# Assessing Significance of Connectivity and Conservation in Protein Interaction Networks

Mehmet Koyutürk, Ananth Grama, Wojciech Szpankowski Department of Computer Science, Purdue University

April 2, 2006

Acknowledgment: Funding for this work was provided by the National Institutes of Health Grant # R01 GM068959-01.

# Outline

- Motivation
  - Connectivity, conservation, and modularity
  - Algorithmic approaches
- Existing techniques for assessing statistical significance
- Our approach: Analytical assessment of statistical significance
  - Largest dense subgraph problem
  - G(n,p) model
  - Piecewise G(n, p) model
  - Plugging significance into algorithms: Modified HCS algorithm
- Results
- Conclusion & Ongoing work

### **Connectivity and Conservation in Biological Networks**

- Modular processes are likely to manifest themselves in terms of dense interactions in a particular network and conservation of these interactions across networks (Tornow and Mewes, NAR, 2003)
  - Many algorithmic approaches have successfully provided novel biological insights based on connectivity and conservation
- Identification of topological modules
  - MCODE (Bader and Hogue, BMC Bioinformatics, 2003)
  - TribeMCL (Pereira-Leal et al., *Proteins*, 2004)
  - Kernel-based clustering (Brun et al., BMC Bioinformatics, 2004)
- Identification of conserved subgraphs
  - MULE (Koyutürk et al., ISMB, 2004), MaWIsH (Koyutürk et al., JCB, 2006)
  - PathBlast (Kelley et al., *PNAS*, 2003), NetworkBlast (Sharan et al., *PNAS*, 2004)
  - CODENSE (Hu et al., ISMB, 2005)
  - NUKE (Novak et al., Genome Informatics, 2005)

## Statistical Significance: Existing Techniques

- Mostly computational (*e.g.*, Monte-Carlo simulations)
- Compute probability that the pattern exists rather than a pattern with the property (*e.g.*, size, density) exists
  - Overestimation of significance
  - Correction for multiple testing + large space  $\Rightarrow$  Underestimation
- Alternate analytical approaches
  - Sharan et al. (*RECOMB*, 2004) compare likelihood of null and conserved complex models
  - Itzkovitz et al. (*Physical Review*, 2003) estimate expectation analytically for given topological motifs
  - Our approach: Asymptotic analysis of behavior of largest pattern for general, but interesting pattern topology

### Largest Dense Subgraph Problem

• A subnet of r proteins is said to be  $\rho$ -dense if  $F(r) \ge \rho r^2$ , where F(r) is the number of interactions between these r proteins

- Maximum-clique is a special case with  $\rho = 1$ 

- Largest  $\rho$ -dense subgraph:  $R_{\rho} = \max_{U \subseteq V(G): \delta(U) \ge \rho} |U|$
- What is the typical size of the largest  $\rho$ -dense subgraph in a random graph?
  - Any  $\rho$ -dense subgraph with larger size is statistically significant!
  - Typical size of maximum clique is  $O(\log_{1/p} n)$  (Bollobás, Random Graphs, 2001)

# **Modeling Biological Networks**

- Interaction networks generally exhibit power-law property (or exponential, geometric, etc.)
- Analysis simplified through independence assumption (Itzkovitz et al., *Physical Review*, 2003)
- Independence assumption may cause problems for networks with arbitrary degree distribution
  - $P(uv \in E) = d_u d_v / |E|$ , where  $d_u$  is expected degree of u, but generally  $d_{\max}^2 > |E|$  for PPI networks
  - Models multi-graphs accurately rather than simple graphs
- Analytical techniques based on simplified models
  - Rigorous analysis on G(n, p) model
  - It can be easily shown that, setting  $p = d_{\max}/n$ , largest dense subgraph in G(n, p) stochastically dominates that for arbitrary degree distribution
  - Extension to piecewise G(n,p) to capture network characteristics more accurately

#### Largest Dense Subgraph on G(n, p)

**Theorem 1.** If G is a random graph with n vertices, where every edge exists with probability p, then

$$\lim_{n \to \infty} \frac{R_{\rho}}{\log n} = \frac{1}{\kappa(p,\rho)} \qquad (pr.),$$

where

$$\kappa(p,\rho) = -H_p(\rho) = \rho \log \frac{\rho}{p} + (1-\rho) \log \frac{1-\rho}{1-p}.$$

Here,  $H_p(\rho)$  denotes weighted entropy. More precisely,

$$P(R_{\rho} \ge r_0) \le O\left(\frac{\log n}{n^{1/\kappa(p,\rho)}}\right),$$

where

$$r_0 = \frac{\log n - \log \log n + \log \kappa(p,\rho) - \log e + 1}{\kappa(p,\rho)}$$

for large n.

