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The Problem

Input :

[ 1 0 0 1 …              ]
[ 0 0 1 1 …              ]
[ 1 1 0 0 …              ]
.
.
.

m

n Output :

[ 1 0 0 1 …              ]
[ 0 0 1 1 …              ]
.
.
.

k

n

k << m, not predetermined

Each input vector is within bounded 
distance from some output vector 



An Example
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Maximum Hamming Distance : 1
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Motivation

 Data Mining
 Discrete feature space
 Many sets over a large universal set (Association Rule 

Mining)

 Bioinformatics
 Sequences over a finite alphabet, gene regulation, 

pattern discovery

 Information retrieval, scientific computing…

Very high dimensional large discrete 
datasets in many applications



Singular Value Decomposition

Am×n = Ur× m
TΣr×r Vr×n

r : rank of A
Σ : singular values of A, diagonal

U,V : singular vectors of A, orthogonal
Each triple is a dominant pattern, in order 

Truncated SVD: Am×n ≈ Uk× m
TΣk×k Vk×n

k < r, error : k+1th singular value of A



What is wrong with SVD?

 Orthogonality : negative values!
 Patterns represent overall matrix rather than 

clusters
 “Extracted” patterns: hard to interpret
 Computation is very expensive
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SVD Variants

 Semi-Discrete Decomposition (SDD)
 Restrict singular vectors to {-1,0,1}
 Faster but orthogonalization is still a problem

 Principle Direction Divisive Partitioning (PDDP)
 Partition based on first singular vector
 Designed for real valued data 

 Centroid Decomposition
 Cluster patterns rather than overall
 Hard to discretize



PROXIMUS : Basic Idea

 Approximation restricted to binary values
 Easy interpretation
 Faster computation

 Recursive decomposition
 Partition based on first singular vector
 Flexible stopping criteria : stop when 

approximation is adequate



Rankone Approximation

How to compute first “singular” vector?
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Formulation

Given A ∈ {0,1}m×n 
 find x ∈ {0,1}m×1 , y ∈ {0,1}n×1

to minimize error:
|| A-xyT||F2

Similar to maximum clique problem : 
Find a “dense” subgraph of a bipartite graph

NP-hard  



Heuristic may work as desired!
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Optimal Approximation:

[ 1  1  1  1 ]T×[ 1  1  1  1 ]
Error : 4 

“Desirable” Approximation:

[ 1  1  0  0 ]T×[ 1  1  1  0 ]
Error : 6 



Alternating Iterative Heuristic
Fix y, compute x to maximize 2xTAy-||x||22||y|| 2

2
 . 

Then fix x, compute y. Repeat until convergence.

Computed presence vector Final approximationFixed pattern vector

Rows Columns



Recursive Decomposition

A A ≈ x1y1
T

A1

x1(i) = 1

A ≈ x2y2
T A0

x1(i) = 0

A ≈ x3y3
T

x2(i) = 1 ∀i
y2  adequately 
represents matrix

x2 , y2 

A01

x3(i) = 1

A00

x3(i) = 0

A ≈ x4y4
T A ≈ x5y5

T

x4(i) = 1 ∀i
y4  adequately 

represents matrix x4 , y4 

x5(i) = 1 ∀i
y5  adequately 

represents matrix
x5 , y5 

U = [x2, x4, x5]
V = [y2, y4, y5]

A ≈ UTV 



Stopping Criteria

 Stop whenever both hold:
 All rows are present in the approximation
 Pattern represents these rows adequately : 

Hamming radius less than ε
 Hamming radius : Maximum Hamming distance to 

representative pattern
 ε : Predetermined bound, determines quality of 

approximation

 If not, partition based on rank-one 
approximation
 1’s in presence vector go to one part, 0’s to 

other 



Initialization of Pattern Vector

 Crucial for convergence to desired local 
optima

 Must be fast (at most linear time)

 General idea : Find a rough cluster of rows, 
initialize pattern vector to their centroid
 Partition along one dimension
 Greedy graph growing
 Random row’s neighborhood 



Time Complexity

 Matrix with m rows, n columns, p non-zeros

 Rank-one approximation
 Initialization : O(p)
 Each iteration : mat-vec, O(p)
 Rapid convergence

 Each level of recursion tree has p non-zeros

 Overall complexity : O(h × p)
 h ≤ k : height of recursion tree



Visual Results



Association Rule Mining
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T1 = {beer, snacks }
T2 = {milk, butter}
T3 = {milk, butter, eggs}
T4 = {beer, snacks }
T5 = {milk, eggs}
T6 = {milk, butter, eggs}

Transaction Set

Transaction 
Matrix



Compressing the transaction set

 Compute decomposition A ≈ UTV
 V is the compressed (virtual) transaction set
 U assigns weight to virtual transactions  

Mine the compressed transaction set!

T’1 = {beer, snacks }
T’2 = {milk, butter, eggs}

Compressed Transaction Set

w(T’1) = 2
w(T’2) = 4



Datasets

IBM Quest association data generator 

5001MHigh

100100KMedium

2010KLow

# of patterns# of transactions

H100KHigh

H100KM100KM1MMedium

L100KLow

HighMediumLow

transactions

p
at

te
rn

s



Performance on ARM

 Almost always over 95% precision & recall for all 
datasets
 Speedup in the order of tens
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Performance on M100K dataset
2479 approximation vectors, preprocessing time: 5.89 seconds



Effect of Parameters

 Robust to increasing number of transactions

 More patterns, harder problem
 More approximation vectors to preserve quality
 More preprocessing time
 Less speedup
 Can still maintain quality!

 Bound on error
 Tighter bound, higher quality but less speedup
 Loose bound does not effect after some point



Performance on Real Data

 Agaricus Lepiota dataset
 “mushrooms with bell-shaped and fibrous caps have 

brown gills”
 8124 species
 23 categorical attributes → 118 binary attributes

 Decomposition into 1142 approximation vectors 
in 15.73 seconds
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Scalability

Number of rows Number of patterns Transaction length



Conclusions & Future Work

 Software available

 Application to other areas
 Clustering, classification, information retrieval, gene 

regulation…

 Comparison to probabilistic subsampling

 Generalization to similar problems
 Integer datasets
 Real matrix = real matrix × binary matrix

http://www.cs.purdue.edu/homes/koyuturk/proximus/


