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Background & Motivation

Systems Biology

@ "To understand biology at the
system level, we must examine
the structure and dynamics of
cellular and organismal function,
rather than the characteristics of
isolated parts of a cell or
organism." (Kitano, Science,
2002)

@ Cell is not just an assembly of

genes and proteins
@ Systems biology complements
molecular biology
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Background & Motivation

Modeling Cellular Organization: Networks

@ Metabolism, genetic regulation, cellular signaling
@ Nodes represent cellular components
@ Protein, gene, enzyme, metabolite

@ Edges represent interactions

@ Binding, regulation, modification, complex membership,
substrate-product relationship
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Background & Motivation
Function & Topology in Molecular Networks

How does function relate to network topology?

Motifs

Pathways
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Background & Motivation

Characterizing Biological Function

@ Significant progress on
standardizing knowledge on
biological function at the

Gene Ontology

molecular level
@ Protein/domain families (COG, Pl e
PFAM, ADDA) A

@ Gene Ontology: Hierarchical
classification of molecular

e
Cell Differentiation
GO:0030154

functions, biological processes,
and cellular components
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Functional Coherence

@ Modularity manifests itself
in terms of high
connectivity in the network

@ |dentification of modular
subgraphs

@ Functional annotation of
a group of molecules

Background & Motivation

@ Functional association

(similarity) is correlated
with network proximity
@ Network based
functional annotation
@ Identification of multiple
disease markers
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Background & Motivation

© Recurrent functional interaction patterns

@ Crosstalk between different processes
@ "Periodic table of systems biology"
© Functional coherence with respect to different types of
interaction
@ What does proximity mean in domain-domain interaction
networks?
@ Assessing functional similarity between two molecules



Annotation of Regulatory Pathways

e Annotation of Regulatory Pathways

DAy



Annotation of Regulatory Pathways

Functional Annotation: From Molecules to

@ Networks are species-specific
@ Functional ontologies are described at the molecular level
@ Can we map networks from gene space to an abstract

(and unified) function space?

Network of GO terms
based on significance of
pairwise interactions in S.
cerevisiae Synthetic Gene
Array (SGA) network (Tong
et al., Science, 2004)




Annotation of Regulatory Pathways

Gene Regulatory Networks: Indirect Regulat

@ Assessment of pairwise interactions is simple, but not
adequate
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Annotation of Regulatory Pathways

Functional Attribute Networks

@ Multigraph model

@ A gene is associated with multiple functional attributes
@ A functional attribute is associated with multiple genes
@ Functional attributes are represented by nodes

@ Genes are represented by ports, reflecting context

Gene Network

Functional Attribute Network




Annotation of Regulatory Pathways

Frequency of a Multipath

@ A pathway of functional attributes occurs in various
contexts in the gene network

@ Multipath in the functional attribute network

Frequency of Multipath =

g K
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Annotation of Regulatory Pathways

Frequency vs. Statistical Significance

@ We want to identify overrepresented pathways
@ These might correspond to modular pathways
@ Frequency alone is not a good measure of statistical
significance
@ The distribution of functional attributes among genes is not
uniform

@ The degree distribution in the gene network is highly
skewed

@ Pathways that contain common functional attributes have
high frequency, but they are not necessarily interesting



Annotation of Regulatory Pathways
Statistical Significance of a Pathway

@ Emphasize modularity of pathways
@ Condition on frequency of building blocks

@ Evaluate the significance of the coupling of building blocks

(-l = ¢(E->EHC) =4

e(I—>l) = p(HLC]) =2
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Annotation of Regulatory Pathways

Significance of Pairwise Interactions

@ A single regulatory interaction is the shortest pathway
@ Arbitrary degree distribution: The number of edges leaving
and entering each functional attribute is specified
@ Edges are assumed to be independent

@ The frequency of a regulatory interaction is a

hypergeometric random variable
min{;é;,n} (ﬁiéj) (m—ﬁiéj)

® pj =P(d; > ¢ylB)= > %
=g n

@ [; = in-degree and ¢§; = out-degree
@ m = pool of potential edges, n = number of edges in
network



Annotation of Regulatory Pathways
Significance of a Pathway

@ We denote each frequency random variable by ¢, their
observed value by ¢

23 E—a—a
®, ¢, @, o, @,
)

123

@ Significance of pathway 71,3 ( p123 ) is defined as

P(¢123 > @123]012 = @12, 23 = P23, P01 = @1, P2 = Y2, P3 = 3)




