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Background & Motivation

Systems Biology

Life is an emergent property

"To understand biology at the

system level, we must examine

the structure and dynamics of

cellular and organismal

function, rather than the

characteristics of isolated parts

of a cell or organism." (Kitano,

Science, 2002)

Systems biology complements

molecular biology



Background & Motivation

Organization & Dynamics of Systems

Understanding how an airplane (cell) works

Listing parts (genes, proteins)

Understanding how parts are connected (interactions)

Characterizing the electrical and mechanical dynamics

(cellular dynamics)



Background & Motivation

Molecular Interactions

Regulation of molecular activity

Transcriptional regulation:

Which genes will be

expressed?

Post-transcriptional regulation

& signaling: Phosphorylation,

degradation, transport...

Cooperation between molecules

Protein complexes:

Macromolecular machines



Background & Motivation

Modeling Molecular Interactions: Networks

High level description of cellular

organization

Nodes represent cellular
components

Protein, gene, enzyme,

metabolite

Edges represent interactions

Binding, regulation,

modification, complex

membership, substrate-product

relationship

S.cerevisiae

Protein-Protein Interaction (PPI) Network



Background & Motivation

Function & Topology in Molecular Networks

How does function relate to network topology?



Background & Motivation

Comparative Network Analysis

What is common to the networks that belong diverse

species?

Do conserved subgraphs correspond to functionally

modular network components?



Background & Motivation

Frequent Protein Interaction Patterns

Identification of frequent subgraphs in networks of multiple
species

Graph mining: Networks with thousands of nodes

Our solution: Homolog contraction (Koyutürk et al., ISMB,

2004; Koyutürk et al., JCB, 2006)

Reduces graphs to sets, preserves frequent subgraphs
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Conserved subgraph related to endosomal sorting



Background & Motivation

Pairwise Network Alignment

Allowing approximate matches (evolution, noise in data)

Generalization of subgraph isomorphism, no well-defined

matching between nodes

Our solution: Score evolutionary events, formulate problem

as one of identifying heavy subgraphs (Koyutürk et al.,

RECOMB, 2005; Koyutürk et al., JCB, 2006)

Computationally very efficient

Myo2 Myo3 Myo4 Myo5
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S.Cerevisiae D.Melanogaster

Calcium-dependent stress-activated signaling pathway



Background & Motivation

Assessing The Significance of Patterns

Are the identified subgraphs
statistically significant?

Most of the literature is

based on Monte Carlo

simulations

Our approach: Rigorously

characterize the distribution

of largest dense

(conserved) subgraph

based on random graph

models (Koyutürk et al.,

RECOMB, 2006; Koyutürk

et al., JCB, 2007)

p << 1p << 1

p << 1

SIDES

(Uses statistical significance

as stopping criterion)



Background & Motivation

In This Talk

1 Recurrent functional interaction patterns

Crosstalk between different processes

"Periodic table of systems biology"

2 Functional coherence with respect to different types of
interaction

What does proximity mean in domain-domain interaction

networks?

Assessing functional similarity between two molecules

3 Where are we going with all these?

Using network proximity to identify implicated genes in

human colorectal cancer



Annotation of Regulatory Pathways

Outline

1 Background & Motivation

2 Annotation of Regulatory Pathways

3 Functional Coherence & Network Proximity

4 Network Based Phenotype Analysis

5 Acknowledgments



Annotation of Regulatory Pathways

Characterizing Molecular Function: Ontologies

Significant progress on
standardizing knowledge on
biological function at the
molecular level

Protein/domain families (COG,

PFAM, ADDA)

Gene Ontology

A controlled vocabulary of

molecular functions, biological

processes, and cellular

components



Annotation of Regulatory Pathways

Functional Annotation: From Molecules to Systems

Networks are species-specific

Functional ontologies are described at the molecular level

Can we map networks from gene space to an abstract

(and unified) function space?

Network of GO terms

based on significance of

pairwise interactions in S.

cerevisiae Synthetic Gene

Array (SGA) network (Tong

et al., Science, 2004)



Annotation of Regulatory Pathways

Gene Regulatory Networks: Indirect Regulation

Assessment of pairwise interactions is simple, but not

adequate



Annotation of Regulatory Pathways

Functional Attribute Networks

Multigraph model

A gene is associated with multiple functional attributes

A functional attribute is associated with multiple genes

Functional attributes are represented by nodes

Genes are represented by ports, reflecting context

Gene Network Functional Attribute Network



Annotation of Regulatory Pathways

Frequency of a Multipath

A pathway of functional attributes occurs in various
contexts in the gene network

Multipath in the functional attribute network

Frequency of Multipath ?



