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Connectivity and Conservation in Biological Networks

• Modular processes are likely to manifest themselves in terms of
dense interactions in a particular network and conservation of
these interactions across networks [Tornow and Mewes, NAR, 2003]

– Many algorithmic approaches have successfully provided novel

biological insights based on connectivity and conservation

• Identification of topological modules

– MCODE [Bader and Hogue, BMC Bioinformatics, 2003]

– TribeMCL [Pereira-Leal et al., Proteins, 2004]

– Kernel-based clustering [Brun et al., BMC Bioinformatics, 2004]

• Identification of conserved subgraphs

– MULE [Koyutürk et al., ISMB, 2004], MaWIsH [Koyutürk et al., JCB, 2006]

– PathBlast [Kelley et al., PNAS, 2003], NetworkBlast [Sharan et al., PNAS,

2004]

– CODENSE [Hu et al., ISMB, 2005]

– NUKE [Novak et al., Genome Informatics, 2005]



Statistical Significance: Existing Techniques

• Mostly computational (e.g., Monte-Carlo simulations)

• Compute probability that the pattern exists rather than a
pattern with the property (e.g., size, density) exists

– Overestimation of significance

– Correction for multiple testing + large space ⇒ Underestimation

• Alternate analytical approaches

– Sharan et al. [RECOMB, 2004] compare likelihood of null and conserved

complex models

– Itzkovitz et al. [Physical Review, 2003] estimate expectation analytically

for given topological motifs

– Our approach: Asymptotic analysis of behavior of largest pattern for

general, but interesting pattern topology



Largest Dense Subgraph Problem

• A subnet of r proteins is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r proteins

– Maximum-clique is a special case with ρ = 1

• Largest ρ-dense subgraph: Rρ = maxU⊆V (G):δ(U)≥ρ |U |

• What is the typical size of the largest ρ-dense subgraph in a
random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

– Typical size of maximum clique is O(log1/p n) [Bollobás, Random Graphs,

2001]



Modeling Biological Networks

• Interaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

• Analysis simplified through independence assumption [Itzkovitz

et al., Physical Review, 2003]

• Independence assumption may cause problems for networks with arbitrary

degree distribution

– P (uv ∈ E) = dudv/|E|, where du is expected degree of u, but generally

d2
max > |E| for PPI networks

– Models multi-graphs accurately rather than simple graphs

• Analytical techniques based on simplified models

– Rigorous analysis on G(n, p) model

– It can be easily shown that, setting p = dmax/n, largest dense subgraph

in G(n, p) stochastically dominates that for arbitrary degree distribution

– Extension to piecewise G(n, p) to capture network characteristics more

accurately



Largest Dense Subgraph on G(n, p)

Theorem 1. If G is a random graph with n vertices, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.),

where

κ(p, ρ) = −Hp(ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p
.

Here, Hp(ρ) denotes weighted entropy. More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

,

where

r0 =
log n − log log n + log κ(p, ρ) − log e + 1

κ(p, ρ)

for large n.



Proof

• Xr,ρ: number of subgraphs of size r with density at least ρ

– Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|

• Yr : number of edges induced by a set U of r vertices

– E[Xr] =
`n

r

´

P (Yr ≥ ρr2)

– P (Yr ≥ ρr2)
` r2

ρr2

´

(r2 − ρr2)pρr2(1 − p)r2−ρr2

• Upper bound: From first moment method, we have P (Rρ ≥ r) ≤
P (Xr,ρ ≥ 1) ≤ E[Xr,ρ]

– Plug in Stirling’s formula for appropriate regimes

• Lower bound: To use second moment method, we have to
account for dependencies in terms of nodes and existing
edges

– Use Stirling’s formula, plug in continuous variables for range of

dependencies



Piecewise G(n, p) Model

• Few proteins with many interacting partners, many proteins
with few interacting partners

– Captures the basic characteristics of PPI networks

– Analysis of G(n, p) model immediately generalized to this model

• Random graph G with node set V (G) that is composed of two
disjoint subsets Vh ⊂ V (G) and Vl = V (G) \Vh, where nh = |Vh| ≪
|Vl| = nl and nh + nl = n = |V (G)|

P (uv ∈ E(G)) =







ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

– Here, pl < pb < ph.



Largest Dense Subgraph on Piecewise G(n, p)

Theorem 2. Let G be a random graph with piecewise degree
distribution. If nh = O(1), then

P (Rρ ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

,

where

r1 =
log n − log log n + 2nh log B + log κ(pl, ρ) − log e + 1

κ(pl, ρ)

and B = pbql
pl

+ qb, where qb = 1 − pb and ql = 1 − pl.

Note: For power-law graphs, nh =
∑∞

d=(n/ζ(γ))1/γ nd−γ/ζ(γ) is

bounded, provided the series converges.



