hp(ρ) = ρ log
ρ

p
+ (1− ρ) log

1− ρ

1− p
. (5.3)
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Here, Hp(ρ) denotes weighted entropy. More precisely,

P (Rn(ρ) ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (5.4)

where

r0 =
log n− log log n + log κ(p, ρ)− log e + 1

κ(p, ρ)
(5.5)

for large n.

Proof. We first prove the upper-bound. Let Xr,ρ denote the number of subgraphs

of size r with density at least ρ, i.e., Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|.
From first moment method, we obtain P (Rn(ρ) ≥ r) ≤ P (Xr,ρ ≥ 1) ≤ E[Xr,ρ].

Let Yr denote the number of edges induced by r vertices. Then, E[Xr] =
(

n
r

)

P (Yr ≥
ρr2). Furthermore, since Yr is a Binomial r.v. B(r2, p) and ρ > p, we have

P (Yr ≥ ρr2) ≤ (r2 − ρr2)P (Yr = ρr2) ≤
(

r2

ρr2

)

(r2 − ρr2)pρr2

(1− p)r2−ρr2

. (5.6)

Hence, we get P (Rn(ρ) ≥ r) ≤
(

n
r

)(

r2

ρr2

)

(r2 − ρr2)pρr2
(1− p)r2−ρr2

.

Using Stirling’s formula, we find the following asymptotics for
(

n
r

)

:

(

n

r

)

∼







1√
2πr

nr

rr e−r if r = o(
√

n)

1√
2πα(1−α)n

2nH(α) if r = αn
(5.7)

where H(α) = −α log α− (1− α) log(1− α) denotes the binary entropy.

Let Q = 1/pρ(1− p)1−ρ. Plugging the above asymptotics into (5.1.2), we obtain

P (Rn(ρ) ≥ r) ≤ r
√

1− ρ

2π
√

ρ
exp2(−r2 log Q + r log n− r log r + r2H(ρ)− r log e) (5.8)

Defining κ(p, ρ) = log Q − H(ρ), we find P (Rn(ρ) ≥ r0) ≤ r0
√

1−ρ
2π

√
ρ

exp2(f(r0)),

where f(r0) = −r0(r0κ(p, ρ) − log n + log r + log e). Plugging in (5.5) and working

out the algebra, we obtain f(r0) = −r0

(

1−O
(

log log n
log n

))

. Hence, P (Rn(ρ) ≥ r0) ≤
O (2−r0) = O

(

log n
n1/κ(p,ρ)

)

. This completes the proof for the upper-bound.

For the lower bound, we have

P (Rn(ρ) < r) = P (Xr,ρ = 0) ≤ E[X2
r,ρ]

E[Xr,ρ]2
. (5.9)
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from second moment method [161]. Letting m = ρr2, we obtain E[Xr,ρ] =
(

n
r

)(

r
m

)

pm

qr2−m and

E[X2
r,ρ] =

(

n
r

)
∑r

l=0

(

r
l

)(

n−r
r−l

)

∑

k∈Il

(

l2

k

)

pk(1− p)l2−k
[

(

r2−l2

m−k

)

pm−k(1− p)r2−l2−(m−k)
]2

(5.10)

where Il = {k : max(0, l2 + m − r2) ≤ k ≤ min(l2,m)}. Here, for two node subsets

Ur and Vr, l denotes the number of nodes at the intersection of Ur and Vr, i.e.,

l = |Ur ∩ Vr|. On the other hand, k denotes the number of edges at the intersection

of the subgraphs induced by Ur and Vr, i.e., k = |F (Ur) ∩ F (Vr)|. Hence,

E[X2
r,ρ]

E[Xr,ρ]2
=

r
∑

l=0

∑

k∈Il

f(r, l, k) (5.11)

where

f(r, l, k) =

(

n−r
r−l

)(

r
l

)(

l2

k

)(

r2−l2

m−k

)2
p−k(1− p)k−l2

(

n
r

)(

r2

m

)2 . (5.12)

Therefore,

P (Rn(ρ) < r) ≤
r

∑

l=0

∑

k∈Il

f(r, l, k) ≤ r3 max
l,k

f(r, l, k). (5.13)

For r = (1−ǫ) log n
κ(ρ,p)

, 0 ≤ l ≤ r and k ∈ Il, we will show that

f

(

(1− ǫ) log n

κ(ρ, p)
, l, k

)

≤ n
−ǫ(1−ǫ) log n

κ(ρ,p) (5.14)

to conclude that P (Rn(ρ) < r) ≤ (log n)3

n
ǫ(1−ǫ) log n

κ(ρ,p)

. To achieve this, let α = l2/r2 and β =

k/l2. Then, assuming ρ > 1/2 without loss of generality, the interval corresponding

to Il for 0 ≤ α ≤ 1 becomes

Jα =



















β :

0 ≤ β ≤ 1 if 0 ≤ α ≤ 1− ρ

α+ρ−1
α
≤ β ≤ 1 if 1− ρ ≤ α ≤ ρ

α+ρ−1
α
≤ β ≤ ρ

α
if ρ ≤ α ≤ 1.



