## Proof

•  $X_{r,\rho}$ : number of subgraphs of size r with density at least  $\rho$ 

- 
$$X_{r,\rho} = |\{U \subseteq V(G) : |U| = r \land |F(U)| \ge \rho r^2\}|$$

•  $Y_r$ : number of edges induced by a set U of r vertices

- 
$$\mathbf{E}[X_r] = {n \choose r} P(Y_r \ge \rho r^2)$$
  
-  $P(Y_r \ge \rho r^2) {r^2 \choose \rho r^2} (r^2 - \rho r^2) p^{\rho r^2} (1 - p)^{r^2 - \rho r^2}$ 

- Upper bound: From first moment method, we have  $P(R_{\rho} \ge r) \le P(X_{r,\rho} \ge 1) \le \mathbf{E}[X_{r,\rho}]$ 
  - Plug in Stirling's formula for appropriate regimes
- Lower bound: To use second moment method, we have to account for dependencies in terms of nodes and existing edges
  - Use Stirling's formula, plug in continuous variables for range of dependencies

### Piecewise G(n, p) Model

- Few proteins with many interacting partners, many proteins with few interacting partners
  - Captures the basic characteristics of PPI networks
  - Analysis of G(n, p) model immediately generalized to this model
- Random graph G with node set V(G) that is composed of two disjoint subsets  $V_h \subset V(G)$  and  $V_l = V(G) \setminus V_h$ , where  $n_h = |V_h| \ll |V_l| = n_l$  and  $n_h + n_l = n = |V(G)|$

$$P(uv \in E(G)) = \begin{cases} p_h & \text{if } u, v \in V_h \\ p_l & \text{if } u, v \in V_l \\ p_b & \text{if } u \in V_h, v \in V_l \text{ or } u \in V_l, v \in V_h \end{cases}$$

- Here,  $p_l < p_b < p_h$ .

#### Largest Dense Subgraph on Piecewise G(n, p)

**Theorem 2.** Let G be a random graph with piecewise degree distribution. If  $n_h = O(1)$ , then

$$P(R_{\rho} \ge r_1) \le O\left(\frac{\log n}{n^{1/\kappa(p_l,\rho)}}\right),$$

where

$$r_1 = \frac{\log n - \log \log n + 2n_h \log B + \log \kappa(p_l, \rho) - \log e + 1}{\kappa(p_l, \rho)}$$

and 
$$B = \frac{p_b q_l}{p_l} + q_b$$
, where  $q_b = 1 - p_b$  and  $q_l = 1 - p_l$ .

Note: For power-law graphs,  $n_h = \sum_{d=(n/\zeta(\gamma))^{1/\gamma}}^{\infty} nd^{-\gamma}/\zeta(\gamma)$  is bounded, provided the series converges.

# Proof

- Graph can be divided into three disjoint graphs
  - $G = G_l \cup G_h \cup G_b$
  - $G_l$  and  $G_h$  are  $G(n_h, p_h)$  and  $G(n_l, p_l)$ , respectively
  - $G_b$ , is a random bipartite graph with node sets  $V_l$ ,  $V_h$ , where each edge occurs with probability  $p_b$
- $E(G) = E(G_l) \cup E(G_h) \cup E(G_b)$
- We emphasize on  $\mathbf{E}[X^b_{r,\rho}]$ 
  - Using  $2n_h r \ll \rho r^2$ , we obtain  $\mathbf{E}[X_{r,\rho}^b] = \mathbf{E}[X_{r,\rho}^l] \sum_{l=0}^{2n_h r} {2n_h r \choose l} \left(\frac{p_b q_l}{p_l}\right)^l q_b^{2n_h r-l}$
- Summation term contributes an additive factor of  $2n_h \log B$  to the exponent, which is less than  $\log n$  for large n

# Algorithms Based on Statistical Significance

- Identification of topological modules
- Use statistical significance as a stopping criterion for graph clustering heuristics
- HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)
  - Find a minimum-cut bipartitioning of the network
  - If any of the parts is dense enough, record it as a dense cluster of proteins
  - Else, further partition them recursively
- Use statistical significance to determine whether a subgraph is sufficiently dense
  - For given number of proteins and interactions between them, we can determine whether those proteins induce a significantly dense subnet