Proof

• Graph can be divided into three disjoint graphs

– G = Gl ∪ Gh ∪ Gb

– Gl and Gh are G(nh, ph) and G(nl, pl), respectively

– Gb, is a random bipartite graph with node sets Vl, Vh, where each edge

occurs with probability pb

• E(G) = E(Gl) ∪ E(Gh) ∪ E(Gb)

• We emphasize on E[Xb
r,ρ]

– Using 2nhr << ρr2, we obtain

E[Xb
r,ρ] = E[X l

r,ρ]
P2nhr

l=0

`2nhr

l

´

“

pbql
pl

”l

q
2nhr−l

b

• Summation term contributes an additive factor of 2nh log B to
the exponent, which is less than log n for large n



Algorithms Based on Statistical Significance

• Identification of topological modules

• Use statistical significance as a stopping criterion for graph
clustering heuristics

• HCS Algorithm [Hartuv & Shamir, Inf. Proc. Let., 2000]

– Find a minimum-cut bipartitioning of the network

– If any of the parts is dense enough, record it as a dense cluster of proteins

– Else, further partition them recursively

• Use statistical significance to determine whether a subgraph is
sufficiently dense

– For given number of proteins and interactions between them, we can

determine whether those proteins induce a significantly dense subnet



Behavior of Largest Dense Subgraph Across Species

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
4

6

8

10

12

14

16

18

20

22

24

BT AT

OS

RNHP

EC

MM

CE

HS

SC

DM

log10(Number of nodes)

S
iz

e 
of

 la
rg

es
t d

en
se

 s
ub

gr
ap

h

Observed
Gnp model
Stepwise model

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

2

4

6

8

10

12

BT AT

OS RN

HP

EC

MM

CE

HS

SC

DM

log10(Number of nodes)

S
iz

e 
of

 la
rg

es
t d

en
se

 s
ub

gr
ap

h

Observed
Gnp model
Stepwise model

ρ = 0.5 ρ = 1.0

Number of nodes vs. Size of largest dense subgraph
for PPI networks belonging to 9 Eukaryotic species



Behavior of Largest Dense Subgraph w.r.t Density
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Behavior of Largest Dense Subgraph w.r.t Density
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Significantly Connected Subnets on Yeast

# Prot # Int p < GO Annotation

24 165 10−175 [C] nucleolus (54%, p < 10−7)

20 138 10−187 [P] ubiquitin-dep prot catabolism (80%, p < 10−21)

[F] endopeptidase activity (50%, p < 10−11)

[C] proteasome reg part, lid subcomp (40%, p < 10−12)

16 104 10−174 [P] histone acetylation (62%, p < 10−15)

[C] SAGA complex (56%, p < 10−15)

[P] chromatin modification (56%, p < 10−14)

15 90 10−145 [F] RNA binding (80%, p < 10−12)

[C] mRNA cleav & polyadenyl SFC (80%, p < 10−24)

[P] mRNA polyadenylylation (80%, p < 10−21)

14 79 10−128 [P] mRNA catabolism (71%, p < 10−16)

[F] RNA binding (64%, p < 10−6)

[P] nuclear mRNA splicing (57%, p < 10−7)

10 45 10−200 [P] ER to Golgi transport (90%, p < 10−14)

[C] TRAPP complex(90%, p < 10−23)

7 20 10−30 [C] mitochondrial OMTC (100%, p < 10−20)

[F] protein transporter activity (100%, p < 10−14)

[P] mitochondrial matrix prot import (100%, p < 10−16)



Significantly Conserved Subnets on Yeast & Human

# # Cons

Prot Int p < COG Annotation

10 17 10−68 RNA polymerase (100%)

11 11 10−26 Mismatch repair (33%)

RNA polym II TI/nucleo excision repair fac TFIIH (33%)

Replication factor C (22%),

7 7 10−25 Exosomal 3’-5’ exoribonuclease complex (86%)

4 4 10−24 Single-stranded DNA-binding repl prot A (50%)

DNA repair protein (50%)

5 4 10−12 Small nuclear ribonucleoprotein(80%)

snRNP component (20%)

5 4 10−12 Histone (40%)

Histone transcription regulator (20%)

Histone chaperone (20%)

3 3 10−9 Vacuolar sorting protein (33%)

RNA polymerase II TFC subunit (33%)

Uncharacterized conserved protein (33%)



Conclusion & Ongoing Work

• Asymptotic analysis provides clear understanding of the
behavior of interesting patterns

• These results provide solid bases for evaluating statistical
significance

• More complicated models are necessary for distinguishing
nature of network from biological significance

– Can we approach more realistic skewed degree distributions by

increasing the number of pieces?

– How can we handle dependence?

– What about growth models?