(5.15)

Inserting l =
√

αr and k = αβr2 in (5.12), we obtain

fα,β(r) =

(

r√
αr

)(

n−r
(1−√

α)r

)(

αr2

αβr2

)(

(1−α)r2

(ρ−αβ)r2

)2
p−αβr2

(1− p)α(β−1)r2

(

n
r

)(

r2

ρr2

)2 . (5.16)
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Plugging Stirling’s approximation (5.7) for appropriate regimes, we get

log(fα,β(r)) ∼ −r(
√

α log n) + r2(αH(β)− α(β log p + (1− β) log(1− p))

+2(1− α)H
(

ρ−αβ
1−α

)

− 2H(ρ)).
(5.17)

Hence, for r = (1−ǫ) log n
κ(p,ρ)

, we have

log

(

fα,β

(

(1− ǫ) log n

κ(p, ρ)

))

∼ 1− ǫ

κ(p, ρ)
(log n)2

[

−√α +
1− ǫ

κ(p, ρ)
g(α, β)

]

(5.18)

where

g(α, β) = αH(β)− α(β log p + (1− β) log(1− p))

+2(1− α)H
(

ρ−αβ
1−α

)

− 2H(ρ).
(5.19)

Working out the algebra, we observe that

max
0≤α≤1,β∈Jα

g(α, β) = g(1, ρ) = κ(ρ, p) (5.20)

where the maximum corresponds to the boundary point l = r and k = ρr2. Hence,

it immediately follows from (5.18) that log(f) ≤ −ǫ(1−ǫ)
κ(p,ρ)

(log n)2 for 0 ≤ α ≤ 1 and

β ∈ Jα, which leads to (5.14). �

Observe that, if n is large enough, the probability that a dense subgraph of size

r0 exists in the subgraph is very small. Consequently, r0 may provide a threshold for

deciding whether an observed dense pattern is statistically significant.

For a graph of arbitrary degree distribution, let dmax denote the maximum ex-

pected degree as defined in Section 5.1.1. Let pmax = dmax/n. It can be easily shown

that the largest dense subgraph in the G(n, p) graph with p = pmax stochastically dom-

inates that in the random graph generated according to the given degree distribution

(e.g., power-law graphs). Hence, by estimating the edge probability conservatively,

we can use the above result to determine whether a dense subgraph identified in a

PPI network of arbitrary degree distribution is statistically significant. Furthermore,

the above result also provides a means for quantifying the significance of an observed

dense subgraph. For a subgraph with size r̂ > r0 and density ρ̂, let ǫ = r̂−log n/κ(ρ̂,p)
log n/κ(ρ̂,p)

.
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Then, it follows from (5.8) that the probability of observing this subgraph in a graph

generated according to the reference model is bounded by

P (Rρ̂ ≥ (1 + ǫ) log n/κ(ρ̂, p)) ≤
√

1− ρ

2π
√

ρ

(1 + ǫ) log n

nǫ(1+ǫ) log n/κ(ρ̂,p)
. (5.21)

While these results for the G(n, p) model provide a simple yet effective way of

assessing statistical significance of dense subgraphs, we extend our analysis to a more

complicated model, which takes into account the degree distribution to capture the

topology of the PPI networks more accurately.

5.1.3 Piecewise Degree Distribution Model

In the piecewise degree distribution model, nodes of the graph are divided into two

classes, namely high-degree and low-degree nodes. More precisely, we define random

graph G with node set V (G) that is composed of two disjoint subsets Vh ⊂ V (G)

and Vl = V (G) \ Vh, where nh = |Vh| ≪ |Vl| = nl and nh + nl = n = |V (G)|. In

the reference graph, the probability of an edge is defined based on the classes of its

incident nodes as:

P (uv ∈ E(G)) =



















ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

(5.22)

Here, pl < pb < ph. This model captures the key lethality and centrality properties

of PPI networks in the sense that a few nodes are highly connected while most nodes

in the network have low degree [61, 156]. Observe that, under this model, G can be

viewed as a superposition of three random graphs Gl, Gh, and Gb. Here, Gh and

Gl are G(n, p) graphs with parameters (nh, ph) and (nl, pl), respectively. Gb, on the

other hand, is a random bipartite graph with node sets Vl, Vh, where each edge occurs

with probability pb. Hence, we have E(G) = E(Gl)∪E(Gh)∪E(Gb). This facilitates

direct employment of the results in the previous section for analyzing graphs with

piecewise degree distribution.
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We now show that the high-degree nodes in the piecewise degree distribution

model contribute a constant factor to the typical size of the largest dense subgraph

as long as nh is bounded by a constant.