Annotation of Regulatory Pathways

Computing Significance

@ Assume that interactions are independent
@ There are 1,23 possible pairs of m1, and w3 edges
@ The probability that a pair of 1, and 7,3 edges go through
the same gene (corresponds to an occurrence of m123) is
1/¢2
@ The probability that at least ;53 of these pairs go through
the same gene can be bounded by

@ P13 < exp(p12¢23Hq(t)) where g = 1/¢, and

t = p123/p12023
@ Hq(t) =tlog(q/t)+(1—t)log((1—q)/(1—t))is divergence
@ Bonferroni-corrected for multiple testing (adjusted by

[T [ Vg em, F(90))



Annotation of Regulatory Pathways

Algorithmic Issues

@ Significance is not monotonic with respect to size
@ Need to enumerate all pathways?
@ Strongly significant pathways
@ A pathway is strongly significant if all of its building blocks
and their coupling are significant (defined recursively)
@ Allows pruning out the search space effectively
@ Shortcircuiting common functional attributes

@ Transcription factors, DNA binding genes, etc. are
responsible for mediating regulation

@ Shortcircuit these terms, consider regulatory effect of
different processes on each other directly



Annotation of Regulatory Pathways

@ A software for identification of significant pathways
(Pandey et al., ISMB, 2007)
@ Given functional attribute T, find all significant pathways
that originate (terminate) at T

@ User can explore back and forth between the gene network
and the functional attribute network

> S
= | Significant
Occurrence of @ " pathways
S |

gene network




Annotation of Regulatory Pathways

Significant Regulatory Pathways in Bacterie

@ We use NARADA to identify significant pathways in the
transcriptional networks of two bacterial species

@ E. coli: 1364 genes, 3159 regulatory interactions
(RegulonDB)
@ B. subtilis: 562 genes, 604 regulatory interactions (DBTBS)

Strongly significant pathways (p < 0.01)

Pathway length 2 3 4

E. coli 143 753 1328
B. subtilis 22 78 202
Common 10 54 157




Annotation of Regulatory Pathways

An Example: Molybdate lon Transport

G0:0017004
Go00a2128

— NUOABEFGHIJK narGHIJK fdnGHI nirBCD
G0:0006120 moaABCDE hePR orAC
PRI ./, A "
G0:0000160- ©0:0015675 nr'AEC
o Go015886 \\X norvw
nrfE
G0:0006777 CTRESES: cmABCDEFH
R GRS fidABC \"ﬂ"F nybAB
W— co0s4ss oppABCDF naaABCFGH nkBCDE
-
Significant regulatory pathways Their occurrences
that originate at in the gene network

molybdate ion transport

@ modE regulates various processes directly
@ It regulates various other processes indirectly

@ Regulation of these mediator processes is not significant on
itself
@ NARADA captures modularity of indirect regulation!

[m] [l = =




Annotation of Regulatory Pathways

An Example: Molybdate lon Transport

DNA i

‘Two-component signal transduction
itrate assimilation

NUOABEFGHIUK narGHIK fdnGHI nirBCD

Go:0006120 hePR

moaABCDE torAC
0015888 Go008355 Go:000611 dmsAB
Goa000160. co001567 fon transport narl. <|;.rmsc
3
Gowoaz1zs co0015859  Electron transport, \ e oW
60:0008535
coi0008777 EFH =~
fdhF
o — | fi9ABCJdhF “hybaB

— napABCFGH  nikBCDE

y cofactor bi
Oligopeptide transport
Cytochrome complex assembly

ays Their occurrences
in the gene network

molybdate ion transport

@ modE regulates various processes directly
@ It regulates various other processes indirectly

@ Regulation of these mediator processes is not significant on
itself

@ NARADA captures modularity of indirect regulation!



Annotation of Regulatory Pathways

Functional View of E. coli Regulatory Netwe
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Annotation of Regulatory Pathways

Short-Circuiting Mediator Processes
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Annotation of Regulatory Pathways

Applications

@ Projecting from functional space back to molecular space
@ Pattern-based functional annotation (Kirac et al., RECOMB,
2008)
@ Pathway identification through cross-species projection
(Cakmak et al., Bioinformatics, 2008)
@ Ongoing work: Interaction prediction
@ |dentify significant functional pathways in E. coli
transcriptional network
@ Find (partial) occurrences of these pathways in the
B.subtilis transcriptional network
@ "Interpolate" these pathways to predict novel interactions
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e Functional Coherence & Network Proximity
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Functional Coherence & Network Proximity

Domain-Domain Interactions

@ Most proteins are composed of multiple domains

@ Many domains are reused in several
(evolutionarily/functionally related) proteins

