Subnetwork state functions define dysregulated subnetworks in cancer

Salim A. Chowdhury¹, Rod K. Nibbe², Mark R. Chance², and **Mehmet Koyutürk**^{1,2}

Case Western Reserve University (1)Electrical Engineering & Computer Science (2)Center for Proteomics & Bioinformatics

14th Int'l Conf. on Research in Computational Molecular Biology Lisboa, Portugal; August 12, 2010

Cancer is a complex and progressive disease

- Complex interactions among multiple genetic and environmental factors.
- Identification of *multiple* markers and their *interactions* ⇒ More effective diagnosis, prognosis, modeling, and intervention.

MOTIVATION

Network-based identification of multiple markers

- Protein-protein interactions (PPIs) highlight functional relationships among proteins.
- Gene expression data hints on transcriptional regulation of proteins in different samples.
- \Rightarrow Identify subnetworks with significant differential expression in pathogenic samples (*dysregulated subnetworks*).

Nielsen & Patil, PNAS, 2005

Ideker et al., ISMB, 2002

Ulitsky et al., RECOMB, 2008

BACKGROUND

Additive coordinate dysregulation

- Subnetwork activity: Aggregate expression of the genes coding for the proteins in the subnetwork.
- Dysregulated subnetworks: Those with differential aggregate expression in pathogenic samples.
 - $\hfill\square$ Captures coordinate dysregulation at a sample-specific resolution.

Chuang et al., Nature Mol. Sys. Biol., 2007

Additive coordinate dysregulation

- Subnetwork activity: Aggregate expression of the genes coding for the proteins in the subnetwork.
- Dysregulated subnetworks: Those with differential aggregate expression in pathogenic samples.
 - □ Captures coordinate dysregulation at a sample-specific resolution.
 - □ Enables use of subnetworks as markers for classification.

Nibbe et al., PLoS Comp. Biol., 2010

Finding coordinately dysregulated subnetworks

Limitations of existing methods:

- □ *Additive* formulation coordinate dysregulation.
 - How about interacting proteins that are regulated in different directions?
- □ *Greedy* algorithms.
 - But the objective function is combinatorial in nature.

Our approach

- Combinatorial formulation of coordinate dysregulation.
- Exhaustive, but efficient search algorithms.

Formulating coordinate dysregulation

- $S = \{g_1, g_2, ..., g_m\}$: A subnetwork of the human PPI network.
- $E_i(j)$: Expression of gene g_i in the *j*th sample.
- *C*(*j*): Phenotype of *j*th sample (*e.g.*, metastatic *vs.* primary).

Additive coordinate dysregulation

- Subnetwork activity: $E_S = \sum_{i=1}^m E_i / \sqrt{m}$
- Additive coordinate dysregulation: $I(E_S; C) = H(C) H(C|E_S)$

Combinatorial coordinate dysregulation

- Subnetwork state: $F_{\mathcal{S}} = \{\hat{E}_1, \hat{E}_2, ..., \hat{E}_m\} \in \{\mathrm{H}, \mathrm{L}\}^m$
- Combinatorial coordinate dysregulation: $I(F_S); C) = H(C) - H(C|F_S)$

Combinatorial vs. additive coordinate dysregulation

- Additive formulation can capture the dysregulation of S₁, but not that of S₂.
- Combinatorial formulation captures both.

Finding combinatorially dysregulated subnetworks

- Identification of combinatorially dysregulated subnetworks is computationally intractable.
 - Synergistic dysregulation is also defined combinatorially, but in a more conservative manner (Anastassiou, *Mol. Sys. Biol.*, 2007).
 - Current applications of synergytic dysregulation are limited to pairs of genes.

Watkinson et al., BMC Sys. Biol., 2008

Price et al., PNAS, 2007

State functions

Decompose the objective function:

$$I(F_{\mathcal{S}}; C) = \sum_{f_{\mathcal{S}} \in \{\mathrm{H}, \mathrm{L}\}^m} J(f_{\mathcal{S}}; C)$$

where

$$J(f_{\mathcal{S}}; C) = p(f_{\mathcal{S}}) \sum_{c \in \{0,1\}} p(c|f_{\mathcal{S}}) \log(p(c|f_{\mathcal{S}})/p(c)).$$

- \square F_{S} : Random variable that represents the expression state of subnetwork S.
- \Box *f*_S: A specific expression state of S (termed state function).
- High $J(f_S; C) \Rightarrow$ State function f_S is informative of phenotype.