Theorem 5.1.2 Let G be a random graph with piecewise degree distribution, as de-

fined by (5.22). If nh = O(1), then

P (Rn(ρ) ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

, (5.23)

where

r1 =
log n− log log n + 2nh log B + log κ(pl, ρ)− log e + 1

κ(pl, ρ)
(5.24)

and B = pbql

pl
+ qb, where qb = 1− pb and ql = 1− pl.

Proof. Let Xh
r,ρ, X l

r,ρ be the number of ρ-dense subgraphs induced by only nodes

in Gh or Gl, respectively. Let Xb
r,ρ be the number of these induced by nodes from

both sets. Clearly, Xr,ρ = Xh
r,ρ + X l

r,ρ + Xb
r,ρ. The analysis for G(n, p) directly

applies for E[Xh
r,ρ] and E[X l

r,ρ], hence we emphasize on E[Xb
r,ρ]. Since nh = O(1),

we have E[Xb
r,ρ] ≤ (1− ρ)r2

∑nh

k=0

(

nh

k

)(

nl

r−k

)
∑2k(r−k)

l=0

(

2k(r−k)
l

)(

(r−k)2

ρr2−l

)

pl
bq

2k(r−k)−l
b pρr2−l

l

q
(r−k)2−ρr2+l
l ,where qb = 1− pb and ql = 1− pl. Then,

E[Xb
r,ρ] ≤ c(1− ρ)r2nh

(

nl

r

) 2nhr
∑

l=0

(

2nhr

l

)(

r2

ρr2 − l

)

pl
bq

2nhr−l
b pρr2−l

l qr2−ρr2+l
l , (5.25)

where c is a constant. Since l = o(ρr2), we have
(

r2

ρr2−l

)

≤
(

r2

ρr2

)

for 0 ≤ l ≤ 2nhr.

Therefore,

E[Xb
r,ρ] ≤ (1− ρ)r2

(

n

r

)(

r2

ρr2

)

pρr2

l qr2−ρr2

l

2nhr
∑

l=0

(

2nhr

l

)(

pbql

pl

)l

q2nhr−l
b . (5.26)

Using B = pbql

pl
+ qb as defined in Theorem 5.1.2, we find P (Rn(ρ) > r) ≤ O(2f1(r)),

where f1(r) = −r(rκ(ρ) − log n + log r − log e + 2nh log B).Hence, P (Rn(ρ) > r1) ≤
O(2f1(r1)) ≤ O

(

log n

n1/κ(pl,ρ)

)

for large n. �

Note that the above result is based on asymptotic behavior of r1, hence the log n

term dominates as n→∞. However, if n is not large enough, the 2nh log B term may
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cause over-estimation of the critical value of the largest dense subgraph. Therefore,

the application of this theorem is limited for smaller n and the choice of nh is critical.

A heuristic approach for estimating nh is as follows. Assume that the underlying

graph is generated by a power-law degree distribution, where the number of nodes

with degree d is given by nd−γ/ζ(γ) [162]. Here, ζ(.) denotes the Riemann zeta-

function. If we divide the nodes of this graph into two classes where high-degree

nodes are those with degree d ≥ (n/ζ(γ))1/γ so that the expected number of nodes

with degree d is at most one, then nh =
∑∞

d=(n/ζ(γ))1/γ nd−γ/ζ(γ) is bounded, provided

the above series converges.

5.1.4 Conservation of Dense Subgraphs

Comparative methods that target identification of conserved subnets in PPI net-

works induce a cross-product, or superposition, of several networks in which each

node corresponds to a group of orthologous proteins [17,18,81,82,134]. Here, we rely

on ortholog groups available in the COG database [121] to relate proteins in different

PPI networks [17]. Labeling each node in the PPI network with the COG family of

the protein it represents, we obtain an intersection of two PPI networks by inserting

an edge between two COG families only if proteins that belong to these families in-

teract in both graphs. In the case of the G(n, p) model, the above framework directly

applies to the identification of dense subgraphs in this intersection graph, where the

probability of observing a conserved interaction is estimated as pI = p1p2. Here p1

and p2 denote the probability of observing an edge in the first and second networks,

respectively. For the piecewise degree distribution model, on the other hand, we

have to assume that the orthologs of high-degree nodes in one graph are high-degree

nodes in the other graph as well. If this assumption is removed, it can still be shown

that the low-degree nodes dominate the typical behavior of the largest conserved

subgraph. Note that the reference model assumes that the orthology relationship

between proteins in the two networks is already established and the model estimates
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the conditional probability that the interactions between these given ortholog proteins

are densely conserved.

5.2 SiDeS: An Algorithm for Identification of Significant Dense Sub-

graphs

We use the above results to modify an existing state-of-the-art graph clustering al-

gorithm, HCS [152], in order to incorporate statistical significance in identification of

interesting dense subgraphs. HCS is a recursive algorithm that is based on decompos-

ing the graph into dense subgraphs by recursive application of min-cut partitioning.

