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Complex diseases

� Many diseases are based on a set of
complex interactions between multiple
genetic and environmental factors.
� Heart disease, high blood pressure,

Alzheimer’s disease, diabetes, cancer,
obesity, etc.

� Genome-wide association studies (GWAS)
hint on where disease-associated genes
might be located on the genome (linkage
interval), but such intervals might contain
up to 300 genes.
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Protein-protein interaction (PPI) networks

� Physically interacting proteins can be identified via
high-throughput screening.

� Nodes represent proteins.
� Edges represent interactions.

� Binding, regulation, modification, transport, complex membership...

� Many public databases of PPIs (e.g.,HPRD, DIP, BIOGRID).

S.cerevisiae (Baker’s yeast)

Protein Interaction (PPI) Network
Introduction



PPI networks in disease gene prioritization

Lage et al., Nature Biotechnology, 2007.

Background



The problem

� Input:
� Q: Set of known disease genes (seeds).
� σ(s) for s ∈ Q: Degree of association between s and the disease of

interest.
� C: Set of candidate genes in the disease.
� (V , E): Network of PPIs among human proteins (edges can be

weighted representing reliability of interactions).

� Output:
� Ranking of candidate genes in C based on their likelihood of

association with disease.

Driving hypothesis

Products of genes implicated in similar diseases are likely to interact
with each other.

Background



Random walk with restarts

� Quantifies the crosstalk between products of known disease genes
Q (seed set) and candidate genes C (Köhler et al., Am. J. Hum.
Gen., 2008; Chen et al., BMC Bioinf., 2009).
� Accounts for multiplicity of paths and indirect interactions!

� Simulates a random walk on human PPI network, making frequent
restarts at known disease genes.

φ0 = r , φt+1 = (1− c)Pφt + cr , φ = lim
t→∞

φt

� r : Restart vector; r(s) = σ(s)/
∑

s∈Q σ(s) for s ∈ Q, 0 otherwise.
� c : Restart probability (tunable parameter).
� P : Stochastic network derived from (weighted) adjacency matrix of

the PPI network.

Background



Network propagation

� In random walk with restarts, P is the stochastic matrix derived
from the adjacency matrix of the network.
� Only outgoing flow is normalized.

PRW(u, v) = 1/|N (v)| for uv ∈ E , 0 otherwise.

� On the contrary, network propagation models the “disease
association information” being pumped from the seed set and
propagated across the network (Vanunu et al., PLoS Comp. Biol.,
2010).
� Both incoming and outgoing flows are normalized.

PNP(u, v) = 1/
√

|N (u)||N (v)| for uv ∈ E , 0 otherwise.

N (v): Set of interacting partners of protein v ∈ V.

Background



Performance depends on network degree
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� Leave-one-out cross-classification experiments using OMIM
database demonstrate success of information flow based methods.

� But stratification according to degree clearly shows that these
methods are significantly biased by network centrality.

Motivation



Assessing significance with respect to centrality

� Can we statistically adjust information flow based association
scores using reference models that accurately represent the degree
distribution of the network?

� Three statistical adjustment schemes:

� Reference model based on seed degree.

� Reference model based on candidate degree.

� Likelihood-ratio test with respect to eigenvector centrality.

Methods



Reference model based on seed degree

� Generate random seed sets that represent the degree distribution
of original seed set.
� S(1), S(2), ..., S(n) with sufficiently large n.

� Compute scores φ(1), φ(2), ..., φ(n) w.r.t. random seed sets,
estimate population mean and standard deviation.
� µS =

∑

1≤i≤n α
(i)/n.

� σ2
S =

∑

1≤i≤n((α
(i) − µS)(α

(i) − µS)
T )/(n − 1).

� Adjust scores based on these sample statistics:

φSD(v) = (φ(v)− µS(v))/σS(v).

Methods



Reference model based on candidate degree

� For each candidate v ∈ C, generate population M(v) that contains
proteins with degree similar to v .

� Estimate population mean and standard deviation for this degree
regime.
� µ(v) =

∑

u∈M(v) α(u)/|M(v)|.

� σ2(v) =
∑

u∈M(v) (αS(u)− µ(v))/(|M(v)| − 1).

� Adjust scores based on these sample statistics:

φCD(v) = (φ(v)− µ(v))/σ(v).

Methods



Likelihod w.r.t. eigenvector centrality

� The random walk score for c = 0 is a measure of network
centrality (equivalent to Google page-rank).

� Perform likelihood-ratio test using this score as background:

φEC(v) = log
φ(c>0)(v)

φ(c=0)(v)
.

Methods



Experimental Setup

� Human PPI network: NCBI Entrez Gene database.
� 33528 binary interactions between 8959 proteins.

� Disease-gene associations: Online Mendelian Inheritance in Man
(OMIM) database.
� 206 diseases with at least 3 known associated genes.
� Number of associations per disease ranges from 3 to 36, mean ≈ 6.

� Leave-one-out cross validation. For each disease:
� Remove a gene from the seed set (target gene).
� Generate an artificial linkage interval from its 99 chromosomal

neighbors.
� Rank candidates in this interval, see how target gene is ranked.

Results



Effect of statistical adjustment

Degree ≤ 5: All genes:
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� Statistical adjustment greatly improves performance for loosely
connected genes.

� However, the overall improvement is marginal.

Results



Uniform prioritization
� Can we combine raw and statistically adjusted scores to compute a
unique rank for each gene?
� Based on candidate degree (local):

R
(C)
UNI(v) =

{

RRAW(v) if |N (v)| > λ
RADJ(v) otherwise

� Optimistic prioritization (local):

R
(O)
UNI(v) =

{

RRAW(v) if RRAW(v) < RADJ(v)
RADJ(v) otherwise

� Based on seed degree (global):

d(S) = (
∑

u∈S

|N (u)|)/|S|.

R
(S)
UNI(v) =

{

RRAW(v) if d(S) > λ
RADJ(v) otherwise

Methods



Performance of uniform prioritization schemes

Candidate deg. Seed deg. Centrality

R
(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI

Avg. Rank 23.22 24.33 23.30 25.01 25.29 25.42 24.95 24.92 24.02

AUROC 0.76 0.76 0.77 0.75 0.75 0.76 0.75 0.75 0.76

Top 1% 21.7 19.4 14.7 18.4 18.5 19.3 20.0 20.5 21.3

Top 5% 45.1 44.4 42.1 45.5 44.1 41.2 46.3 45.7 47.0

� No clear winner, but models based on candidate degree perform
consistently well together.

Results



Overall performance
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Effect of network degree
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Case example

� Microphtalmia disease
� Three associated genes: SIX6, CHX10, BCOR
� Target gene: BCOR (red circle), Other candidate genes: Yellow circles
� Level of assoication with Microphtalmia: Shade of green
� AKT1: Diamond, ranked 1st by both competing methods
� BCOR ranked 1st by our approach, 16th by both competing methods

Results
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