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Systems biology

� Life is an emergent property.
� ”To understand biology at the system level, we must examine the

structure and dynamics of cellular and organismal function, rather
than the characteristics of isolated parts of a cell or organism.”
(Kitano, Science, 2002).

� Systems biology complements molecular biology.
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Organization and dynamics of complex systems

� Understanding how an airplane (cell) works:
� Listing parts (genes, proteins).
� Understanding how parts are connected (interactions).
� Characterizing the electrical and mechanical dynamics (cellular

dynamics).
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Complex diseases

� Many diseases are based on a set of
complex interactions between multiple
genetic and environmental factors.
� Heart disease, high blood pressure,

Alzheimers disease, diabetes, cancer and
obesity, etc.

� Characterization of multiple markers and
their interactions is important for effective
diagnosis, prognosis, modeling, and
intervention.
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Protein-protein interaction (PPI) networks

� Physically interacting proteins can be identified via
high-throughput screening.

� Nodes represent proteins.

� Edges represent interactions.
� Binding, regulation, modification, transport, complex membership...

S.cerevisiae (Baker’s yeast)

Protein Interaction (PPI) Network
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Network-based Prioritization

of

Candidate Disease Genes

Part 1



PPI networks in disease gene prioritization

Lage et al., Nature Biotechnology, 2007.

Background



The problem

� Input:
� Q: Set of known disease genes (seeds).
� σ(s) for s ∈ Q: Degree of association between s and the disease of

interest.
� C: Set of candidate genes in the disease.
� (V , E): Network of PPIs among human proteins (edges can be

weighted representing reliability of interactions).

� Output:
� Ranking of candidate genes in C based on their likelihood of

association with disease.

Driving hypothesis

Products of genes implicated in similar diseases are likely to interact
with each other.

Background



Random walk with restarts

� Quantifies the crosstalk between products of known disease genes
Q (seed set) and candidate genes C (Köhler et al., Am. J. Hum.
Gen., 2008; Chen et al., BMC Bioinf., 2009).
� Accounts for multiplicity of paths and indirect interactions!

� Simulates a random walk on human PPI network, making frequent
restarts at known disease genes.

φ0 = r , φt+1 = (1− c)Pφt + cr , φ = lim
t→∞

φt

� r : Restart vector; r(s) = σ(s)/
∑

s∈Q σ(s) for s ∈ Q, 0 otherwise.
� c : Restart probability (tunable parameter).
� P : Stochastic network derived from (weighted) adjacency matrix of

the PPI network.

Background



Network propagation

� In random walk with restarts, P is the stochastic matrix derived
from the adjacency matrix of the network.
� Only outgoing flow is normalized.

PRW(u, v) = 1/|N (v)| for uv ∈ E , 0 otherwise.

� On the contrary, network propagation models the “disease
association information” being pumped from the seed set and
propagated across the network (Vanunu et al., PLoS Comp. Biol.,
2010).
� Both incoming and outgoing flows are normalized.

PNP(u, v) = 1/
√

|N (u)||N (v)| for uv ∈ E , 0 otherwise.

N (v): Set of interacting partners of protein v ∈ V.
Background



Performance depends on network degree
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� Leave-one-out cross-classification experiments using OMIM
database demonstrate success of information flow based methods.

� But stratification according to degree clearly shows that these
methods are significantly biased by network centrality.

Motivation



Assessing significance with respect to centrality

� Can we statistically adjust information flow based association
scores using reference models that accurately represent the degree
distribution of the network?

� Three statistical adjustment schemes:

� Reference model based on seed degree.

� Reference model based on candidate degree.

� Likelihood-ratio test with respect to eigenvector centrality.

Methods



Reference model based on seed degree

� Generate random seed sets that represent the degree distribution
of original seed set.
� S(1), S(2), ..., S(n) with sufficiently large n.

� Compute scores φ(1), φ(2), ..., φ(n) w.r.t. random seed sets,
estimate population mean and standard deviation.
� µS =

∑

1≤i≤n α
(i)/n.

� σ2
S =

∑

1≤i≤n((α
(i) − µS)(α

(i) − µS)
T )/(n − 1).

� Adjust scores based on these sample statistics:

φSD(v) = (φ(v)− µS(v))/σS(v).