A min-cut partition of the nodes of a graph G = (V,E) is a disjoint partition of V

into V0 and V1 such that the cut

C(V0, V1) = |{uv ∈ E : u ∈ V0, v ∈ V1 ∨ u ∈ V1, v ∈ V0}| (5.27)

is minimized. In the original HCS algorithm, the density of any subgraph found in

this recursive decomposition is compared with a pre-defined density threshold. If

a subgraph is dense enough, it is reported as a highly-connected cluster of nodes,

else it is partitioned again. While this algorithm provides a strong heuristic that is

well suited to the identification of densely interacting proteins in PPI networks [56],

the selection of density threshold poses an important problem. In other words, it

is hard to provide a biologically justifiable answer to the question “How dense must

a subnetwork of a PPI network be to be considered biologically interesting?”. Our

framework provides an answer to this question from a statistical point of view by

establishing the relationship between subgraph size and density as a stopping criterion

for the algorithm.

For any subgraph encountered during the course of the algorithm, we estimate

the critical size of the subgraph to be considered interesting, by plugging in its den-

sity in (5.5) or (5.24). If the size of the subgraph is larger than this probabilistic

upper-bound, we report the subgraph as being statistically significant. Otherwise, we

continue partitioning the graph.
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procedure MinCutPhase (S, s)

⊲ Input S: Subgraph to be partitioned

⊲ Input s ∈ V (S): A fixed node of S

⊲ w(uv): Number of edges between nodes represented by u and by v

⊲ returns the last two nodes and the cut between last node and others

1 V ← {s}
2 while |V| < |V (S)| − 1 do

3 v ← argmaxv′∈V (S)

∑

u′∈V w(u′v′)

4 V ← V ∪ {v}
5 u← V (S) \ V
6 return {v, u,

∑

u′∈V w(u′u)}

Fig. 5.1. A single phase of the min-cut algorithm used by SiDeS.

An important problem relating to the use of min-cut partitioning is that min-cut

partitioning tends to single out a node in one part, since no balance constraint is

imposed. Hence, recursive application of min-cut on large graph is likely to result

in many clusters containing a single node, which indeed is not significant. This

problem is particularly important in PPI networks because of their characteristic

degree distribution, i.e., most proteins in the network are low-degree nodes, which

are likely to be singled out by min-cut partitioning. We resolve this problem by

an additional modification to the HCS algorithm and we partition the network to

minimize the ratio cut rather than the edge cut. Ratio cut partitioning is a well-

studied problem in various contexts. It targets minimization of the edge cut while

maintaining balance implicitly, without imposing any strict balance constraints [163].
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procedure RatioCutPartition (S)

⊲ Input S: Subgraph to be partitioned

⊲ w(u): Number of nodes represented by u

⊲ returns partition that locally minimizes ratio-cut

1 for u ∈ V (S) do

2 w(u)← 1

3 W ← |V (S)|
4 R̄← E(S) + 1

5 pick arbitrary seed node s ∈ V (S)

6 while |V (S)| > 1 do

7 {v, u, C} ← MinCutPhase(S, s)

8 R = C/ min(w(u),W − w(u))

9 if R < R̄ then R̄← R

10 merge u into v, w(v)← w(v) + w(u)

11 return partition that corresponds to R̄

Fig. 5.2. Ratio-cut partitioning algorithm used by SiDeS.

Although being NP-hard, in contrast to the min-cut problem [164], the problem can

be solved effectively by heuristic methods and is very well suited for partitioning of

PPI networks since no strict balance is required but single-node partitioning needs to

be avoided. In our implementation, we define ratio-cut as

R(V0, V1) =
C(V0, V1)

min(|V0|, |V1|)
(5.28)

and adopt a simple min-cut algorithm [165] to heuristically solve this problem. The

underlying algorithm considers |V | partitions, which are locally optimal and chooses
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procedure RecursiveRatioCut(S, n, p)

⊲ Input S: Subgraph to be partitioned

⊲ Input n: Number of nodes in original graph

⊲ Input p: Probability of existence of an edge

⊲ returns set of dense subgraphs of S that are significant w.r.t. n and p

1 ρ← |E(S)|/|V (S)|2

2 Estimate r0 as given by (5.5)

3 if |V (S)| > r0 then

4 Estimate significance of S as given by (5.21)

5 return {S}
6 else

7 {S0, S1} ← RatioCutPartition(S)

8 return RecursiveRatioCut(S0, n, p)
⋃

RecursiveRatioCut(S1, n, p)

Fig. 5.3. Recursive partitioning algorithm used by SiDeS.

the one that induces minimum edge-cut, which is shown to be the global optimum.

In our implementation, we consider the same |V | partitions, but choose the one that

minimizes the ratio cut of (5.28) to heuristically favor a more balanced partition.

