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Background & Motivation

Systems Biology

@ Life is an emergent property

@ "To understand biology at the
system level, we must examine
the structure and dynamics of
cellular and organismal
function, rather than the
characteristics of isolated parts
of a cell or organism.” (Kitano,
Science, 2002)

@ Systems biology complements
molecular biology




Background & Motivation

Organization & Dynamics of Systems

@ Airplane Parts Definitions .S
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@ Understanding how an airplane (cell) works
@ Listing parts (genes, proteins)

@ Understanding how parts are connected (interactions)

@ Characterizing the electrical and mechanical dynamics
(cellular dynamics)




Background & Motivation

Molecular Interactions

@ Regulation of molecular activity

@ Transcriptional regulation:
Which genes will be
expressed?

o Post-transcriptional regulation
& signaling: Phosphorylation,
degradation, transport...

@ Cooperation between molecules

@ Protein complexes:
Macromolecular machines
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Background & Motivation

Modeling Molecular Interactions: Networks

@ High level description of cellular
organization

@ Nodes represent cellular
components
o Protein, gene, enzyme, p
metabolite Ko #

@ Edges represent interactions

@ Binding, regulation,
modification, complex
membership, substrate-product
relationship

S.cerevisiae

Protein-Protein Interaction (PPI) Network
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Background & Motivation
Function & Topology in Molecular Networks

How does function relate to network topology?

Motifs

Pathways



Background & Motivation

Comparative Network Analysis

@ What is common to the networks that belong diverse
species?

@ Do conserved subgraphs correspond to functionally
modular network components?




Background & Motivation

Frequent Protein Interaction Patterns

@ Identification of frequent subgraphs in networks of multiple
species
@ Graph mining: Networks with thousands of nodes
o Our solution: Homolog contraction (Koyuturk et al., ISMB,
2004; Koyuturk et al., JCB, 2006)
@ Reduces graphs to sets, preserves frequent subgraphs
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KOG4068 Vps25 614750 Eap20
Pattern S. cerevisiae D. melanogaster H. sapiens

Conserved subgraph related to endosomal sorting



Background & Motivation

Pairwise Network Alignment

@ Allowing approximate matches (evolution, noise in data)
o Generalization of subgraph isomorphism, no well-defined
matching between nodes
@ Our solution: Score evolutionary events, formulate problem
as one of identifying heavy subgraphs (Koyuttirk et al.,
RECOMB, 2005; Koyutirk et al., JCB, 2006)
o Computationally very efficient

S Cerevisiae D.Melanogaster
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Calcium-dependent stress-activated signaling pathway



Background & Motivation

Assessing The Significance of Patterns

@ Are the identified subgraphs
statistically significant?

@ Most of the literature is
based on Monte Carlo
simulations

@ Our approach: Rigorously
characterize the distribution
of largest dense
(conserved) subgraph
based on random graph
models (Koyuturk et al.,
RECOMB, 2006; Koyutirk
et al., JCB, 2007)

p<<1

SIDES
(Uses statistical significance

as stopping criterion)



Background & Motivation

© Recurrent functional interaction patterns

@ Crosstalk between different processes
o "Periodic table of systems biology"
@ Functional coherence with respect to different types of
interaction
@ What does proximity mean in domain-domain interaction
networks?
9 Assessing functional similarity between two molecules
© Where are we going with all these?
@ Using network proximity to identify implicated genes in
human colorectal cancer
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Annotation of Regulatory Pathways

Characterizing Molecular Function: Ontologi

@ Significant progress on

standardizing knowledge on @I
biological function at the
molecular level I@T‘
. . e G0:0008150
@ Protein/domain families (COG,
PFAM! ADDA) ‘ CellularP‘r;);:ess ‘ De;f::Eopment ‘
GO:OOO‘:;QE’? GO0:0007275

@ Gene Ontology N
@ A controlled vocabulary of
i i i G0:0030154
molecular functions, biological
processes, and cellular
components
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Annotation of Regulatory Pathways

Functional Annotation: From Molecules to

@ Networks are species-specific

@ Functional ontologies are described at the molecular level

@ Can we map networks from gene space to an abstract

(and unified) function space?