Methods



Reference model based on candidate degree

� For each candidate v ∈ C, generate population M(v) that contains
proteins with degree similar to v .

� Estimate population mean and standard deviation for this degree
regime.
� µ(v) =

∑

u∈M(v) α(u)/|M(v)|.
� σ2(v) =

∑

u∈M(v) (αS(u)− µ(v))/(|M(v)| − 1).

� Adjust scores based on these sample statistics:

φCD(v) = (φ(v)− µ(v))/σ(v).

Methods



Likelihod w.r.t. eigenvector centrality

� The random walk score for r = 0 is a measure of network centrality
(equivalent to Google page-rank).

� Perform likelihood-ratio test using this score as background:

φEC(v) = log
φ(r>0)(v)

φ(r=0)(v)
.

Methods



Experimental setup

� Human PPI network: NCBI Entrez Gene database.
� 3528 binary interactions between 8959 proteins.

� Disease-gene associations: Online Mendelian Inheritance in Man
(OMIM) database.
� 206 diseases with at least 3 known associated genes.
� Number of associations per disease ranges from 3 to 36, mean ≈ 6.

� Leave-one-out cross validation. For each disease:
� Remove a gene from the seed set (target gene).
� Generate an artificial linkage interval from its 99 chromosomal

neighbors.
� Rank candidates in this interval, see how target gene is ranked.

Results



Effect of statistical adjustment

Degree ≤ 5: All genes:
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� Statistical adjustment greatly improves performance for loosely
connected genes.

� However, the overall improvement is marginal.
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Uniform prioritization
� Can we combine raw and statistically adjusted scores to compute a
unique rank for each gene?
� Based on candidate degree (local):

R
(C)
UNI(v) =

{

RRAW(v) if |N (v)| > λ
RADJ(v) otherwise

� Optimistic prioritization (local):

R
(O)
UNI(v) =

{

RRAW(v) if RRAW(v) < RADJ(v)
RADJ(v) otherwise

� Based on seed degree (global):

d(S) = (
∑

u∈S

|N (u)|)/|S|.

R
(S)
UNI(v) =

{

RRAW(v) if d(S) > λ
RADJ(v) otherwise

Methods



Performance of uniform prioritization schemes

Candidate deg. Seed deg. Centrality

R
(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI

Avg. Rank 23.22 24.33 23.30 25.01 25.29 25.42 24.95 24.92 24.02

AUROC 0.76 0.76 0.77 0.75 0.75 0.76 0.75 0.75 0.76

Top 1% 21.7 19.4 14.7 18.4 18.5 19.3 20.0 20.5 21.3

Top 5% 45.1 44.4 42.1 45.5 44.1 41.2 46.3 45.7 47.0

� No clear winner, but models based on candidate degree perform
consistently well together.

Results



Overall performance
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Effect of network degree
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Effect of network degree
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Effect of network degree
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Case example

� Microphtalmia disease
� Three associated genes: SIX6, CHX10, BCOR
� Target gene: BCOR (red circle), Other candidate genes: Yellow circles
� Level of assoication with Microphtalmia: Shade of green
� AKT1: Diamond, ranked 1st by both competing methods
� BCOR ranked 1st by our approach, 16th by both competing methods

Results



Proteomics-Driven Identification of

Important Subnetworks in

Human Colorectal Cancer

Part 2



Human colorectal cancer (CRC)
� Second leading cause of cancer deaths in the United States.
� One out of every 19 individuals will be diagnosed with CRC in their
lifetime.

� CRC is a complex, progressive disease.
� Identification of multiple markers is important for effective prognosis

and intervention.

Motivation



Network-based identification of multiple markers

� Protein-protein interactions (PPIs) highlight functional
relationships among proteins.

� We can identify subnetworks that are coordinately dysregulated
in tumorigenic (or metastatic) samples.

Chuang et al., Nature Mol. Sys. Biol., 2007
Background



Searching for coordinately dysregulated subnetworks

� Existing approaches use mRNA expression data and greedy

algorithms based on additive formulation of coordinate
dysregulation.

Our approach

Utilize other omic datasets to gain additional biological insights and
improve upon greed using computational insights

1. Proteomics-driven identification of subnetwork markers (Part 2)

2. NetCover: Combinatorial algorithms for identification of
subnetwork markers (Part 3)

Approach



Utilizing protein expression data

Protein vs. mRNA (gene) expression

� Transcriptomic data: genome-wide monitoring of mRNA
expression.