The resulting significant dense subgraph identification algorithm, SiDeS, is shown

in Figures 5.1-5.4. Details of the recursive algorithm and the min-cut algorithm can

be found in [152] and [165], respectively. Note that this algorithm only identifies

disjoint subgraphs, but can be easily extended to obtain overlapping dense subgraphs

by greedily growing each of the resulting subgraphs until significance is lost. The C



91

procedure SiDeS(G)

⊲ Input G: Input network

⊲ returns set of significant dense subgraphs of G

1 p← maxu∈V |{v ∈ V (G) : uv ∈ E(G)}|/|V (G)|
2 return RecursiveRatioCut(G, |V (G)|, p)

Fig. 5.4. SiDeS algorithm for identifying significant dense subgraphs in
a network.

source code and a Java implementation as a Cytoscape [166] plug-in for SiDeS are

available as open source at http://www.cs.purdue.edu/homes/koyuturk/sides/.

5.3 Experimental Results

In this section, we first compare the behavior of dense subgraphs in experimentally

available network data with the theoretical results presented in this paper. Then, we

present experimental results on the performance of SiDeS, which uses statistical

significance as an optimization criterion, and demonstrate the excellent performance

of SiDeS in identifying biologically relevant protein clusters as compared to existing

algorithms. We do this by quantifying the biological significance of identified clusters

in terms of specificity and sensitivity.

5.3.1 Behavior of Largest Dense Subgraph

We experimentally analyze connectivity and conservation in PPI networks of 11

species gathered from BIND [10] and DIP [12] databases. These networks vary signifi-
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Fig. 5.5. The behavior largest dense subgraph size with respect to number
of proteins in the network.

cantly in size and comprehensiveness and cover a broad range of organisms. Relatively

large amounts of interaction data is available for S.cerevisiae (18192 interactions be-

tween 5157 proteins), D. melanogaster (28829 among 8577), H. sapiens (7393 among

4541), C. elegans (5988 among 3345), E. coli (1329 among 1079), while the networks

for other organisms are restricted to a small portion of their networks.

In Figure 5.5, we examine the behavior of largest subgraph with respect to number

of nodes in the PPI network for two different values of density threshold (ρ), 0.5 and 1

(clique). In the figure, each organism corresponds to a sample point, which is marked

by its name. The critical values of largest dense subgraph size based on G(n, p) and

piecewise degree distribution models are also shown in the figure. Since the sparsity

and degree distribution of these networks vary significantly across different organisms,

the estimated values of edge probabilities vary accordingly. Hence, the curves for r0

(G(n, p) model) and r1 (piecewise degree distribution model) do not show a linear

behavior. As seen in the figure, piecewise degree distribution model provides a more

conservative assessment of significance. This is primarily because of the constant

factor in the critical value of r1. Observed size of the largest dense subgraph in
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smaller networks is not statistically significant, while larger and more comprehensive

networks contain subgraphs that are twice as large as the theoretical estimate, with

the exception of the D. melanogaster PPI network. The lack of dense subnets in

the D. melanogaster network may be due to differences in experimental techniques

(e.g., two hybrid vs. AP/MS) and/or the incorporation of identified interactions

in the interaction network model (e.g., spoke vs. matrix) [30]. In order to avoid

problems associated with such variability, it may be necessary to revise the definition

of subgraph density or preprocess the PPI networks to standardize the topological

representation of protein complexes in the network model.

The behavior of largest dense subgraph size with respect to density threshold

is shown in Figure 5.6 for S. Cerevisiae and H. Sapiens PPI networks and their

intersection. It is evident from the figure that the observed size of the largest dense

subgraph follows a similar trajectory with the theoretical values estimated by both

models. Furthermore, in both networks, the largest dense subgraph turns out to be

significant for a wide range of density thresholds. For lower values of ρ, the observed

subgraphs are either not significant or are marginally significant. This is a desirable

characteristic of significance-based analysis since identification of very large sparse

subgraphs should be avoided while searching for dense patterns in PPI networks.

Observing that the G(n, p) model becomes more conservative than the piecewise

degree distribution model for lower values of ρ, we conclude that this model may

facilitate fine-grain analysis of modularity in PPI networks.

5.3.2 Performance of SiDeS

In this section, we demonstrate the performance of SiDeS in identification of

significant dense subgraphs on the available yeast PPI network and compare it with

an existing complex identification algorithm, MCODE [63]. Both algorithms work on

a set of interactions modeled as a simple graph and return a set of protein clusters,

each of which induce unusually dense subgraphs in the network. MCODE associates
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Fig. 5.6. The behavior of largest dense subgraph size and largest conserved
dense subgraph size with respect to density threshold for S. cerevisiae and
H. sapiens PPI networks.

each cluster with a score defined as the ratio of number of interactions to the number

of proteins in the cluster. SiDeS, on the other hand, associates each cluster with

a p-value, which estimates the likelihood of observing the number of interactions

between an identical number of proteins in a graph generated by the reference model,

as discussed in Section 5.1.

