
PROXIMUS:
A Framework for Analysis of Very High

Dimensional Discrete Attributed Datasets

Mehmet Koyutürk and Ananth Grama

Department of Computer Sciences

http://www.cs.purdue.edu/homes/koyuturk/proximus/

The Problem

Input :

[1 0 0 1 …]
[0 0 1 1 …]
[1 1 0 0 …]
.
.
.

m

n Output :

[1 0 0 1 …]
[0 0 1 1 …]
.
.
.

k

n

k << m, not predetermined

Each input vector is within bounded
distance from some output vector

An Example

10110

10100

01001

10110

00110

01001

Input Matrix:

10110

01001

Pattern Matrix :

A =

V =

Presence Matrix :

U=

A ≈ UTV
Maximum Hamming Distance : 1

0

1

11011

00100

Motivation

 Data Mining
 Discrete feature space
 Many sets over a large universal set (Association Rule

Mining)

 Bioinformatics
 Sequences over a finite alphabet, gene regulation,

pattern discovery

 Information retrieval, scientific computing…

Very high dimensional large discrete
datasets in many applications

Singular Value Decomposition

Am×n = Ur× m
TΣr×r Vr×n

r : rank of A
Σ : singular values of A, diagonal

U,V : singular vectors of A, orthogonal
Each triple is a dominant pattern, in order

Truncated SVD: Am×n ≈ Uk× m
TΣk×k Vk×n

k < r, error : k+1th singular value of A

What is wrong with SVD?

 Orthogonality : negative values!
 Patterns represent overall matrix rather than

clusters
 “Extracted” patterns: hard to interpret
 Computation is very expensive

0

0

0.7

0

0

0.7

-0.400.6

0.6-0.70.4

000

-0.400.6

0.60.70.4

000

0

0

2

0

0.500

010

000

003

-0.7000.70

-0.500.7-0.50

0

0.5

0

0.6

00.70.7

0.500

A ≈ × ×

SVD Variants

 Semi-Discrete Decomposition (SDD)
 Restrict singular vectors to {-1,0,1}
 Faster but orthogonalization is still a problem

 Principle Direction Divisive Partitioning (PDDP)
 Partition based on first singular vector
 Designed for real valued data

 Centroid Decomposition
 Cluster patterns rather than overall
 Hard to discretize

PROXIMUS : Basic Idea

 Approximation restricted to binary values
 Easy interpretation
 Faster computation

 Recursive decomposition
 Partition based on first singular vector
 Flexible stopping criteria : stop when

approximation is adequate

Rank­one Approximation

How to compute first “singular” vector?

10110

10100

01001

10110

00110

01001

≈

1

1

0

1

1

0

× [0 1 1 0 1]

Presence Vector Pattern Vector

Formulation

Given A ∈ {0,1}m×n
 find x ∈ {0,1}m×1 , y ∈ {0,1}n×1

to minimize error:
|| A-xyT||F2

Similar to maximum clique problem :
Find a “dense” subgraph of a bipartite graph

NP-hard

Heuristic may work as desired!

1

1

1

1

110

110

011

011

Optimal Approximation:

[1 1 1 1]T×[1 1 1 1]
Error : 4

“Desirable” Approximation:

[1 1 0 0]T×[1 1 1 0]
Error : 6

Alternating Iterative Heuristic
Fix y, compute x to maximize 2xTAy-||x||22||y|| 2

2
 .

Then fix x, compute y. Repeat until convergence.