� Proteomic data: more reliable information at the functional level.

Methods



Proteomics-driven approach to subnetwork discovery

Methods



Crosstalk to proteomic seeds

� Quantify the crosstalk between the set of proteomic seeds Q and
each protein in human PPI network.

� Random walk with restarts: Simulate a random walk that makes
frequent restarts at proteomic seeds!

φ0 = r , φt+1 = (1− c)Pφt + cr , φ = lim
t→∞

φt

� r : Restart vector; r(s) = 1/|Q| for s ∈ Q, 0 otherwise
� c : Restart probability

� Significant φ ⇒ functional association with proteomic seeds ⇒
involved in the progression of CRC?

Methods



Crosstalk to seeds and coordinate dysregulation

crosstalk to all

significant

Protein with

Interactor

subnetworksubnetwork

Crosstalker

protein

Other

seed

Proteomic

proteomic seeds

Hypothesis

Proteins with significant crosstalk to proteomic seeds are likely to
exhibit significant coordinate mRNA-level dysregulation in CRC.

Methods



Crosstalkers vs. interactors

� Proteomic seeds: 67 proteins with significant (p < 0.05)
differential protein expression in paired samples from 12 patients
with late-stage CRC (Nibbe et al., Mol Cell Prot, 2009).

� Gene expression data: GSE8671, 32 prospectively collected
adenomas paired with those of normal mucosa (Sabates-Beliver et
al., Mol Cancer Res, 2007).

Results



Classification performance

� Subnetworks identified on GSE8671 are used to train classifiers to
classify samples in GSE10950 (Yu et al., Cancer Cell, 2008).

� The “subnetwork activity” (aggregate expression profile) of each
subnetwork is used as a feature.

Results



Experimental validation
� Subunits CCT1, CCT3, and CCT7 of the CCT (Chaperonine
containing TCP1) complex exhibit significant crosstalk to
proteomic seeds and optimize classification performance.

� But they are not reported to be implicated in CRC.

Prediction

These proteins will exhibit significant post-translational dysregulation
in CRC.

Results



Combinatorial Modeling of

Coordinate Dysregulation in Cancer

Part 3



Searching for coordinately dysregulated subnetworks

Coordinate dysregulation

� Subnetwork: S = {g1, g2, ..., gm}
� Subnetwork activity: ES =

∑m
i=1 Ei/

√
m

� Coordinate dysregulation: I (ES ;C ) = H(C )− H(C |ES )

Computational problem

Given a PPI network and gene expression dataset, find subnetworks
with maximal ES .

� Algorithms that aim to greedily maximize ES may not suit well to
the combinatorial nature of this problem.

Methods



Cover-based formulation

� Key idea: For paired samples, assess the differential expression of
each gene for each sample.
� A gene positively covers/ negatively covers a sample if it is

up-regulated/down-regulated in the phenotype sample.
� Differential expression for a single sample can be assessed by properly

quantizing gene expression levels.

Phenotype:

Control:

s1 s2 s3 s4 s5

P = {s4}

N = {s2, s5}

� Objective: Identify subnetworks composed of genes that
complement each other in covering all samples.

Methods



Cover and dysregulation

� How is the cover of a gene related to its dysregulation?

� Information-theoretic formulation of dysregulation.
� Normalized expression of gene gi in sample sj : Eij .
� Phenotype of sample j : Cj .
� Dysregulation of gene gi : I (Ei ;C ) = H(C )− H(C |Ei).

� Cover of a gene.
� Binarized expression of gene gi in sample sj : Êij .
� Positive cover of gene gi : Pi = {sj : Êij(Ph) =↑, Êij(Co) =↓}.

Theorem

For any two genes gi and gj , if | |Pi | − |Ni | |>| |Pj | − |Nj | |, then
I (Êi ;C ) > I (Êj ;C ).

Methods



Cover of a subnetwork

Phenotype:

Control:

g1

g2

g3

g4

g5

s1 s2 s3 s4 s5

P1 = {s1, s2}

P2 = ∅

P3 = {s4, s5}

P4 = {s3}

P5 = {s4}N1 = ∅

N2 = {s2, s5}

N3 = ∅

N4 = ∅

N5 = {s2}

P(S) = {s1, s2, s3, s4, s5} N (S) = ∅S = {g1, g3, g4}

Methods



Cover and coordinate dysregulation

� How is the cover of a subnetwork related to the coordinate
dysregulation of the genes in the subnetwork?