Network of GO terms
based on significance of
pairwise interactions in S.
cerevisiae Synthetic Gene
Array (SGA) network (Tong
et al., Science, 2004)



Annotation of Regulatory Pathways

Gene Regulatory Networks: Indirect Regulat

@ Assessment of pairwise interactions is simple, but not
adequate
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Annotation of Regulatory Pathways

Functional Attribute Networks

@ Multigraph model

@ A gene is associated with multiple functional attributes
o A functional attribute is associated with multiple genes
o Functional attributes are represented by nodes

@ Genes are represented by ports, reflecting context

Gene Network

Functional Attribute Network




Annotation of Regulatory Pathways

Frequency of a Multipath

@ A pathway of functional attributes occurs in various
contexts in the gene network

@ Multipath in the functional attribute network

Frequency of Multipath =

A 4

L >l -



Annotation of Regulatory Pathways

Frequency vs. Statistical Significance

@ We want to identify overrepresented pathways
@ These might correspond to modular pathways

@ Frequency alone is not a good measure of statistical
significance
@ The distribution of functional attributes among genes is not
uniform
@ The degree distribution in the gene network is highly
skewed
o Pathways that contain common functional attributes have
high frequency, but they are not necessarily interesting



Annotation of Regulatory Pathways
Statistical Significance of a Pathway

@ Emphasize modularity of pathways (Pandey, Koyutlrk et
al., ISMB, 2007)

@ Condition on frequency of building blocks

o Evaluate the significance of the coupling of building blocks

(Il = ¢(E—~EHC) =4
e(I—>l)=¢(HLC]) =2

e(l—l)=>5
P(EEHLD < P(I—»I:»IB




Annotation of Regulatory Pathways

Significance of Pairwise Interactions

@ A single regulatory interaction is the shortest pathway

o Arbitrary degree distribution: The number of edges leaving
and entering each functional attribute is specified
@ Edges are assumed to be independent

@ The frequency of a regulatory interaction is a

hypergeometric random variable
min{G;d;,n} (ﬁiéj) (mfﬁisz)

° pj =P(®; > ¢jlB)= ) ’Z(%
=g n

9 [; = in-degree and §; = out-degree
@ m = pool of potential edges, n = number of edges in
network



Annotation of Regulatory Pathways
Significance of a Pathway

@ We denote each frequency random variable by ¢, their
observed value by ¢

23 E—a—a
) ) @
1P, T2,

o

123
@ Significance of pathway 7123 ( p123 ) is defined as

P(¢123 > @123|d12 = @12, P23 = 23, P01 = 1, P2 = V2, P3 = ¥3)



Annotation of Regulatory Pathways

Computing Significance

@ Assume that interactions are independent
@ There are 1,23 possible pairs of 7, and w3 edges
9 The probability that a pair of 71, and 7,3 edges go through
the same gene (corresponds to an occurrence of m123) is
1/¢2
@ The probability that at least ;53 of these pairs go through
the same gene can be bounded by

@ P12z < exp(pi2p23Hg(t)) where g = 1/¢, and

t = p123/p12023
@ Hq(t) =tlog(q/t)+(1—t)log((1—q)/(1—t))is divergence
o Bonferroni-corrected for multiple testing (adjusted by

ij:1 ‘ UggeTij F(90)))



Annotation of Regulatory Pathways

NARADA

@ A software for identification of significant pathways
(Pandey, Koyutlirk et al., PSB, 2008)

@ Given functional attribute T, find all significant pathways
that originate (terminate) at T

@ User can explore back and forth between the gene network
and the functional attribute network

pa,
e o =
r‘ e Gt
N L 2 Significant
Occurrence of ' i pathways
a pathway in
gene network 4