We evaluate the biological relevance of identified clusters based on Gene Ontol-

ogy [23, 167]. We estimate the statistical significance of the enrichment of each GO
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Fig. 5.7. Comparison of the performance of MCODE and SiDeS algo-
rithms in identifying dense clusters in yeast PPI network.

term in the cluster using Ontologizer [168]. For a given cluster, Ontologizer asso-

ciates each GO term with a p-value, which estimates the probability of the observed

enrichment of the GO term in a set of randomly chosen proteins conditioned on the

enrichment of the parents of the term in GO hierarchy, based on a reference model

that assumes hypergeometric distribution of GO terms among proteins.

The distribution of the p-value for the most significant annotation with respect to

cluster size for clusters identified by SiDeS and MCODE on the yeast PPI network

is shown in Figure 5.7(a). Since each cluster is generally associated with more than

one significant GO term, we report the most significant term in this figure, since this

term corresponds to the most biologically meaningful annotation from a statistical

perspective. On the S. cerevisiae PPI network, SiDeS identifies 73 significant dense

subgraphs, while MCODE discovers 103 dense clusters. As evident in the figure,

SiDeS tends to discover smaller clusters as compared to MCODE and preserves

specificity of identified clusters in terms of GO annotations irrespective of cluster

size. Furthermore, cluster size and significance of GO annotation are significantly

correlated (0.76, p < 9e − 15) for SiDeS, suggesting that SiDeS is able to tune



96

Cluster size

SiDeS
mcode

S
p
ec

ifi
ci

ty
(%

)

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

90

100

Cluster size

SiDeS
mcode

S
en

si
ti

v
it
y

(%
)

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

90

100

(a) (b)

Fig. 5.8. Behavior of specificity and sensitivity with respect to cluster size
for dense clusters identified by the SiDeS and MCODE algorithms.

the size of cluster to accurately capture the ”meaning”. The correlation of size and

significance for MCODE is 0.43 (p < 5e− 06).

In order to quantify the quality of the clusters with respect to GO annotations, we

use two metrics measuring the specificity and sensitivity of a cluster with respect to

the associated GO term. Assume that a cluster C containing nC proteins is associated

with a term T that is attached to nT proteins in the set of all proteins in the network.

Then, if nCT of the proteins in C are attached to T , we define specificity as

specificity = 100× nCT

nC

, (5.29)

measuring the purity of the cluster with respect to the corresponding term. Similarly,

sensitivity is defined as

sensitivity = 100× nCT

nT

, (5.30)

measuring the extent to which the cluster represents the corresponding term.

Since a single cluster is generally associated with more than one significant anno-

tation, we define the specificity and sensitivity of a cluster as the maximum among all

significant annotations. In other words, specificity of a cluster measures the functional
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Table 5.1
Comparison of SiDeS and MCODE algorithms in terms of their specificity
and sensitivity with respect to GO annotations.

SiDeS MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity (%) 43.0 100.0 91.2 0.0 100.0 77.8

Sensitivity (%) 2.0 100.0 55.8 0.0 100.0 47.6

purity of a cluster, while sensitivity measures the ability of the cluster to represent

a functional annotation alone. The scatter-plot of specificity vs. sensitivity for all

clusters discovered by the two algorithms is shown in Figure 5.7(b). As evident in the

figure, only three of the 73 SiDeS clusters have specificity less than 70%. Most (62%)

of the circles (corresponding to SiDeS clusters) reside on the upper right quarter of

the plane, illustrating SiDeS’s ability to accurately identify most of the proteins

taking part in a specific process, while maintaining specificity of the enrichment of

clusters. The behavior of cluster specificity and sensitivity with respect to cluster size

is shown in Figure 5.8. Correlation of size and specificity for SiDeS is 0.22 (p < 0.06),

while it is -0.02 (p < 0.83) for MCODE. Note that if the clusters were constructed

randomly, size and specificity would be negatively correlated. The positive correlation

for SiDeS’s clusters is illustrative of SiDeS’s ability of tuning cluster size to optimize

specificity. Correlation of size and sensitivity for SiDeS is 0.27 (p < 0.02), while it

is 0.36 (p < 2e − 04) for MCODE. If the clusters were constructed at random, one

would expect strong positive correlation between size and sensitivity.

A comparison of clusters identified by SiDeS and MCODE in terms of biological

specificity and sensitivity is shown on Table 5.1. As seen in the table, SiDeS is about

20% more specific and 15% more sensitive than MCODE on the yeast network on

average. As would be expected, this significant increase in accuracy comes at the

price of increased computation time. In other words, MCODE is faster than SiDeS
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since it adapts a greedy heuristic with local optimization, while SiDeS solves a more

expensive min-cut algorithm repeatedly and the resulting recursion tree is generally

imbalanced. For a cluster, zero specificity or sensitivity corresponds to the case where

no significant annotation for the cluster is found. Note that, for all of the 73 SiDeS

clusters, at least one GO term is significantly enriched in the cluster.