� Coordinate dysregulation.

� Subnetwork activity of S: E (S) =
∑

gi∈S

Ei/
√

|S|.

� Coordinate dysregulation of S: I (E (S);C ) = H(C )− H(C |E (S)).

� Cover of a subnetwork.
� Positive cover of S: P(S) =

⋃

gi∈S

P(gi).

� Negative cover of S: N (S) =
⋃

gi∈S

N (gi ).

� Conjecture: I (E (S);C ) can be maximized by maximizing
| |P(S) \ N (S)| |.

Methods



Problem definition

Minimal covering subnetwork associated with a gene

The minimal covering subnetwork associated with gene gi is defined
as a subnetwork Si satisfying the following conditions:
1. gi ∈ Si .

2. ∀ gj ∈ Si , ∃ gk ∈ Si such that δ(gj , gk) ≤ ℓ, where δ denotes
network distance and ℓ is an adjustable parameter.

3. P(Si ) = U or N (Si ) = U , where U denotes the set of all samples.

4. If P(Si ) = U (N (Si ) = U), then |N (Si )| (|P(Si )|) is minimum
over all subnetworks that satisfy the above three conditions.

5. ∀gj ∈ Si , subnetwork Si \ {gj} does not satisfy the above
conditions.

Methods



NetCover

� Identifies a minimal covering subnetwork associated with each gene
in the network.
� Implements an adaptation of Chvátal’s (Math Op Res, 1979)

algorithm for the set-cover problem.

Algorithm NetCover

1. Initialize Si ← {gi}, T ← U \ Pi , Q ← {gj ∈ V : δ(gi , gj ) ≤ ℓ}.

2. For all gj ∈ Q, compute P ′

j
← Pj ∩ T

3. Find the genes in Q with maximum |P ′

j | and let gk be the gene among these genes

with minimum |Nj |.

4. Si ← Si ∪ {gk}.

5. T ← T \ P ′

k
.

6. Q ← Q∪ {gj ∈ V : δ(gk , gj ) ≤ ℓ} \ {gk}.

7. If T = ∅ or Q = ∅, return Si ; otherwise, go to step (2).

Methods



Classification framework

HPRD PPI Network Gene Expression Dataset 1 Gene Expression Dataset 2

Identify

dysregulated subnetworks

Sort by coordinate dysregulation,

take top K
Compute subnetwork activity

as features for classification

Train Test

classifierclassifier

(NetCover, Greedy)

(SVM, Quadratic Regression)

Cross-classification

Leave-one-out Cross-validation

Results



Experimental Setup

� Classification tasks
� Diagnosis: Discriminating tumor samples from normal.
� Prognosis: Discriminating metastatic samples from primary tumor.

� Datasets
� GSE8671: 32 adenoma samples paired with normal mucosa.
� GSE10950: 24 normal and tumor pairs.
� GSE6988: 27 liver metastasis, 20 primary colorectal tumors, 25

normal mucosa.

� Algorithms
� NetCover.
� Greedy algorithm with coordinate dysregulation as the objective

function.
� Single gene markers (no network information).

Results



Predicting tumor

� Subnetwork identification & training: GSE8671.

� Testing: GSE6988.

� Classifier: SVM, Cross-classification.

Results



Predicting metastasis

� Subnetwork identification & training: GSE8671.

� Testing: GSE6988.

� Classifier: Quadratic regression, Leave-one-out Cross-validation.

Results



Overall performance

� Classifier: SVM.

� Best performance achieved by each algorithm is reported.

Results



Effect of binarization

� Expression levels are normalized gene-wise (µ = 0, σ = 1).

� Top α-fraction of expression levels are set to ↑, the rest is set to ↓.

Results



Conclusions

1. Statistical significance with respect to degree distribution matters
in network-based biological inference.

2. Information theoretic formulation of coordinate dysregulation is
promising.

3. Genomic and proteomic data can provide shortcuts for important
subnetwork identification.

4. Consideration of samples that are discriminated by each gene
better captures coordinate dysregulation of multiple genes.

Results
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