Phylogenetic Analysis of Molecular Interaction Networks¹

Mehmet Koyutürk

Case Western Reserve University Electrical Engineering & Computer Science

¹Joint work with Sinan Erten, Xin Li, Gurkan Bebekpand Jing Live Brock

Outline

Background & Motivation

- Why Network Phylogenetics?
- 2 Approach
 - Modularity Based Phylogenetic Analysis
 - Identifying Modular Network Components
 - Constructing Module Maps
 - Reconstructing Network Phylogenies

3 Results

Performance on Simulated Networks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Performance on Real Data

Conclusion

Acknowledgments

Outline

- Background & Motivation
 - Why Network Phylogenetics?
- 2 Approach
 - Modularity Based Phylogenetic Analysis
 - Identifying Modular Network Components
 - Constructing Module Maps
 - Reconstructing Network Phylogenies
- 3 Results
 - Performance on Simulated Networks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Performance on Real Data
- 4 Conclusion
 - Acknowledgments

Large Scale Data on Diverse Biological Systems

- Protein-protein interactions (PPI): Which proteins bind to each other (possibly, to perform specific tasks together)?
 - Interacting proteins can be identified via high-throughput screening (*e.g.*, Y2H, TAP)
- What can we learn from PPI data that belong to diverse species?

Comparative Network Analysis

- Network Alignment: Identify "common" subgraphs in interaction networks of different species
 - These are likely to correspond to modular components of the cellular machinery
- Algorithms mostly focus on one-to-one matching of interactions
 - PathBlast (Kelley *et al.*, *PNAS*, 2003), NetworkBlast (Sharan *et al.*, *RECOMB*, 2004), MAWISH (Koyutürk *et al.*, *RECOMB*, 2005), MULE (Koyutürk *et al.*, *JCB*, 2006), Graemlin (Flannick *et al.*, *Genome Research*, 2007)

A conserved subgraph identified by MAWISH on yeast and fly networks: Proteosome regulatory particle

Network Evolution & Phylogenetics

- Can we learn more about these networks by paying more attention to their evolutionary histories?
 - Incorporating evolutionary information enhances the performance of alignment algorithms (Hirsh & Sharan, 2007; Flannick *et al.*, *RECOMB*, 2008)
 - Network similarity based algorithms are quite successful in reconstructing evolutionary trees based on metabolic networks (Chor & Tuller, *RECOMB*, 2006)

Phylogenetic tree reconstructed by Chor & Tuller's RDL-based algorithm

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Modular Evolution

 What are the evolutionary mechanisms that create, preserve, and diversify modularity in biological systems?

		Upper part of glycolysis	Lower part of glycolysis	Entner- Doudoroff	dehydrogenase (lipoamide)	Pyruvate Pyruvate- DH (cyto formate chrome) lyase path	Pyruvate synthase
	earyme (subanit)	27.1.1 5.3.1.9. 2.7.1.11 4.1.2.13	534.1 1.2.1.2 2.7.2.3 5.4.2.1 5.4.2.1 4.2.1.10 2.7.1.40	4.1.12	1241 ¢ 1241 ¢ 23112 1314	2221 21.761 21.621 11.111	1.2.7.16 1.2.7.18 1.2.7.17 1.2.7.16
	Syneechocystis Chlamydia trachomatiz						
	Borrelia burgdorferi Treponema pallidum						
alignment	Bacillus subtilis Mycobacterium tuberculosis Mycoplasma genitalium Mycoplasma pneumoniae		ک کے لیے تی ہے تی ای کا کا تع ہوتی کا کا ای این ہوتی کا کا تی ہو ہی کی ک				
Pathway	Escherichia coli Haemophilus influenzae Helicobacter pylori		ار او او او او او او او او او او او او او او او او او او				
	Aquifex acolicus						
	Archaeoglobus fulgidus Metkunococcus janaschli Metkunokaeterium ihermosutotrophicum Pyrococcus korikoschil						
	yeast		ک سے اس اس اس اس				

Pathway alignment for glycolysis, Entner-Doudoroff pathway, and pyruvate processing

(Dandekar et al., 1999)

Outline

Background & Motivation

- Why Network Phylogenetics?
- 2 Approach
 - Modularity Based Phylogenetic Analysis
 - Identifying Modular Network Components
 - Constructing Module Maps
 - Reconstructing Network Phylogenies

3 Results

Performance on Simulated Networks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Performance on Real Data
- 4 Conclusion
 - Acknowledgments

Our Approach

- Instead of comparing interactions, compare emergent properties
 - We use conservation of modular network components as an indicator of evolutionary proximity
- Phylogeny reconstruction provides a testbed for hypotheses
 - Does network information provide information beyond what is gleaned from genome?
 - Does modularity say anything more about the evolutionary histories of these networks?
- Not another tool for phylogeny reconstruction!