The most significant dense subgraphs identified by SiDeS in the yeast PPI net-

work are shown in Table 5.2. As seen in the table, SiDeS is able to capture many

protein complexes, including transcription factor complex, mRNA cleavage factor

complex, proteosome complex, nuclear ubiquitin ligase complex, mediator complex,

schistoseome complex, exosome, oligosaccharyl transferase complex, TRAPP com-

plex, eukaryotic transcription initiation factor 2B complex, hydrogen-translocating

V-type ATPase complex, CCR4-NOT complex, HOPS complex, and transcription

export complex. The modularity of many fundamental processes is also captured

by SiDeS. For example, 12 nuclear ubiquitin ligase complex proteins that induce a

subgraph of 62 interactions make up 91.7% of the proteins that take part in cyclin

metabolism.

Significant dense subgraphs that are conserved in S. cerevisiae and H. sapiens PPI

networks are shown in Table 5.3. Most of these dense components are involved in

fundamental processes and the proteins that are parts of these components share a

particular function. Among these, the 7-protein conserved subnet that consists of

6 Exosomal 3’-5’ exoribonuclease complex subunits and Succinate dehydrogenase is

interesting. As in the case of dense subgraphs in a single network, the conserved dense

subgraphs provide an insight into the crosstalk between proteins that perform different

functions. For example, the largest conserved subnet of 11 proteins contains Mismatch

repair proteins, Replication factor C subunits, and RNA polymerase II transcription

initiation/nucleotide excision repair factor TFIIH subunits, which are all involved in

DNA repair. The conserved subnets identified by SiDeS are small and appear to

be partial, since we employ a strict interpretation of conserved interaction here. In

particular, limiting the ortholog assignments to proteins that have a COG assignment
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Table 5.2
Sample protein clusters that induce significant dense subgraphs on the S.

cerevisiae PPI network and their annotation.

Size Density % % Annot.

(#P, #I) p-value Annotation Spec. Sens. p-value

(22, 145) 2e-234 [F] transcription regulator activity 90.9 6.9 4e-20

[C] transcription factor complex 90.9 17.1 6e-20

[P] protein amino acid acylation 63.6 32.6 1e-11

(20, 112) 4e-163 [C] mRNA cleavage factor complex 90.0 94.7 8e-36

[P] RNA 3’-end processing 80.0 69.6 2e-16

(18, 94) 5e-138 [C] proteasome complex 94.4 39.5 5e-32

[P] proteolysis 94.4 11.0 3e-10

[F] peptidase activity 83.3 15.5 1e-09

(12, 62) 2e-134 [C] nuclear ubiquitin ligase complex 100.0 47.8 2e-20

[P] cyclin catabolism 100.0 91.7 2e-14

[F] ligase activity 90.9 9.9 8e-11

(15, 64) 6e-85 [C] spliceosome complex 93.3 18.9 1e-17

[F] binding 100.0 1.7 2e-09

[P] mRNA processing 100.0 11.8 1e-05

(14, 55) 5e-69 [C] exosome (RNase complex) 92.9 100.0 4e-34

[P] mRNA catabolism 92.9 25.5 2e-06

(10, 38) 1e-66 [C] oligosaccharyl transferase complex 100.0 88.9 2e-18

[P] glycoprotein metabolism 100.0 15.1 9e-09

[F] oligosaccharyl transferase activity 100.0 88.9 3e-07

(8, 20) 2e-21 [C] HOPS complex 75.0 100.0 8e-14

[P] vacuole organization & biogenesis 75.0 17.6 1e-07

(7, 15) 3e-13 [C] exocyst 100.0 87.5 4e-16

[P] exocytosis 100.0 20.0 1e-05
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Table 5.3
Most significant conserved dense subgraphs in S. cerevisiae and H. sapiens

PPI networks and their functional enrichment according to COG func-
tional annotations.

# # Cons.

Prot. Int. p-value COG Annotation

10 17 10−68 RNA polymerase (100%)

11 11 10−26 Mismatch repair (33%)

RNA polym. II TI/nucleotide excision rep. fac. TFIIH (33%)

Replication factor C (22%),

7 7 10−25 Exosomal 3’-5’ exoribonuclease complex (86%)

4 4 10−24 Single-stranded DNA-binding replication protein A (50%)

DNA repair protein (50%)

5 4 10−12 Small nuclear ribonucleoprotein(80%)

snRNP component (20%)

5 4 10−12 Histone (40%)

Histone transcription regulator (20%)

Histone chaperone (20%)

3 3 10−9 Vacuolar sorting protein (33%)

RNA polym. II transc. fac. comp. subunit (33%)

and considering only matching direct interactions as conserved interactions, limits the

ability of the algorithm to identify a comprehensive set of conserved dense graphs.