Annotation of Regulatory Pathways

Significant Regulatory Pathways in Bacteri

@ We use NARADA to identify significant pathways in the
transcriptional networks of two bacterial species

o E. coli: 1364 genes, 3159 regulatory interactions
(RegulonDB)
@ B. subtilis: 562 genes, 604 regulatory interactions (DBTBS)

Strongly significant pathways (p < 0.01)

Pathway length 2 3 4

E. coli 106 1436 5250
B. subtilis 39 111 524
Common 22 67 365

Expected 5 8 26




Annotation of Regulatory Pathways

Functional View of E. coli Regulatory Netwo
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Annotation of Regulatory Pathways

Short-Circuiting Mediator Processes

flagellum organization and biogenesis
<ell morphogenesis Gl oI -
A \ Sl

lein complex assembly regulation of flagellum biogenesis

Motility & response
bnetworks reappear

+ ¢hemotaxis
\

fagellum biogenes - cytochrome complex assembly - <

P P Signaling regulates
Y prowin modifictt |yjpsynthesis, transport,

_peptidyl-histidine phosphoryiation  bi

Inse to stimulus

protein secretion _

TR ot . motility
DINA repairg—sresponse to external stimulus histidyl-aspartyl phosphorelay
F_ e H signal transduction T =
—Proteolysis carbohydrate formation ) phesphonation
—— e J - polysaccharide formation / \ phosphon;
R metabolism = /s —
lipopolysaccharide formation phosphate wans
= = e | :
DNA metabolism: / ! New hubs: phosporylation,
gateway for response energy pathways transport_~;electron wanspert macromolecule formation
ATP synthesis coupled elactson transport
ML syghess OB SN s e 4
godate ion ransport axidative phosphonyation, NADH to ubiquinal
nitrate assimilation protein wansport P ® system

3

glyoxylate cycle

protocatechuate catabolism

il i formation macromolecule formation 2 halism
meaten

amino acid

cell adhesion

neptide t

3

Topology: high-degree
regulators

arginine metabolism  sylfur metal

Biosynthetic processes L-ascorbic acid metabolism
) > € 3 oo
regulate metabolism bstasis L-ascorbic acid catabolism

datection of virus argini
= and biogenesis
& catabolism

Branched chain family amino acd formation~_\ serine famlyamino.acid metim

[ lipid metabolism pyrimidine nucleotide formation entry of virus inte host cell

glucese metabelism  piquinone formation




Annotation of Regulatory Pathways

Applications

@ Projecting from functional space back to molecular space
@ Pattern-based functional annotation (Kirac et al., RECOMB,
2008)
o Pathway identification through cross-species projection
(Cakmak et al., Bioinformatics, 2008)

@ Ongoing work: Interaction prediction
o Identify significant functional pathways in E. coli
transcriptional network
@ Find (partial) occurrences of these pathways in the
B.subtilis transcriptional network
9 "Interpolate” these pathways to predict novel interactions
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Functional Coherence & Network Proximity

Functional Coherence in Networks

@ Modularity manifests itself
in terms of high
connectivity in the network

o Identification of modular
subgraphs

@ Functional annotation of
a group of molecules

@ Functional association
(similarity) is correlated
with network proximity

o Network based
functional annotation

@ |dentification of multiple
disease markers

7



Functional Coherence & Network Proximity

Domain-Domain Interactions

@ Most proteins are composed of multiple domains

@ Many domains are reused in several
(evolutionarily/functionally related) proteins

@ Interactions between domains underlie observed
protein-protein interactions

@ Many algorithms exist to infer domain-domain interactions

)

YiL10g¢ @ &
Y

v\"_

Jothi et al., IMB, 2006



Functional Coherence & Network Proximity

PPl Networks vs. DDI Networks

@ Protein-protein interaction (PPI) networks are used
extensively for functional inference
@ Network-based functional annotation
o Identification of functional modules
@ In PPI networks, functional coherence manifests itself in
terms of network proximity
@ How about DDI "networks"?