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

• A framework for modularity based phylogenetic analysis

- Reconstruction of whole-network and module phylogenies
- Identification of module families

What is Modularity?

- Functional module: A group of molecules that perform a distinct function together (Hartwell, *Nature*, 1999)
 - Functional modules manifest themselves as highly connected subgraphs in the network (Rives & Galitski, PNAS, 2003)
- Many graph clustering algorithms have been developed to identify functional modules from interaction data
 - MCODE (Bader et al., BMC Bioinformatics, 2003), MCL (Pereira-Leal et al., Proteins, 2004), SIDES (Koyutürk et al., RECOMB, 2006)
- Functional coherence is often used to verify modularity
 - VAMPIRE (Hsiao et al., NAR, 2005), Ontologizer (Grossman et al., RECOMB, 2006)

Network Connectivity

Commonly used as an indicator of modularity

- Mutual Clustering Coefficient: Fraction (significance) of shared interactions between two proteins (Goldberg & Roth, PNAS, 2003)
- Significance can be computed using hypergeometric models

Mutual Clustering Coefficient

$$\chi(P_i, P_j) = \frac{|\{P_k \in V : P_i P_k \in E \lor P_j P_k \in E\}|}{|\{P_k \in V : P_i P_k \in E \land P_j P_k \in E\}|}$$

Network Proximity

- A more flexible indicator of modularity
 - Data is incomplete: Indirect paths can account for missing interactions
 - Projection of modularity: Indirect paths may relax evolutionary pressure on preserving direct interactions

Proximity

 $\psi(P_i, P_j) = 1/\delta(P_i, P_j)$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Network Proximity and Modularity

- Average process similarity with respect to network distance in a variety of PPI and DDI networks
 - Process similarity: Information content of the biological processes that describes all processes associated with the two proteins (Pandey *et al.*, *ECCB*, 2008)

Module Identification Algorithm

- Bottom-up complete linkage hierarchical clustering of proteins in the network
 - Primary similarity criterion: Proximity
 - Secondary similarity criterion: Mutual clustering coefficient
- Discrete modules are obtained by putting a threshold on proximity

Projection of Proximity

Sequence similarity relates proteins in different networks

- $\sigma(P_i, P_j) = 1 + 1/\log E_{ij}$, where E_{ij} denotes the BLAST *E*-value of the best bidirectional hit between proteins P_i and P_j
- The proximity between proteins P_i, P_j ∈ V(G) with respect to network G' ≠ G is the aggregate proximity of their orthologs in G'

•
$$\psi_{G'}(P_i, P_j) = \sum_{P_k, P_l \in V(G')} \hat{\sigma}_{G'}(P_i, P_k) \hat{\sigma}_{G'}(P_j, P_l) \psi(P_k, P_l)$$

• Here, $\hat{\sigma}_{G'}(P_i, P_k) = \frac{\sigma(P_i, P_k)}{\sum_{P_l \in V(G')} \sigma(P_i, P_l)}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Projection of Modularity

 The modularity of a set S ⊆ V(G) of proteins with respect to network G' is defined as the average proximity of all pairs of proteins in S with respect to G'

•
$$\mu_{G'}(S) = \frac{2\sum_{P_i,P_j \in S} \psi_{G'}(P_i,P_j)}{|S|(|S|-1)}$$

Module Maps

- Once modules are projected on all networks, each network is associated with a module map
 - A module map is a vector with each entry signifying the modularity of the corresponding module in the corresponding network
 - Modules identified in G_j : { $S_1^j, S_2^j, ..., S_{m_i}^j$ }
 - For all networks G_k , the module map of G_k with respect to G_j is given by

$$f_{ij} = [\mu_{G_i}(S_1^j) \ \mu_{G_i}(S_2^j) \ \dots \ \mu_{G_i}(S_{m_j}^j)]$$

• If there are *K* networks, then the complete module map of *G_k* is given by

$$f_i = [f_{i1} f_{i2} \ldots f_{iK}]$$

くしゃ 人間 マイボットボット しゃくろう

(日) (日) (日) (日) (日) (日) (日) (日)

Phylogeny Reconstruction Using Module Maps

- Estimate evolutionary distances based on module maps
 d(G_i, G_j) = 1 ^{f_i · f_j}
 _{||f_i||||f_i||}
- Once evolutionary distances are available, reconstruct a phylogenetic tree using traditional algorithms
 - Neighbor Joining (Saitou & Nei, Mol. Biol. Evol., 1987)
- Handling noise and missing data
 - Estimate the evolutionary distances between two networks based on only their module maps with respect to each other