Algorithms that rely on sequence alignment scores and consider indirect or probable

interactions [19,81,82] coupled with adaptation of the statistical framework presented

in this paper have the potential of increasing the coverage of identified patterns, while

correctly evaluating the interestingness of observed patterns.
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6. CONCLUDING REMARKS AND AVENUES FOR

FUTURE RESEARCH

In this dissertation, we propose efficient algorithms for identification of conserved

network patterns through comparative analysis of molecular interaction networks,

coupled with detailed statistical models and analyses for assessing the significance

of such patterns. Proposed algorithms illustrate the importance of incorporating

domain-specific semantic information in design of algorithms to provide reliable com-

putational performance and facilitate real-time analysis. It is important to note that

the tools presented here are publicly available and find widespread application in var-

ious areas of research in molecular biology. This is illustrative of the need for fast,

reliable, and accessible computational network analysis tools, as more interaction data

becomes available.

An important point relating to the accessibility of these tools is the necessity

of elegant visualization tools and user interfaces to accompany such algorithmic ap-

proaches. As interaction data is closely related to other sources of biological data,

which is also commonly needed in network analysis, standardization of data represen-

tation and storage is another important component in network analysis. Development

of such infrastructure is already in progress in terms of semantic web technologies and

portable visualization applications and libraries, as well as various knowledge bases.

Efficient algorithmic techniques described in this dissertation, coupled with such ef-

forts, has the potential of being established as the basic tool for daily research in

systems biology, as is the case for BLAST in comparative and functional genomics.

The ability of the proposed algorithms to discover conserved substructures in

molecular interaction networks, and the diversity of these patterns also encourage

more detailed phylogenetic network analysis. Various research questions arise from

the investigation of the results presented in this dissertation. These questions include
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frequent subgraph discovery in a phylogenetic setting, phylogenetic analysis of com-

putationally identified modules, and regression of evolutionary models to adjust and

tune parameters for network alignment. With the rapid increase in quality and quan-

tity of interaction data, algorithms presented here as well as those trying to answer

these questions are critical.
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[156] N. Pržulj, D. A. Wigle, and I. Jurisica, “Functional topology in a network of
protein interactions,” Bioinformatics, vol. 20, no. 3, pp. 340–348, 2004.

[157] J.-D. J. Han, D. Dupuy, N. Bertin, M. E. Cusick, and M. Vidal, “Effect of sam-
pling on topology predictions of protein interaction networks,” Nature Biotech-
nology, vol. 23, no. 7, pp. 839–844, 2005.

[158] A. Thomas, R. Cannings, N. A. Monk, and C. Cannings, “On the struc-
ture of protein-protein interaction networks,” Biochemical Society Transactions,
vol. 31, no. 6, pp. 1491–6, 2003.

[159] F. Chung, L. Lu, and V. Vu, “Spectra of random graphs with given expected
degrees,” PNAS, vol. 100, no. 11, pp. 6313–6318, 2003.

[160] B. Bollobás, Random Graphs. Cambridge, UK: Cambridge University Press,
2001.

[161] W. Szpankowski, Average Case Analysis of Algorithms on Sequences. New York:
John Wiley & Sons, 2001.

[162] W. Aiello, F. Chung, and L. Lu, “A random graph model for power law graphs,”
in Proceedings of ACM Symposium on Theory of Computing, pp. 171–180, 2000.

[163] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut partitioning
and clustering,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 11, no. 9, pp. 1074–85, 1992.

[164] S. Wang and J. M. Siskind, “Image segmentation with ratio cut,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 25, no. 6, pp. 675–
690, 2003.



115

[165] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the ACM,
vol. 44, no. 4, pp. 585–591, 1997.

[166] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: A software environment
for integrated models of biomolecular interaction networks,” Genome Research,
vol. 13, no. 11, pp. 2498–2504, 2003.

[167] A. Hsiao, T. Ideker, J. M. Olefsky, and S. Subramaniam, “VAMPIRE microar-
ray suite: A web-based platform for the interpretation of gene expression data,”
Nucleic Acids Research, vol. 33, no. Web Server issue, 2005.

[168] S. Grossmann, S. Bauer, P. N. Robinson, and M. Vingron, “An improved statis-
tic for detecting over-represented gene ontology annotations in gene sets,” in
10th International Conference on Research in Computational Moecular Biology
(RECOMB’06), pp. 85–98, 2006.



VITA



116

VITA

Mehmet Koyutürk received his B.S. degree in 1998 and M.S. degree in 2000 from

Bilkent University, in Electrical and Electronics Engineering and Computer Engineer-

ing, respectively. He was a Ph.D. student in the Computer Science Department of

Purdue University from 2001 to 2006. His research interests include bioinformatics,

computational systems biology, parallel and distributed algorithms, data mining, and

scientific computing.


