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Background Systems Biology

Why Systems Biology?

@ Life is an emergent property
@ Emergent properties are those that are not demonstrated
by individual parts and cannot be predicted even with full
understanding of the parts alone
@ Cell is not just an assembly of genes and proteins

@ Systems biology focuses on understanding the
organization and dynamics of cellular and organismal
function

@ Complements molecular biology

@ Organization: How are multiple components organized
together?

@ Dynamics: How do multiple components behave together
under different circumstances (time and space)?



Background Systems Biology

Understanding Cellular Organization: Netw

@ Nodes represent cellular components
@ Protein, gene, enzyme, metabolite
@ Edges represent interactions

@ Binding, regulation, modification, complex membership
@ Weighted, directed, signed, hyper

@ There are several interrelated models for different aspects
of cellular organization and signaling
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Background

Life’s Complexity Pyramid

Modularity in Biological Systems

Oltvai and Barabasi, Science, 2002



Background Modularity in Biological Systems

Periodic Table of Systems Biology

"Once both the network structure and its functional properties
are understood for a large number of regulatory circuits, studies
on classifications and comparison of circuits will provide further
insights into the richness of design patterns used and how
design patterns of regulatory circuits have been modified or
conserved through evolution. The hope is that intensive
investigation will reveal a possible evolutionary family of circuits
as well as a "periodic table" for functional regulatory circuits.” —

H. Kitano, Science, 2002.



Background Modularity in Biological Systems

Conservation of Modularity

@ Selective pressure on preserving collective function

@ Interacting proteins follow similar evolutionary trajectories
(Pellegrini et al., PNAS, 1999)

@ Orthologs of interacting proteins are likely to interact
(Wagner, Mol. Bio. Evol., 2001)

@ Proteins that are involved in coherent interaction patterns
(e.g., feedback loop) are more likely to be conserved
(Wuchty et al., Nature Genetics, 2003)

@ Sequence homology does not always imply functional
orthology (Kelley et al., PNAS, 2003)

@ Goal: Uncovering evolutionary design principles

@ Interaction patterns that are conserved across (a subgroup
of) species (or, more generally, that recur in various
contexts) are likely to correspond to a modular component
of cellular organization
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Q Comparative Network Analysis

@ |dentification of Conserved Subgraphs
@ Network Alignment




Comparative Network Analysis

Frequent Subgraph Discovery

Identification of Conserved Subgraphs

@ Computationally intractable: Existing algorithms are limited
to very small graphs and subgraphs

@ How can we color the nodes consistently across species?
Z E

Network database
® @

®
Interaction patterns that are common to all networks




Comparative Network Analysis
Ortholog Contraction

Identification of Conserved Subgraphs

2004)

@ Interaction between proteins — Interaction between
ortholog groups or protein families (Koyuturk et al

., ISMB,
KOGSOl3 KOG1068 KOG3013 KOG1068
Sk|6
KOGS409
Rrp43 Mtr3
KOG1068

KOG3409
@ Ortholog contraction preserves frequent subgraphs (but it
may add non-existing patterns)

@ Can be used as a filtering mechanism




Comparative Network Analysis Identification of Conserved Subgraphs

Frequent Protein Interaction Patterns
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Comparative Network Analysis Network Alignment

Aligning PPl Networks

@ Given two PPI networks that belong to two different
organisms, identify sub-networks that are similar to each
other

@ Biological meaning, mathematical modeling
@ MAWISH (Koyutlrk et al., J. Comp. Biol., 2006)
@ Each evolutionary event (match, mismatch, duplication) is
associated with a score
@ The score of a pair of subgraphs, each from one network, is
a linear combination of scores of individual evolutionary
events




Comparative Network Analysis
Alignment Graph

Network Alignment

® G(V,E) : V consists of all pairs of homolog proteins
v={ueU,veV}
® Anedgevv' = {uv}{u'v'} eEisa
@ maich edge ifuu’ € E and w’ e V
@ mismatch edge ifuu’ € E and w’ ¢ V or vice versa
@ duplication edge if S(u,u’) > 0 or S(v,v’) >0

@ The edges are weighted accordingly

{u17vl}
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Comparative Network Analysis

Network Alignment
Subnets Conserved in Yeast and Fruit Ely
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Toward Canonical Modules :

e Toward Canonical Modules

@ Identification of Functional Modules
@ Pathway Annotation




Toward Canonical Modules Identification of Dense Subgraphs

Modularity and Connectivity

@ A functional module is generally defined as a group of
molecules that perform a distinct function together

@ Functional modules often manifest themselves as dense
(highly interconnected) subgraphs in PPI networks
@ There exist many algorithms for "graph clustering”, i.e.,
finding proteins in the network that induce a dense
subgraph
@ Noise, ambiguity in definition of modules: No unique way
to decide what is "dense" in a biologically sound manner

@ Our approach: Statistical significance — Find subgraphs

that are "unusually” dense (Koyuturk et al., J. Comp. Bio.,
2007)



Toward Canonical Modules Identification of Dense Subgraphs

Statistical Significance of Subgraph Con

@ For a given reference network generation model and fixed
density threshold p, we are interested in the largest
subgraph with density at least p

o If a larger subgraph with density p exists in the observed
network, it is likely to be generated by factors other than
randomness (with respect to the reference model)