Annotation of Regulatory Pathways

Frequency vs. Statistical Significance

We want to identify overrepresented pathways

These might correspond to modular pathways

Frequency alone is not a good measure of statistical
significance

The distribution of functional attributes among genes is not

uniform

The degree distribution in the gene network is highly

skewed

Pathways that contain common functional attributes have

high frequency, but they are not necessarily interesting



Annotation of Regulatory Pathways

Statistical Significance of a Pathway

Emphasize modularity of pathways (Pandey, Koyutürk et
al., ISMB, 2007)

Condition on frequency of building blocks

Evaluate the significance of the coupling of building blocks



Annotation of Regulatory Pathways

Significance of Pairwise Interactions

A single regulatory interaction is the shortest pathway

Arbitrary degree distribution: The number of edges leaving

and entering each functional attribute is specified

Edges are assumed to be independent

The frequency of a regulatory interaction is a

hypergeometric random variable

pij = P(Φij ≥ φij |B) =

min{βiδj ,n}
∑

ℓ=φij

(βiδj
ℓ

)(m−βiδj
n−ℓ

)

(m
n

) .

βi = in-degree and δi = out-degree

m = pool of potential edges, n = number of edges in

network



Annotation of Regulatory Pathways

Significance of a Pathway

We denote each frequency random variable by φ, their

observed value by ϕ

Significance of pathway π123 ( p123 ) is defined as
P(φ123 ≥ ϕ123|φ12 = ϕ12, φ23 = ϕ23, φ1 = ϕ1, φ2 = ϕ2, φ3 = ϕ3)



Annotation of Regulatory Pathways

Computing Significance

Assume that interactions are independent

There are ϕ12ϕ23 possible pairs of π12 and π23 edges

The probability that a pair of π12 and π23 edges go through

the same gene (corresponds to an occurrence of π123) is

1/ϕ2

The probability that at least ϕ123 of these pairs go through
the same gene can be bounded by

p123 ≤ exp(ϕ12ϕ23Hq(t)) where q = 1/ϕ2 and

t = ϕ123/ϕ12ϕ23

Hq(t) = t log(q/t)+ (1− t) log((1−q)/(1− t)) is divergence

Bonferroni-corrected for multiple testing (adjusted by
∏k

j=1 | ∪gℓ∈Tij
F(gℓ)|)



Annotation of Regulatory Pathways

NARADA

A software for identification of significant pathways
(Pandey, Koyutürk et al., PSB, 2008)

Given functional attribute T , find all significant pathways

that originate (terminate) at T

User can explore back and forth between the gene network

and the functional attribute network



Annotation of Regulatory Pathways

Significant Regulatory Pathways in Bacteria

We use NARADA to identify significant pathways in the
transcriptional networks of two bacterial species

E. coli: 1364 genes, 3159 regulatory interactions

(RegulonDB)

B. subtilis: 562 genes, 604 regulatory interactions (DBTBS)

Strongly significant pathways (p < 0.01)

Pathway length 2 3 4

E. coli 106 1436 5250

B. subtilis 39 111 524

Common 22 67 365

Expected 5 8 26



Annotation of Regulatory Pathways

Functional View of E. coli Regulatory Network



Annotation of Regulatory Pathways

Short-Circuiting Mediator Processes



Annotation of Regulatory Pathways

Applications

Projecting from functional space back to molecular space

Pattern-based functional annotation (Kirac et al., RECOMB,

2008)

Pathway identification through cross-species projection

(Cakmak et al., Bioinformatics, 2008)

Ongoing work: Interaction prediction

Identify significant functional pathways in E. coli

transcriptional network

Find (partial) occurrences of these pathways in the

B.subtilis transcriptional network

"Interpolate" these pathways to predict novel interactions
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Functional Coherence & Network Proximity

Functional Coherence in Networks

Modularity manifests itself
in terms of high
connectivity in the network

Identification of modular

subgraphs

Functional annotation of

a group of molecules

Functional association
(similarity) is correlated
with network proximity

Network based

functional annotation

Identification of multiple

disease markers



Functional Coherence & Network Proximity

Domain-Domain Interactions

Most proteins are composed of multiple domains

Many domains are reused in several

(evolutionarily/functionally related) proteins

Interactions between domains underlie observed

protein-protein interactions

Many algorithms exist to infer domain-domain interactions

Jothi et al., JMB, 2006



Functional Coherence & Network Proximity

PPI Networks vs. DDI Networks

Protein-protein interaction (PPI) networks are used
extensively for functional inference

Network-based functional annotation

Identification of functional modules

In PPI networks, functional coherence manifests itself in
terms of network proximity

How about DDI "networks"?