•
$$\hat{d}(G_i, G_j) = \min\left\{1 - \frac{f_{ij} \cdot f_{jj}}{||f_{ij}||||f_{jj}||}, 1 - \frac{f_{jj} \cdot f_{ij}}{||f_{jj}||||f_{ij}||}\right\}$$

Outline

- Background & Motivation
 - Why Network Phylogenetics?
- 2 Approach
 - Modularity Based Phylogenetic Analysis
 - Identifying Modular Network Components
 - Constructing Module Maps
 - Reconstructing Network Phylogenies

3 Results

- Performance on Simulated Networks
- Performance on Real Data

Conclusion

Acknowledgments

Simulation of Network Evolution

- Generate multiple networks based on theoretical models of network evolution
 - Duplication/Mutation/Complementation (DMC) model (Middendorf et al., PNAS, 2005)

 Generalized models reconstruct the properties (degree distribution, clustering coefficient distribution) of extant networks (Bebek *et al.*, *Theo. Comp. Sci.*, 2006)

Evolving Multiple Networks

- Generate multiple networks based on the DMC model
 - Speciation: A network is duplicated, each copy evolves independently

- Using the proposed framework, construct a phylogenetic tree based on the generated networks
 - Performance evaluation, comparison of different algorithms, adjustment of parameters

Performance Measures

- Comparison of the topologies of underlying and reconstructed phylogenetic trees
 - Symmetric Difference: Number of partitions that are on one tree and not the other (Robinson & Foulds, *Math. Biosci.*, 1981)
- Comparison of the actual and estimated evolutionary distances
 - Nodal Distance: Sum of distances of all node pairs in each tree (Bluis et al., IEEE BIBE, 2003)
- Statistical significance
 - Random Method: Use random groups of proteins of the same size instead of identified modules
 - Compute *p*-values via *t*-test on repeated runs

Reconstructing Known Phylogeny

Underlying Tree

Reconstructed Tree

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- MOPHY reconstructs the topology of the underlying phylogeny perfectly
- Nodal distance: 5.12 (*p* < 0.002)</p>

Effect of Parameters

	Diameter								
	2			3			4		
Coverage	МоРну	Random	p<	МоРну	Random	<i>p</i> <	МоРну	Random	<i>p</i> <
20%	1.6**	11.2	0.004	1.6**	11.2	0.004	1.6**	12.0	0.003
40%	1.6**	12.0	0.001	1.6**	10.8	0.009	1.6**	12.0	0.001
60%	1.6**	11.2	0.002	1.6**	11.6	0.004	1.6**	11.6	0.002

Most Specific Modules

Most Comprehensive Modules

	Diameter								
	2			3			4		
Coverage	МоРну	Random	p <	МоРну	Random	<i>p</i> <	МоРну	Random	<i>p</i> <
20%	2.4**	11.6	0.005	2.8**	10.8	0.009	4.4*	10.8	0.012
40%	2.8**	12.0	0.004	2.8**	10.8	0.003	4.4*	10.4	0.018
60%	1.6**	10.8	0.006	2.4**	11.2	0.003	3.6**	10.0	0.005

- Performance difference between MOPHY and random method is consistently significant
 - Conservation of proximity between modular groups of proteins captures evolutionary histories better than that of arbitrary proteins

Effect of Noise

 Once networks are generated, we add noise to each network by randomly swapping interactions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comparison to Existing Algorithms

Sequence-based Phylogenetic Tree

МоРну

RDL (Chor & Tuller, 2006)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- 1 Background & Motivation
 - Why Network Phylogenetics?
- 2 Approach
 - Modularity Based Phylogenetic Analysis
 - Identifying Modular Network Components
 - Constructing Module Maps
 - Reconstructing Network Phylogenies
- 3 Results
 - Performance on Simulated Networks
 - Performance on Real Data

Conclusion

Acknowledgments

Remarks & Ongoing Work

- Success in phylogenetic tree reconstruction can be seen as proof of concept
- We have worked on "rows" of the module map so far
 - What do we learn if we work on columns?
- How can we trace evolutionary histories of modules?
 - Find modules that map to each other, co-evolve, or complement each other
 - Evolutionary trajectories can be used to identify hierarchical module families and construct module ontologies

Thanks...

- CWRU
 - Sinan Erten, Xin Li, Gurkan Bebek, Jing Li

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Purdue
 - Ananth Grama
- UC-San Diego
 - Shankar Subramaniam