12

o @ -

GO semantic similarity
s

o o o o

o

)
o4
N

4 6 8 10
Network distance

Sharan et al., MSB, 2007



Functional Coherence & Network Proximity

Assessing Functional Similarity

@ Gene Ontology (GO)
provides a hierarchical
taxonomy of biological
function

@ Assessment of semantic
similarity between
concepts in a hierarchical
taxonomy is well studied
(Resnik, IJCAI, 1995)

biological process
is_a is_a

physiological process cellular process

is_a
cellular physiological process
is_a is_a

cell cycle cell division

part_y &_a
M phase meiotic cell cycle ls_a

part_of cytokinesis

isk
M phase of meiotic cell cycle /
Pb\ is_a

cytokinesis after meiosis |




Functional Coherence & Network Proximity

Semantic Similarity of GO Terms

@ Resnik’'s measure based on information content:

I(c) = —109,(|Gc|/IGr|)

a(ci,cj) = max, I(c)
iNA;

@ G.: Set of molecules that are associated with term ¢
@ r: Root term

@ A;: Ancestors of term C; in the hierarchy

® \(ci,¢) = argmaxceAmAjl(c): Lowest common ancestor of
ci and ¢;

u]
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Functional Coherence & Network Proximity

Functional Similarity of Molecules

@ Each molecule (protein or domain) is associated with
multiple GO terms

@ Available annotations are incomplete

@ Domain annotations are often derived from protein
annotations

@ A domain is associated with terms at the intersection of
proteins that contain the domain
@ Is it possible to compare functional similarity between
domains and functional similarity between proteins at all?



Functional Coherence & Network Proximity
Properties of Admissible Measures

What are the basic required properties of an admissible

measure of similarity between two sets?

© Symmetry: p(Si, Sj) = p(S;, Si) for all Sj, S

@ Consistency: p(S;,Sj) < p(S;,Sj) for all S;, S;

© Monotonicity: p(S;,Sj) < p(Sj U ck, Sj U ck)

@ Generality: p(S;,Sj) < p(Si, Sj U Sk) for all S;, Sj, S

9 Incompleteness-aware measures: No conclusions based
on negative evidence!



Functional Coherence & Network Proximity
lllustration of Properties

@ Monotonicity:
p(S1,S2) < p(Sa, Ss)
S1 ={cs} @ Generality:
Sz = {c7} p(S2,S3) < p(S2,Sa)
Ss = {cs}
S4 = {ca,Ce}

Ss = {Ce,C7}



Functional Coherence & Network Proximity

Existing Measures are not Admissible

@ Average (Lord et al., Bioinformatics, 2003)

|S||s,| 2 2 deea)

CKES| ¢ GSJ

(SI, j

o Fails consistency, monotonicity, generality

@ Maximum (Sevilla et al., IEEE TCBB, 2005)

em(Si,Sj) = max  é(ck,c)
CkESi,C|€Sj

@ Principle: Similarity in a single pair of terms is sufficient
o Fails monotonicity



Functional Coherence & Network Proximity

Existing Measures are not Admissible

@ Average of Maxima (Schlicker et al

Bioinformatics, 2007)
(Si,S)) = max{|sl| max d(c, i),

C|ES

max é(cy, C
|SJ| 5 CES (G I)}
o Principle: Similarity with a single term is sufficient for each
term

@ Fails consistency, monotonicity, generality




Functional Coherence & Network Proximity

Information Content Based Set Similarity

@ Generalize the concept of lowest common ancestor to sets
of terms (Pandey, Koyutiirk et al., ECCB, 2008)

ASLS) = || Aee)