Sharan et al., MSB, 2007



Functional Coherence & Network Proximity

Assessing Functional Similarity

Gene Ontology (GO)

provides a hierarchical

taxonomy of biological

function

Assessment of semantic

similarity between

concepts in a hierarchical

taxonomy is well studied

(Resnik, IJCAI, 1995)



Functional Coherence & Network Proximity

Semantic Similarity of GO Terms

Resnik’s measure based on information content:

I(c) = − log2(|Gc |/|Gr |)

δI(ci , cj) = max
c∈Ai∩Aj

I(c)

Gc : Set of molecules that are associated with term c

r : Root term

Ai : Ancestors of term Ci in the hierarchy

λ(ci , cj) = argmaxc∈Ai∩Aj
I(c): Lowest common ancestor of

ci and cj



Functional Coherence & Network Proximity

Functional Similarity of Molecules

Each molecule (protein or domain) is associated with

multiple GO terms

Available annotations are incomplete

Domain annotations are often derived from protein
annotations

A domain is associated with terms at the intersection of

proteins that contain the domain

Is it possible to compare functional similarity between

domains and functional similarity between proteins at all?



Functional Coherence & Network Proximity

Properties of Admissible Measures

What are the basic required properties of an admissible

measure of similarity between two sets?

1 Symmetry: ρ(Si , Sj) = ρ(Sj , Si) for all Si , Sj

2 Consistency: ρ(Si , Sj) ≤ ρ(Sj , Sj) for all Si , Sj

3 Monotonicity: ρ(Si , Sj) ≤ ρ(Si ∪ ck , Sj ∪ ck )

4 Generality: ρ(Si , Sj) ≤ ρ(Si , Sj ∪ Sk ) for all Si , Sj , Sk

Incompleteness-aware measures: No conclusions based

on negative evidence!



Functional Coherence & Network Proximity

Illustration of Properties

S1 = {c4}

S2 = {c7}

S3 = {c6}

S4 = {c4, c6}

S5 = {c6, c7}

Monotonicity:

ρ(S1, S2) ≤ ρ(S4, S5)

Generality:

ρ(S2, S3) ≤ ρ(S2, S4)



Functional Coherence & Network Proximity

Existing Measures are not Admissible

Average (Lord et al., Bioinformatics, 2003)

ρA(Si , Sj) =
1

|Si ||Sj |

∑

ck∈Si

∑

cl∈Sj

δ(ck , cl )

Fails consistency, monotonicity, generality

Maximum (Sevilla et al., IEEE TCBB, 2005)

ρM(Si , Sj) = max
ck∈Si ,cl∈Sj

δ(ck , cl)

Principle: Similarity in a single pair of terms is sufficient

Fails monotonicity



Functional Coherence & Network Proximity

Existing Measures are not Admissible

Average of Maxima (Schlicker et al., Bioinformatics, 2007)

ρH(Si , Sj ) = max







1
|Si |

∑

ck∈Si

max
cl∈Sj

δ(ck , cl),
1
|Sj |

∑

cl∈Sj

max
ck∈Si

δ(ck , cl)







Principle: Similarity with a single term is sufficient for each

term

Fails consistency, monotonicity, generality



Functional Coherence & Network Proximity

Information Content Based Set Similarity

Generalize the concept of lowest common ancestor to sets

of terms (Pandey, Koyutürk et al., ECCB, 2008)

Λ(Si , Sj) =
⊔

ck∈Si ,cl∈Sj

λ(ck , cl )

ρI(Si , Sj) = I(Λ(Si , Sj)) = − log2

(

|GΛ(Si ,Sj)|

|Gr |

)

GΛ(Si ,Sj) =
⋂

ck∈Λ(Si ,Sj )

Gck is the set of molecules that are

associated with all terms in the MCA set



Functional Coherence & Network Proximity

Illustration of Information Content Based Measure

S1 = {c4, c6, c7}

S2 = {c4}

S3 = {c4, c6}

S4 = {c6, c7}

S5 = {c4, c3}

λ(c4, c4) = c4,

λ(c6, c4) = λ(c7, c4) = R

Λ(S1, S2) = {c4} ⇒

ρI(S1, S2) =

− log2(|Gc4 |/|GR |) =

log2(5/4)

Λ(S1, S3) = {c4, c6} ⇒

ρI(S1, S3) = log2(5/2)



Functional Coherence & Network Proximity

Information Content Based Measure Is Admissible

1 Symmetry: Trivially, ρI(Si , Sj ) = ρI(Sj , Si) for all Si , Sj .

2 Consistency: Clearly, ck � λ(ck , cl) for any ck , cl . Now consider any

cm ∈ Λ(Si , Sj ). Since cm = λ(ck , cl ) for some ck ∈ Si and cl ∈ Sj , there always

exists cn ∈ Λ(Si , Si ) such that cn � ck � cm. Consequently, we must have

GΛ(Si ,Si )
⊆ GΛ(Si ,Sj )

, leading to ρI(Si , Sj ) ≤ ρI(Si , Si).