@ Interactions between domains underlie observed
protein-protein interactions

@ Many algorithms exist to infer domain-domain interactions

YIL108c

Jothi et al., JIMB, 2006



Functional Coherence & Network Proximity

PPI Networks vs. DDI Networks

@ Protein-protein interaction (PPI) networks are used
extensively for functional inference
@ Network-based functional annotation
@ |dentification of functional modules
@ In PPI networks, functional coherence manifests itself in
terms of network proximity
@ How about DDI "networks"?
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Sharan et al., MSB, 2007



Functional Coherence & Network Proximity

Assessing Functional Similarity

Y Gene Ontology (GO) biological process
is_a is_a
prOVideS a hierarChicaI physiological process cellular process
taxonomy of biological

cellular physiological process

function / \

cell cycle cell division

@ Assessment of semantic g/ g \ ;
M phase meiotic cell cycle =
similarity between '/pan_of oytokinesis

. . . M pr:z_sae of meiotic cell cycle
concepts in a hierarchical \
part_of is_a

taxonomy is well studied
(Resnik, 1JCAI, 1995)
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Functional Coherence & Network Proximity

Semantic Similarity of GO Terms

@ Resnik’s measure based on information content:

I(c) = —10g,(|Gcl/|Gr])

5|(ci,cj):cgam>xl(c)
il1A

@ G.: Set of molecules that are associated with term ¢

o r: Root term

@ Ai: Ancestors of term C; in the hierarchy

o A(ci,¢j) = argmax.cpa (c): Minimum common ancestor
of ¢; and ¢;




Functional Coherence & Network Proximity

Functional Similarity of Molecules

@ Each molecule (protein or domain) is associated with
multiple GO terms

@ Available annotations are incomplete

@ Domain annotations are often derived from protein
annotations

@ A domain is associated with terms at the intersection of
proteins that contain the domain
@ Is it possible to compare functional similarity between
domains and functional similarity between proteins at all?



Functional Coherence & Network Proximity
Properties of Admissible Measures

What are the basic required properties of an admissible

measure of similarity between two sets?

© Symmetry: p(Si, Sj) = p(S;, Si) for all Sj, S

@ Consistency: p(S;,Sj) < p(S;,Sj) for all S;, S

© Monotonicity: p(Si, Sj) < p(Si U ¢k, Sj U k)

Q Generality: p(S;,Sj) < p(Si, Sj U Sk) for all S;, Sj, Sk

@ Incompleteness-aware measures: No conclusions based
on negative evidence!



Functional Coherence & Network Proximity
lllustration of Properties

@ Monotonicity:
p(S1,S2) < p(Sa, Ss)
S1 ={cs} @ Generality:
Sz = {c7} p(S2,S3) < p(S2,S4)
Sz = {ce}
S4 = {C4,Ce}
Ss = {Cs,C7}



Functional Coherence & Network Proximity

Existing Measures are not Admissible

@ Average (Lord et al., Bioinformatics, 2003)

pa(Si; Sj) = Wllsj\ PO BRICCY

CkES; ¢ ESJ'

@ Fails consistency, monotonicity, generality

@ Maximum (Sevilla et al., IEEE TCBB, 2005)

Si,Si)= max d(cg,cC
om(Si, S) L (ck,cr)

@ Principle: Similarity in a single pair of terms is sufficient
@ Fails monotonicity



Functional Coherence & Network Proximity

Existing Measures are not Admissible

@ Average of Maxima (Schlicker et al

Bioinformatics, 2007)
(Si,S) = max{ =t Z max d(ck, ¢,

max d(C, C
.C|€ |S| Z Ck€S| ( K I)}
term

@ Principle: Similarity with a single term is sufficient for each

@ Fails consistency, monotonicity, generality




Functional Coherence & Network Proximity

Information Content Based Set Similarity

@ Generalize the concept of minimum common ancestor to
sets of terms (Pandey et al., ECCB, 2008)

/\(Si , SJ‘) = |_| )\(Ck, C|)

Ck €Si,C1€S;
IGhs.s)
pi(Si,Sj) = I(A(Si, §))) = —log, <ﬁ
r

@ Gps,s) = ﬂ G, is the set of molecules that are
A EA(SI,S))
associated with all terms in the MCA set