CkEShClGSj
IGacs.s))
p(Si; Sj) = I(A(Si, §j)) = —log, (%
r

@ Gps,s) = ﬂ Gc, is the set of molecules that are
ck€N(SI,S))
associated with all terms in the MCA set



Functional Coherence & Network Proximity

lllustration of Information Content Based Me

e ® )\(Cy4,Cq) = Cy,
@ Q @ A(Cg,C4) = A(C7,C4) =R
® A(S1,S2) ={cs} =
ONOIONO (S, S,) =
S; = {c4,Cs,C7} —l0g,(|Ge,|/IGrI) =
S, = {c4} log,(5/4)
Ss = {Ca,Ce} ® A(Sy1,S3) ={cs,C6}t =
S4 = {Cs,C7}
Ss = {ca,C3}

p1(S1,S3) = 109,(5/2)




Functional Coherence & Network Proximity

Information Content Based Measure IS Admiss

e Symmetry: Trivially, pi (S, Sj) = p1(S;, S;) for all S;, S;.

9 Consistency: Clearly, cx = A\(c, ¢) for any ¢, ¢;. Now consider any
cm € A(S;, Sj). Since cm = A(ck, ¢;) for some ¢ € Sj and ¢ € S, there always
exists cn € A(Sj, Sj) such that ch < ¢k < cm. Consequently, we must have
Gas,s) € Gn(s,.s)) leading to p (Si, §j) < pi(Si, Si).

e Monotonicity: Since ¢, ~ ¢y for all cn € S; U Sj, we have
/\(S, UCk,SJ‘ UCk) = /\(S,SJ) Ll/\(Si USJ', {Ck}) () {Ck} D) /\(S,,SJ) U {Ck},
leading to Gn(s; g, ,sjuc) € Gn(s;,s;) @and [Ga(s;uey,s;uc) | < [Gaes; 5p)l-
Consequently, p(S; U ¢k, Sj U ck) > pi(Si, Sj)-

© Generality:
/\(Si,Sj U Sk) = /\(Si,Sj) L /\(Si,Sk) | /\(Si,Sj).
Therefore, G,\(Shsjusk) C G,\(Shsj), leading to
p(Si, Sj U Sk) > pi(Si, Sj).



Functional Coherence & Network Proximity

Accounting for Multiple Paths

@ Is "shortest path" a good measure of network proximity?
o Multiple alternate paths might indicate stronger functional
association
o In well-studied pathways, redundancy is shown to play an
important role in robustness & adaptation (e.g., genetic
buffering)

I <



Functional Coherence & Network Proximity

Proximity Based On Random Walks

@ Simulate an infinite random walk with random restarts at
protein i

@ Proximity between proteins i and j is given by the relative
amount of time spent at protein |

®(0) =1, Ot +1) = (L - c)Ad(t) +-cl, &= lim &(t)

@ ®(i,]): Network proximity between protein i and protein j

@ A: Stochastic matrix derived from the adjacency matrix of
the network

o |: Identity matrix

9 c: Restart probability



Functional Coherence & Network Proximity

Network Proximity & Functional Similarity

M Shortest Path M Proximity
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Functional Coherence & Network Proximity

Comparison of PPl and DDI Networks
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Functional Coherence & Network Proximity

Comparison of PPl and DDI Networks
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0 Network Based Phenotype Analysis



Network Based Phenotype Analysis

Proteomic Studies of Disease Markers

@ Human colorectal cancer

@ One out of every 19 individuals will be diagnosed with this
disease in their lifetime

@ We have to identify markers (for diagnosis), drug targets (for
intervention), and mechan
£ T8 i

isms (fo
.W : &9 :

Y

r intelligent intervention)
- - ——



Network Based Phenotype Analysis

Traditional Approach

@ Differential gene expression
@ Collect tissue samples from
affected and control individuals
o Measure mRNA expression for
each gene, identify differentially
expressed genes
@ Problems
@ Many differentially expressed
genes (driver vs. passenger
genes)
o MRNA expression captures
activity to a limited extent
@ Weak signals may be lost