Computed presence vector Final approximationFixed pattern vector

Rows Columns

Recursive Decomposition

A A ≈ x1y1
T

A1

x1(i) = 1

A ≈ x2y2
T A0

x1(i) = 0

A ≈ x3y3
T

x2(i) = 1 ∀i
y2 adequately
represents matrix

x2 , y2

A01

x3(i) = 1

A00

x3(i) = 0

A ≈ x4y4
T A ≈ x5y5

T

x4(i) = 1 ∀i
y4 adequately

represents matrix x4 , y4

x5(i) = 1 ∀i
y5 adequately

represents matrix
x5 , y5

U = [x2, x4, x5]
V = [y2, y4, y5]

A ≈ UTV

Stopping Criteria

 Stop whenever both hold:
 All rows are present in the approximation
 Pattern represents these rows adequately :

Hamming radius less than ε
 Hamming radius : Maximum Hamming distance to

representative pattern
 ε : Predetermined bound, determines quality of

approximation

 If not, partition based on rank-one
approximation
 1’s in presence vector go to one part, 0’s to

other

Initialization of Pattern Vector

 Crucial for convergence to desired local
optima

 Must be fast (at most linear time)

 General idea : Find a rough cluster of rows,
initialize pattern vector to their centroid
 Partition along one dimension
 Greedy graph growing
 Random row’s neighborhood

Time Complexity

 Matrix with m rows, n columns, p non-zeros

 Rank-one approximation
 Initialization : O(p)
 Each iteration : mat-vec, O(p)
 Rapid convergence

 Each level of recursion tree has p non-zeros

 Overall complexity : O(h × p)
 h ≤ k : height of recursion tree

Visual Results

Association Rule Mining

T6

T5

T4

T3

T2

T1

eggssnacksmilkbutterbeer

10110

10100

01001

10110

00110

01001

T1 = {beer, snacks }
T2 = {milk, butter}
T3 = {milk, butter, eggs}
T4 = {beer, snacks }
T5 = {milk, eggs}
T6 = {milk, butter, eggs}

Transaction Set

Transaction
Matrix

Compressing the transaction set

 Compute decomposition A ≈ UTV
 V is the compressed (virtual) transaction set
 U assigns weight to virtual transactions

Mine the compressed transaction set!

T’1 = {beer, snacks }
T’2 = {milk, butter, eggs}

Compressed Transaction Set

w(T’1) = 2
w(T’2) = 4

Datasets

IBM Quest association data generator

5001MHigh

100100KMedium

2010KLow

of patterns# of transactions

H100KHigh

H100KM100KM1MMedium

L100KLow

HighMediumLow

transactions

p
at

te
rn

s

Performance on ARM

 Almost always over 95% precision & recall for all
datasets
 Speedup in the order of tens

99.0100.01107011070111800.020.683.0

99.3100.01464514645147500.030.862.5

98.190.43536639117360610.113.142.0

98.5100.05958059580605000.185.121.5

99.098.31372001395191387450.398.011.0

99.899.63310873330463323951.0613.760.5

Recall

%

Precision

%

Rules
match.

Rules
comp.

Rules
orig.

Time
comp.

Time
orig.

Min.

Support

Performance on M100K dataset
2479 approximation vectors, preprocessing time: 5.89 seconds

Effect of Parameters

 Robust to increasing number of transactions

 More patterns, harder problem
 More approximation vectors to preserve quality
 More preprocessing time
 Less speedup
 Can still maintain quality!

 Bound on error
 Tighter bound, higher quality but less speedup
 Loose bound does not effect after some point

Performance on Real Data

 Agaricus Lepiota dataset
 “mushrooms with bell-shaped and fibrous caps have

brown gills”
 8124 species
 23 categorical attributes → 118 binary attributes

 Decomposition into 1142 approximation vectors
in 15.73 seconds

99.9100.03258932589325931.307.4319.6

99.799.96321063299634132.1914.9814.8

93.299.94641854645464978137.4946.4910.0

Recall

%

Precision

%

Rules
match.

Rules
comp.

Rules
orig.

Time
comp.

Time
orig.

Min.

Support

Scalability

Number of rows Number of patterns Transaction length

Conclusions & Future Work

 Software available

 Application to other areas
 Clustering, classification, information retrieval, gene

regulation…

 Comparison to probabilistic subsampling

 Generalization to similar problems
 Integer datasets
 Real matrix = real matrix × binary matrix

http://www.cs.purdue.edu/homes/koyuturk/proximus/