Algorithmic insight

- J(.) can be bounded for larger state functions using statistics on smaller state functions.
 - Based on a similar result on association rule mining (Smyth & Goodman, *IEEE TKDE*, 1992).

Theorem

For any superstate $f_{\mathcal{R}}$ of state function $f_{\mathcal{S}}$ (where $\mathcal{S} \subseteq \mathcal{R}$), the following bound holds:

$$J(f_{\mathcal{R}}; \mathcal{C}) \leq p(f_{\mathcal{S}}) \max_{c \in \{0,1\}} \left\{ p(c|f_{\mathcal{S}}) \log \frac{1}{p(c)} \right\}.$$

 \Rightarrow We can search **exhaustively** for state functions that **indicate** phenotype.

CRANE

- Algorithm for the identification of Combinatorially Dys-Regulated Sub-Networks.
 - \Box *j**: Threshold on *J*-value.
 - \Box *b*: Breadth of search.
 - \Box d: Depth of search.

Using informative state functions for classification

- Not straighforward to represent the combinatorial relationship among multiple genes using traditional classifiers (e.g., SVMs).
- We build neural networks in which each subnetwork is represented by an input layer neuron.

Experimental Setup

Results

Predicting colon cancer metastasis

Datasets:

- □ GSE6988: 27 vs. 20 tumor samples w/ vs. w/o liver metastasis (Ki et al., Int J Cancer, 2007).
- □ GSE3964: 30 vs. 18 tumor samples w/ vs. w/o liver metastasis (Graudens *et al.*, *Genome Biol*, 2006).

Algorithms:

- \Box Crane.
- □ Greedy algorithm with combinatorial dysregulation.
- □ Greedy algorithm with additive dysregulation (NN+SVM).
- □ Single gene markers (no network information).

GSE6988 on GSE3964

- Subnetwork discovery & training: GSE6988.
- Testing: GSE3964.

GSE3964 on GSE6988

- Subnetwork discovery & training: GSE3964.
- Testing: GSE6988.

Results

Enrichment analysis

Five subnetworks that are associated with the most informative state functions discovered on GSE6988:

Damle	Proteins	Most Significantly	Enrichment
Ralik		Enriched Process	p-value
1	SERPINA3, KLK3, EPOR, GNB2L1, RASA1, RAF1	Inflammation	1×10^{-3}
2	E2F4, CCNE1, GSK3B, HNRPD, SF3B2, RPL13	Cell Movement	1×10^{-3}
3	DMTF1, CCND2. AKAP8, DDX5, FN1, CRP	Cell Migration	1×10^{-4}
4	ANXA11, PLSCR1, EWSR1, PTK2B, ITGB2, HP	Cell Adhesion	1×10^{-4}
5	SKP1A, CCNA2, CDKN1A, GADD45G, EEF1G, RGL2	Inflammation	1×10^{-4}

Generating novel insights

- State function LLLLLH indicates metastasis with J = 0.33.
- Overall combinatorial dysregulation: 0.72.
- Overall additive dysregulation: 0.37.

Results

Conclusions

- 1. Information theoretic formulation of coordinate dysregulation is promising.
- 2. Consideration of "cellular states" appears to be more effective as compared to "superposition" of information on multiple molecules.
- 3. Improving upon greedy may improve performance in the search for relevant subnetworks.
- 4. Combinatorial coordinate dysregulation \Rightarrow novel modeling paradigms for cellular signaling.

Acknowledgments

Salim A. Chowdhury

Rod K. Nibbe

Mark R. Chance

 Sinan Erten (CWRU EECS); Vishal Patel, Gürkan Bebek, Rob Ewing (CWRU Proteomics), Jill Barnholtz-Sloan (Case Comprehensive Cancer Center), Xiaowei Guan (CWRU Biostatistics & Epidemiology).

CCF-0953195

Thanks

Effect of parameters

APPENDIX