NNRNNNNNINRNNRNT T TTT TTTTTTTT T T T T T T T T T T T T T IT I TT I TTITTITT7T

pLA2G10



Network Based Phenotype Analysis

Incorporating Protein Expression

@ Protein expression captures post-transcriptional activity
better
@ Can be measured using various screening techniques
@ 2D-PAGE, Mass Spectrometry
@ Significantly less coverage compared to mRNA expression
@ Transcriptomic (MRNA expression) and proteomic (protein
expression) data complement each other
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Network Based Phenotype Analysis

Proteomics-First Approach

@ Premise: Small changes in

MRNA expression may lead to Publcy ovalable Generic
. . . Patients Patients human tissues
significant changes in @ J, J,
post—transcrlptlonal activity ‘ aopce A ’ [ T
Microarray
o Find "seed proteins" using J, J] J]
2D-PAGE seed mMRNA exp. PPI

proteins for all genes network

o Map seed proteins on the PP \ l /
network

@ Refine subgraphs based on v

Implicated subgraphs

"collective" change in mRNA
expression



Network Based Phenotype Analysis

Finding Implicated Subgraphs

@ Compute topological scores for all proteins in the network
@ Proteins with high proximity to seed proteins have high
topological scores
@ Combine topological scores with differential expression to
identify subgraphs with high topological score and
significant differential expression when considered together

Change in Protein Expression

Collective Change in mRNA Expression



Network Based Phenotype Analysis
Computing Topological Scores

Proximity to a set of seed proteins

@ Generalize random walk with restarts: Restart at any of the
seed proteins!

B(0) =, Bt +1) = (1 - O)AG(L) +cr, 6 = lim 4()

#(j): Proximity of protein j to seed proteins

r : Restart vector, ||r||; =1

r(i) = |z| if fold change z; of protein i is significant

Prioritize all proteins in the network based on ¢(j)



Network Based Phenotype Analysis

Genes Implicated by Network Proximity

Seed
Rank  Gene Score  E-value p-value Partners Partners
2 SUMO4  5.40E-03 8.70E-04 1.00E-03 75 11
7 GFAP 3.70E-03 4.60E-04 1.00E-03 40
8 NEFL 3.50E-03 3.60E-04 1.00E-03 31
21 UCHL1  3.00E-03 3.40E-04 1.00E-03 29
22 UNG 3.00E-03 2.40E-04 1.00E-03 21
16 STXBP1  3.10E-03 4.60E-04 1.00E-03 40
17 APBB1 3.10E-03 4.20E-04 1.00E-03 36
10  MAP3K5 3.40E-03 6.30E-04 2.00E-03 54
42 CCT4 2.20E-03 1.60E-04 2.00E-03 14
20  CRYAB 3.00E-03 3.40E-04 3.00E-03 29
43 CCTeA 2.20E-03 1.30E-04 3.00E-03 11
9 DNM1 3.40E-03 7.70E-04 4.00E-03 66
23 DCTN1  2.90E-03 3.20E-04 4.00E-03 34
37 CCT7 2.30E-03 2.00E-04 4.00E-03 17
12 MBP 3.30E-03 7.20E-04 5.00E-03 62
44 CCT8 2.10E-03 1.20E-04 5.00E-03 10
15  SPTAN1 3.20E-03 6.30E-04 6.00E-03 54

18 NSF 3.10E-03 5.20E-04 6.00E-03 45
29 TUBA1B 2.40E-03 3.00E-04 7.00E-03 26
257 LGALS13 8.40E-04 3.50E-05 7.10E-03 3
34 CCT5 2.30E-03 2.60E-04 8.00E-03 22
5 APP 4.00E-03 1.10E-03 8.10E-03 99

B R AR SN = T S« T B i oy B S« e B« R B o B B

40 CCT3 2.20E-03 2.10E-04 8.10E-03 18
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