#### **Behavior of Largest Dense Subgraph Across Species**



Number of nodes vs. Size of largest dense subgraph for PPI networks belonging to 9 Eukaryotic species

#### Behavior of Largest Dense Subgraph w.r.t Density



Density threshold vs. Size of largest dense subgraph for Yeast and Human PPI networks

#### Behavior of Largest Dense Subgraph w.r.t Density



S. cerevisiae & H. sapiens

Density threshold vs. Size of largest conserved subgraph for Yeast and Human PPI networks

# Significantly Connected Subnets on Yeast

| # Prot | # Int | p <         | GO Annotation                                                |
|--------|-------|-------------|--------------------------------------------------------------|
| 24     | 165   | $10^{-175}$ | (C) nucleolus (54%, $p < 10^{-7}$ )                          |
| 20     | 138   | $10^{-187}$ | (P) ubiquitin-dep prot catabolism (80%, $p < 10^{-21}$ )     |
|        |       |             | (F) endopeptidase activity (50%, $p < 10^{-11}$ )            |
|        |       |             | (C) proteasome reg part, lid subcomp (40%, $p < 10^{-12}$ )  |
| 16     | 104   | $10^{-174}$ | (P) histone acetylation (62%, $p < 10^{-15}$ )               |
|        |       |             | (C) SAGA complex (56%, $p < 10^{-15}$ )                      |
|        |       |             | (P) chromatin modification (56%, $p < 10^{-14}$ )            |
| 15     | 90    | $10^{-145}$ | (F) RNA binding (80%, $p < 10^{-12}$ )                       |
|        |       |             | (C) mRNA cleav & polyadenyl SFC (80%, $p < 10^{-24}$ )       |
|        |       |             | (P) mRNA polyadenylylation (80%, $p < 10^{-21}$ )            |
| 14     | 79    | $10^{-128}$ | (P) mRNA catabolism (71%, $p < 10^{-16}$ )                   |
|        |       |             | (F) RNA binding (64%, $p < 10^{-6}$ )                        |
|        |       |             | (P) nuclear mRNA splicing (57%, $p < 10^{-7}$ )              |
| 10     | 45    | $10^{-200}$ | (P) ER to Golgi transport (90%, $p < 10^{-14}$ )             |
|        |       |             | (C) TRAPP complex(90%, $p < 10^{-23}$ )                      |
| 7      | 20    | $10^{-30}$  | (C) mitochondrial OMTC (100%, $p < 10^{-20}$ )               |
|        |       |             | (F) protein transporter activity (100%, $p < 10^{-14}$ )     |
|        |       |             | (P) mitochondrial matrix prot import (100%, $p < 10^{-16}$ ) |

# Significantly Conserved Subnets on Yeast & Human

| #    | # Cons |            |                                                        |
|------|--------|------------|--------------------------------------------------------|
| Prot | Int    | p <        | COG Annotation                                         |
| 10   | 17     | $10^{-68}$ | RNA polymerase (100%)                                  |
| 11   | 11     | $10^{-26}$ | Mismatch repair (33%)                                  |
|      |        |            | RNA polym II TI/nucleo excision repair fac TFIIH (33%) |
|      |        |            | Replication factor C (22%),                            |
| 7    | 7      | $10^{-25}$ | Exosomal 3'-5' exoribonuclease complex (86%)           |
| 4    | 4      | $10^{-24}$ | Single-stranded DNA-binding repl prot A (50%)          |
|      |        |            | DNA repair protein (50%)                               |
| 5    | 4      | $10^{-12}$ | Small nuclear ribonucleoprotein(80%)                   |
|      |        |            | snRNP component (20%)                                  |
| 5    | 4      | $10^{-12}$ | Histone (40%)                                          |
|      |        |            | Histone transcription regulator (20%)                  |
|      |        |            | Histone chaperone (20%)                                |
| 3    | 3      | $10^{-9}$  | Vacuolar sorting protein (33%)                         |
|      |        |            | RNA polymerase II TFC subunit (33%)                    |
|      |        |            | Uncharacterized conserved protein (33%)                |

# **Conclusion & Ongoing Work**

- Asymptotic analysis provides clear understanding of the behavior of interesting patterns
- These results provide solid bases for evaluating statistical significance
- More complicated models are necessary for distinguishing nature of network from biological significance
  - Can we approach more realistic skewed degree distributions by increasing the number of pieces?
  - How can we handle dependence?
  - What about growth models?