@ By looking at the largest dense subgraph, we account for
multiple hypothesis testing

@ In network analysis, statistical significance is generally
evaluated using Monte-Carlo simulations
@ Analytical models are computationally less expensive, and
provide information on the distribution of the pattern before
pattern is found
@ For given density, we can decide on the range of subgraph
size that is interesting, and vice versa



Toward Canonical Modules Identification of Dense Subgraphs

Largest Dense Subgraph

@ Let ry denote the expected size of the largest p-dense
subgraph with respect to reference model M
@ G(n,p) model

logn

(o5 Where x(p, p) = plog § + (1 — p) log 1%5
denotes divergence, n denotes number of proteins, p
denotes interaction probability

@ Piecewise G(n,p) model

@ The number of hub nodes n, << n contributes a constant
factor to the size of the largest dense subgraph, i.e.,
r o~ W, where B = W and p, >> p
denotes the probability of interaction with a hub protein

@ I~

@ How about power-law graphs?



Toward Canonical Modules Identification of Dense Subgraphs

ldentifying Significantly Dense Subgraphs

@ SIDES algorithm

@ Recursive min-cut until density of subgraph is statistically
significant

@ Based on HCS (Hartuv & Shamir, Information Processing
Letters, 2000)




@ Biological relevance of identified subgraphs is evaluated

Toward Canonical Modules

Performance of SIDES

Identification of Dense Subgraphs

with respect to Gene Ontology (GO)

o If there is a GO term that is significantly enriched in the
subgraph, then it is likely to correspond to a functional
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Toward Canonical Modules

Pathway Annotation

Annotation: From Individual Molecules to' S

@ Networks are species-specific

@ Annotation is at the molecular level

@ Map networks from gene space to an abstract (and unified)

function space
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Toward Canonical Modules Pathway Annotation

Gene Regulatory Networks: Indirect Regula

@ Assessment of pairwise interactions is simple, but not
adequate
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Toward Canonical Modules Pathway Annotation

Pathways of Functional Attributes

@ A pathway of functional attributes maps to multiple
pathways of genes in different contexts

o We want to identify functional pathways that are
overrepresented in the gene network
@ These might help build a "periodic table of systems biology"

@ Frequency alone is not a good measure of statistical
significance

@ The distribution of functional attributes and degree
distribution of genes are not uniform

@— @6 —® ?-
@ @ @

Gene Network Functional Attribute Network



Toward Canonical Modules

Pathway Annotation

Statistical Significance of a Pathway
@ Emphasize modularity of pathways

@ Condition on frequency of building blocks

@ Evaluate the significance of the coupling of building blocks
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Toward Canonical Modules Pathway Annotation

@ A software for identification of significant pathways
(Pandey et al., ISMB, 2007)
@ Given functional attribute T, find all significant pathways
that originate (terminate) at T
@ User can explore back and forth between the gene network
and the functional attribute network

Filter common
terms

Significant
athways

Occurrence of
a pathway in
ene network



Toward Canonical Modules Pathway Annotation

An Example: Molybdate ion transport
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molybdate ion transport

@ modE regulates various processes directly
@ It regulates various other processes indirectly

@ Regulation of these mediator processes is not significant on
itself
@ NARADA captures modularity of indirect regulation!



Toward Canonical Modules Pathway Annotation

An Example: Molybdate ion transport
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@ modE regulates various processes directly
@ It regulates various other processes indirectly
@ Regulation of these mediator processes is not significant on

itself
@ NARADA captures modularity of indirect regulation!



Toward Canonical Modules Pathway Annotation

Functional View of E. coli Regulatory Netwe
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Toward Canonical Modules

Pathway Annotation

Short-Circuiting Mediator Processes
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@ Projection of Functional Pathways




Ongoing Work Network Phylogenetics

Phylogenetic Analysis of Cellular Organiza

@ Can we guide comparative network analysis based on
available phylogenetic information?

@ Can we reconstruct the phylogenetic tree based on
network comparisons?

@ Existing approaches: Define a measure of (global)
similarity between a pair of networks



Feature Based Network Analysis

Ongoing Work Network Phylogenetics

@ Consider each cell as a set of features that represent
components and properties of cellular organization

Components: Modular subgraphs, pathways, topological
motifs

Properties: Degree distribution, clustering coefficients
Facilitates integration of various network models (PPI, gene
regulation, metabolic etc.)

Use features to distinguish cells, use cells to distinguish
features

Enables multi-level analysis: The cells can be considered at
species, individual, or tissue level

@ We calibrate and verify methods using networks that are
generated based on evolutionary models



Ongoing Work Projection of Functional Pathways

From Functional Domain to Molecular Do

@ Recall that identified functional pathways are "abstract"

@ How can we test the conclusions derived from identified

pathways?
@ Project pathways that are identified in one species on
another species

o Identify significant functional pathways in E. coli
transcriptional network

@ Then, find (partial) occurrences of these pathways in the
B.subtilis transcriptional network

@ Score missing interactions based on the significance of
partial pathways that contain them

@ Preliminary results are promising
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