3 Monotonicity: Since ck ≁ cn for all cn ∈ Si ∪ Sj , we have

Λ(Si ∪ ck , Sj ∪ ck ) = Λ(Si , Sj ) ⊔ Λ(Si ⊔ Sj , {ck}) ⊔ {ck} ⊇ Λ(Si , Sj ) ∪ {ck},

leading to GΛ(Si∪ck ,Sj∪ck ) ⊆ GΛ(Si ,Sj )
and |GΛ(Si∪ck ,Sj∪ck )| ≤ |GΛ(Si ,Sj )

|.

Consequently, ρI(Si ∪ ck , Sj ∪ ck ) ≥ ρI(Si , Sj).

4 Generality:

Λ(Si , Sj ∪ Sk) = Λ(Si , Sj) ⊔ Λ(Si , Sk ) ⊒ Λ(Si , Sj).

Therefore, GΛ(Si ,Sj∪Sk ) ⊆ GΛ(Si ,Sj ), leading to

ρI(Si , Sj ∪ Sk ) ≥ ρI(Si , Sj).



Functional Coherence & Network Proximity

Accounting for Multiple Paths

Is "shortest path" a good measure of network proximity?

Multiple alternate paths might indicate stronger functional

association

In well-studied pathways, redundancy is shown to play an

important role in robustness & adaptation (e.g., genetic

buffering)



Functional Coherence & Network Proximity

Proximity Based On Random Walks

Simulate an infinite random walk with random restarts at

protein i

Proximity between proteins i and j is given by the relative

amount of time spent at protein j

Φ(0) = I, Φ(t + 1) = (1 − c)AΦ(t) + cI, Φ = lim
t→∞

Φ(t)

Φ(i, j): Network proximity between protein i and protein j

A: Stochastic matrix derived from the adjacency matrix of

the network

I: Identity matrix

c: Restart probability



Functional Coherence & Network Proximity

Network Proximity & Functional Similarity

Correlation between functional similarity

and network proximity on nine PPI and DDI networks



Functional Coherence & Network Proximity

Comparison of PPI and DDI Networks
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Functional Coherence & Network Proximity

Comparison of PPI and DDI Networks
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Network Based Phenotype Analysis

Proteomic Studies of Disease Markers

Human colorectal cancer

One out of every 19 individuals will be diagnosed with this

disease in their lifetime

We have to identify markers (for diagnosis), drug targets (for

intervention), and mechanisms (for intelligent intervention)



Network Based Phenotype Analysis

Traditional Approach

Differential gene expression

Collect tissue samples from

affected and control individuals

Measure mRNA expression for

each gene, identify differentially

expressed genes

Problems

Many differentially expressed

genes (driver vs. passenger

genes)

mRNA expression captures

activity to a limited extent

Weak signals may be lost



Network Based Phenotype Analysis

Incorporating Protein Expression

Protein expression captures post-transcriptional activity

better

Can be measured using various screening techniques

2D-PAGE, Mass Spectrometry

Significantly less coverage compared to mRNA expression

Transcriptomic (mRNA expression) and proteomic (protein

expression) data complement each other



Network Based Phenotype Analysis

Proteomics-First Approach

Premise: Small changes in
mRNA expression may lead to
significant changes in
post-transcriptional activity

Find "seed proteins" using

2D-PAGE

Map seed proteins on the PPI

network

Refine subgraphs based on

"collective" change in mRNA

expression

2D−PAGE

Publicly available

Implicated subgraphs

Algorithms

human tissues

Generic

PatientsPatients

network

PPI

proteins for all genes

mRNA exp.Seed

Y2H, TAP

Microarray

DNA



Network Based Phenotype Analysis

Finding Implicated Subgraphs

Compute topological scores for all proteins in the network

Proteins with high proximity to seed proteins have high

topological scores

Combine topological scores with differential expression to

identify subgraphs with high topological score and

significant differential expression when considered together

Change in Protein Expression

Collective Change in mRNA Expression



Network Based Phenotype Analysis

Computing Topological Scores

Proximity to a set of seed proteins

Generalize random walk with restarts: Restart at any of the

seed proteins!

φ(0) = r , φ(t + 1) = (1 − c)Aφ(t) + cr , φ = lim
t→∞

φ(t)

φ(j): Proximity of protein j to seed proteins

r : Restart vector, ||r ||1 = 1

r(i) = |zi | if fold change zi of protein i is significant

Prioritize all proteins in the network based on φ(j)



Network Based Phenotype Analysis

Genes Implicated by Network Proximity
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