Functional Coherence & Network Proximity

lllustration of Information Content Based Me

®)
L )\(C4,C4) = Cy,
@ 0 @ )‘(CG’C4) = )\(C7,C4) =R

[*) /\(Sl, Sz) = {C4} =

@ @@ e p(S1,S2) =

S; = {c4,Cs,C7} —10g,(|Gc,|/IGrI) =
S, = {c4} log,(5/4)
Sz = {C4,Ce} ® A(S1,S3) = {c4,C6} =
Sq = {cg,C7} p1(S1,S3) = log,(5/2)
Ss = {C4,C3}




Functional Coherence & Network Proximity

Information Content Based Measure Is Admiss

e Symmetry: Trivially, pi(S;, Sj) = pi1(Sj, Si) for all S;, S;.

a Consistency: Clearly, ¢, < A(ck, ¢) for any ¢k, ¢;. Now consider any
cm € A(S;, Sj). Since cm = A(ck, ¢;) for some ¢ € Sj and ¢ € S;, there always
exists cn € A(Sj, Sj) such that ch < ¢ < cm. Consequently, we must have
Gasi,si) € Gns,.s)): leading to pi (Si, §p) < pi(Si, Si).

e Monotonicity: Since ¢, ~ cn for all cn € S; U S;, we have
A(Si Uck, SjUck) = A(Si, S)) UAS USj, {ek}) U {ek} 2 A(Si, S)) U {ek
leading to G(s;uc,,s;uc,) € Ga(s;,s)) @and [Ga(s ugy,s;uc)| < [Gags; s))l-
Consequently, p(S; U ¢, Sj U ck) > pi(Si, Sj)-

© Generality:
/\(Si,Sj U Sk) = /\(Si,Sj) U /\(Si,Sk) _ /\(Si,Sj).
Therefore, G/\(Si,SjUSk) - G/\(Si’sj), leading to
n1(Si, SjUSk) > ni(Si, Sp)-

o (=) = = £ DA



Functional Coherence & Network Proximity

Comparison of Similarity Measures
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Functional Coherence & Network Proximity

Comparison of Similarity Measures
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Functional Coherence & Network Proximity

Comparison of PPl and DDI Networks
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Functional Coherence & Network Proximity

Comparison of PPl and DDI Networks
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Functional Coherence & Network Proximity

Accounting for Multiple Paths

@ Is "shortest path" a good measure of network proximity?
@ Multiple alternate paths might indicate stronger functional
association
@ In well-studied pathways, redundancy is shown to play an
important role in robustness & adaptation (e.g., genetic
buffering)

PaS UGS



Functional Coherence & Network Proximity

Proximity Based On Random Walks

® Simulate an infinite random walk with random restarts at
protein i

@ Proximity between proteins i and j is given by the relative
amount of time spent at protein j

O(0) =1, Ot +1) = (1 - P)AS(t) + pl, & = lim o(t)

@ ®(i,j): Network proximity between protein i and protein j

@ A: Stochastic matrix derived from the adjacency matrix of
the network

@ |: Identity matrix

@ p: Restart probability



Functional Coherence & Network Proximity

Shortest Path vs. Proximity
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Functional Coherence & Network Proximity

Application: Identifying Indirectly Implicatec

@ Premise: Small changes in mRNA expression may lead to
significant changes in post-transcriptional activity

@ Human colorectal cancer: Identify proteins with significant
fold change (between metastatic and control samples)
using 2D-PAGE

@ Map these "seed proteins” on the PPI network to extract
"implicated subnets"

@ Refine these subnets using gene expression data

Extracomular

"Regulation of developmen-
= tal proteins" subnet, differen-
tially expressed in metastatic
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Functional Coherence & Network Proximity

Using Network Proximity to Find Implicated

Generalize random walk with restarts

@ Restart at any of the seed proteins!

¢(0) =r, o(t +1) = (1 - p)Ag(t) +pr, ¢ = lim ¢(t)

¢(j): Proximity of protein j to seed proteins

r : Restart vector, ||r||; =1

r(i) = |z| if fold change z; of protein i is significant

Prioritize all proteins in the network based on ¢(j)



Functional Coherence & Network Proximity

Genes Implicated by Network Proximity

Rank |Gene Score (xlo'g) Function

Mediates TGF-beta signaling to regulate

1 SMAD4 3.08 cell growth and differentiation
Transcriptional modulator activated by
2 SMADO9 1.86 BMP (bone morphogenetic proteins)

Ca(2+)-regulated actin-bhinding protein,
major component of microvilli of

3 VIL1 1.20 intestinal epithelial cells
4 ACTG1 0.78
5 TMSB4X 0.78
6 AP2M1 0.73
7 DVL2 0.71
8 BCAP31 0.70
9 TMSBAY 0.62

10 MAP1A 0.57
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