PROXIMUS: A Framework for Analysis of Very High Dimensional Discrete Attributed Datasets

Mehmet Koyutürk and Ananth Grama

Department of Computer Sciences

http://www.cs.purdue.edu/homes/koyuturk/proximus/

The Problem

k << *m*, not predetermined

Each input vector is within bounded distance from some output vector

An Example

Input Matrix:

Pattern Matrix :

 $A \approx U^{\mathrm{T}} V$

Maximum Hamming Distance : 1

Motivation

Very high dimensional large discrete datasets in many applications

- Data Mining
 - Discrete feature space
 - Many sets over a large universal set (Association Rule Mining)
- Bioinformatics
 - Sequences over a finite alphabet, gene regulation, pattern discovery
- Information retrieval, scientific computing...

Singular Value Decomposition

$$A_{m \times n} = U_{r \times m}{}^{T} \Sigma_{r \times r} V_{r \times n}$$

r : rank of A
 Σ : singular values of A, diagonal
 U, V : singular vectors of A, orthogonal
Each triple is a dominant pattern, in order

Truncated SVD: $A_{m \times n} \approx U_{k \times m}^{T} \Sigma_{k \times k} V_{k \times n}$ $k < r, error : k+1^{th} singular value of A$

What is wrong with SVD?

- Orthogonality : negative values!
- Patterns represent overall matrix rather than clusters
- "Extracted" patterns: hard to interpret
- Computation is very expensive

SVD Variants

- Semi-Discrete Decomposition (SDD)
 - Restrict singular vectors to {-1,0,1}
 - Faster but orthogonalization is still a problem
- Principle Direction Divisive Partitioning (PDDP)
 - Partition based on first singular vector
 - Designed for real valued data
- Centroid Decomposition
 - Cluster patterns rather than overall
 - Hard to discretize

PROXIMUS : Basic Idea

- Approximation restricted to binary values
 - Easy interpretation
 - Faster computation
- Recursive decomposition
 - Partition based on first singular vector
 - Flexible stopping criteria : stop when approximation is adequate

Rank-one Approximation

How to compute first "singular" vector?

Presence Vector Pattern Vector

Formulation

Given $A \in \{0,1\}^{m \times n}$ find $x \in \{0,1\}^{m \times 1}$, $y \in \{0,1\}^{n \times 1}$

> to minimize error: $\|A-xy^{T}\|_{F}^{2}$

Similar to maximum clique problem : Find a "dense" subgraph of a bipartite graph NP-hard

Heuristic may work as desired!

Optimal Approximation:

 $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{T} \times \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ Error : 4

"Desirable" Approximation:

 $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^{T} \times \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$ Error : 6

Alternating Iterative Heuristic Fix y, compute x to maximize $2\mathbf{x}^{T}\mathbf{A}\mathbf{y} - ||\mathbf{x}||_{2}^{2} ||\mathbf{y}||_{2}^{2}$ Then fix x, compute y. Repeat until convergence. Rows Columns

Fixed pattern vector Computed presence vector Fin

Final approximation

Stopping Criteria

Stop whenever both hold:

- All rows are present in the approximation
- Pattern represents these rows adequately : Hamming radius less than ε
 - Hamming radius : Maximum Hamming distance to representative pattern
 - ε : Predetermined bound, determines quality of approximation
- If not, partition based on rank-one approximation
 - 1's in presence vector go to one part, 0's to other

Initialization of Pattern Vector

- Crucial for convergence to desired local optima
- Must be fast (at most linear time)
- General idea : Find a rough cluster of rows, initialize pattern vector to their centroid
 - Partition along one dimension
 - Greedy graph growing
 - Random row's neighborhood

Time Complexity

- Matrix with *m* rows, *n* columns, *p* non-zeros
- Rank-one approximation
 - Initialization : O(p)
 - Each iteration : mat-vec, O(p)
 - Rapid convergence
- Each level of recursion tree has p non-zeros
- Overall complexity : O(h × p)
 - $h \le k$: height of recursion tree

Visual Results

Association Rule Mining

	Transac	tion Set	$T_2 = \{ T_3 = \{ T_3 = \{ T_4 = \{ T_5 $	beer, snacks milk, butter} milk, butter, beer, snacks milk, eggs} milk, butter,		
	beer	butter	milk	snacks	eggs	
T_1	1	0	0	1	0	
T_2	0	1	1	0	0	Transaction
T_3	0	1	1	0	1	Matrix
T_4	1	0	0	1	0	
T_5	0	0	1	0	1	
T_6	0	1	1	0	1	

Compressing the transaction set

- Compute decomposition $A \approx U^{\mathrm{T}} V$
 - *V* is the compressed (virtual) transaction set
 - U assigns weight to virtual transactions

Compressed Transaction Set

$$T'_{1} = \{\text{beer, snacks }\}$$

 $T'_{2} = \{\text{milk, butter, eggs}\}$
 $w(T'_{1}) = 2$
 $w(T'_{2}) = 4$

Mine the compressed transaction set!

Datasets

IBM Quest association data generator

		# of transa	actions	# of patterns		
Low		10K		20		
Medium		100K		100		
High		1M		500		
		transactions				
		Low	Mediun	n High		
ns	Low	L100		_		
patterns	Medium	M1M	M100K	K H100K		
pa	High	H100				

Performance on ARM

- Almost always over 95% precision & recall for all datasets
- Speedup in the order of tens

Performance on M100K dataset

2479 approximation vectors, preprocessing time: 5.89 seconds

Min. Support	Time orig.	Time comp.	Rules orig.	Rules comp.	Rules match.	Precision %	Recall %
0.5	13.76	1.06	332395	333046	331087	99.6	99.8
1.0	8.01	0.39	138745	139519	137200	98.3	99.0
1.5	5.12	0.18	60500	59580	59580	100.0	98.5
2.0	3.14	0.11	36061	39117	35366	90.4	98.1
2.5	0.86	0.03	14750	14645	14645	100.0	99.3
3.0	0.68	0.02	11180	11070	11070	100.0	99.0

Effect of Parameters

- Robust to increasing number of transactions
- More patterns, harder problem
 - More approximation vectors to preserve quality
 - More preprocessing time
 - Less speedup
 - Can still maintain quality!
- Bound on error
 - Tighter bound, higher quality but less speedup
 - Loose bound does not effect after some point

Performance on Real Data

Agaricus Lepiota dataset

- "mushrooms with bell-shaped and fibrous caps have brown gills"
- 8124 species
- 23 categorical attributes \rightarrow 118 binary attributes
- Decomposition into 1142 approximation vectors in 15.73 seconds

Min. Support	Time orig.	Time comp.	Rules orig.	Rules comp.	Rules match.	Precision %	Recall %
10.0	46.49	7.49	497813	464546	464185	99.9	93.2
14.8	14.98	2.19	63413	63299	63210	99.9	99.7
19.6	7.43	1.30	32593	32589	32589	100.0	99.9

Scalability

Number of rows

Number of patterns Transaction length

Conclusions & Future Work

Software available

http://www.cs.purdue.edu/homes/koyuturk/proximus/

- Application to other areas
 - Clustering, classification, information retrieval, gene regulation...
- Comparison to probabilistic subsampling
- Generalization to similar problems
 - Integer datasets
 - Real matrix = real matrix × binary matrix