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The Problem

Input :

[ 1 0 0 1 …              ]
[ 0 0 1 1 …              ]
[ 1 1 0 0 …              ]
.
.
.

m

n Output :

[ 1 0 0 1 …              ]
[ 0 0 1 1 …              ]
.
.
.

k

n

k << m, not predetermined

Each input vector is within bounded 
distance from some output vector 



An Example
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A ≈ UTV
Maximum Hamming Distance : 1
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Motivation

 Data Mining
 Discrete feature space
 Many sets over a large universal set (Association Rule 

Mining)

 Bioinformatics
 Sequences over a finite alphabet, gene regulation, 

pattern discovery

 Information retrieval, scientific computing…

Very high dimensional large discrete 
datasets in many applications



Singular Value Decomposition

Am×n = Ur× m
TΣr×r Vr×n

r : rank of A
Σ : singular values of A, diagonal

U,V : singular vectors of A, orthogonal
Each triple is a dominant pattern, in order 

Truncated SVD: Am×n ≈ Uk× m
TΣk×k Vk×n

k < r, error : k+1th singular value of A



What is wrong with SVD?

 Orthogonality : negative values!
 Patterns represent overall matrix rather than 

clusters
 “Extracted” patterns: hard to interpret
 Computation is very expensive
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SVD Variants

 Semi-Discrete Decomposition (SDD)
 Restrict singular vectors to {-1,0,1}
 Faster but orthogonalization is still a problem

 Principle Direction Divisive Partitioning (PDDP)
 Partition based on first singular vector
 Designed for real valued data 

 Centroid Decomposition
 Cluster patterns rather than overall
 Hard to discretize



PROXIMUS : Basic Idea

 Approximation restricted to binary values
 Easy interpretation
 Faster computation

 Recursive decomposition
 Partition based on first singular vector
 Flexible stopping criteria : stop when 

approximation is adequate



Rank­one Approximation

How to compute first “singular” vector?
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Formulation

Given A ∈ {0,1}m×n 
 find x ∈ {0,1}m×1 , y ∈ {0,1}n×1

to minimize error:
|| A-xyT||F2

Similar to maximum clique problem : 
Find a “dense” subgraph of a bipartite graph

NP-hard  



Heuristic may work as desired!
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Optimal Approximation:

[ 1  1  1  1 ]T×[ 1  1  1  1 ]
Error : 4 

“Desirable” Approximation:

[ 1  1  0  0 ]T×[ 1  1  1  0 ]
Error : 6 



Alternating Iterative Heuristic
Fix y, compute x to maximize 2xTAy-||x||22||y|| 2

2
 . 

Then fix x, compute y. Repeat until convergence.

Computed presence vector Final approximationFixed pattern vector

Rows Columns



Recursive Decomposition

A A ≈ x1y1
T

A1

x1(i) = 1

A ≈ x2y2
T A0

x1(i) = 0

A ≈ x3y3
T

x2(i) = 1 ∀i
y2  adequately 
represents matrix

x2 , y2 

A01

x3(i) = 1

A00

x3(i) = 0

A ≈ x4y4
T A ≈ x5y5

T

x4(i) = 1 ∀i
y4  adequately 

represents matrix x4 , y4 

x5(i) = 1 ∀i
y5  adequately 

represents matrix
x5 , y5 

U = [x2, x4, x5]
V = [y2, y4, y5]

A ≈ UTV 



Stopping Criteria

 Stop whenever both hold:
 All rows are present in the approximation
 Pattern represents these rows adequately : 

Hamming radius less than ε
 Hamming radius : Maximum Hamming distance to 

representative pattern
 ε : Predetermined bound, determines quality of 

approximation

 If not, partition based on rank-one 
approximation
 1’s in presence vector go to one part, 0’s to 

other 



Initialization of Pattern Vector

 Crucial for convergence to desired local 
optima

 Must be fast (at most linear time)

 General idea : Find a rough cluster of rows, 
initialize pattern vector to their centroid
 Partition along one dimension
 Greedy graph growing
 Random row’s neighborhood 



Time Complexity

 Matrix with m rows, n columns, p non-zeros

 Rank-one approximation
 Initialization : O(p)
 Each iteration : mat-vec, O(p)
 Rapid convergence

 Each level of recursion tree has p non-zeros

 Overall complexity : O(h × p)
 h ≤ k : height of recursion tree



Visual Results



Association Rule Mining
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T1 = {beer, snacks }
T2 = {milk, butter}
T3 = {milk, butter, eggs}
T4 = {beer, snacks }
T5 = {milk, eggs}
T6 = {milk, butter, eggs}

Transaction Set

Transaction 
Matrix



Compressing the transaction set

 Compute decomposition A ≈ UTV
 V is the compressed (virtual) transaction set
 U assigns weight to virtual transactions  

Mine the compressed transaction set!

T’1 = {beer, snacks }
T’2 = {milk, butter, eggs}

Compressed Transaction Set

w(T’1) = 2
w(T’2) = 4



Datasets

IBM Quest association data generator 
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Performance on ARM

 Almost always over 95% precision & recall for all 
datasets
 Speedup in the order of tens
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Performance on M100K dataset
2479 approximation vectors, preprocessing time: 5.89 seconds



Effect of Parameters

 Robust to increasing number of transactions

 More patterns, harder problem
 More approximation vectors to preserve quality
 More preprocessing time
 Less speedup
 Can still maintain quality!

 Bound on error
 Tighter bound, higher quality but less speedup
 Loose bound does not effect after some point



Performance on Real Data

 Agaricus Lepiota dataset
 “mushrooms with bell-shaped and fibrous caps have 

brown gills”
 8124 species
 23 categorical attributes → 118 binary attributes

 Decomposition into 1142 approximation vectors 
in 15.73 seconds
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Scalability

Number of rows Number of patterns Transaction length



Conclusions & Future Work

 Software available

 Application to other areas
 Clustering, classification, information retrieval, gene 

regulation…

 Comparison to probabilistic subsampling

 Generalization to similar problems
 Integer datasets
 Real matrix = real matrix × binary matrix

http://www.cs.purdue.edu/homes/koyuturk/proximus/


