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Cancer is a complex and progressive disease

� Complex interactions among multiple genetic and environmental
factors.

� Identification of multiple markers and their interactions ⇒ More
effective diagnosis, prognosis, modeling, and intervention.

Motivation



Network-based identification of multiple markers

� Protein-protein interactions (PPIs) highlight functional
relationships among proteins.

� Gene expression data hints on transcriptional regulation of proteins
in different samples.

⇒ Identify subnetworks with significant differential expression in
pathogenic samples (dysregulated subnetworks).

Nielsen & Patil, PNAS, 2005 Ideker et al., ISMB, 2002 Ulitsky et al., RECOMB, 2008

Background



Additive coordinate dysregulation

� Subnetwork activity: Aggregate expression of the genes coding for
the proteins in the subnetwork.

� Dysregulated subnetworks: Those with differential aggregate
expression in pathogenic samples.
� Captures coordinate dysregulation at a sample-specific resolution.

Chuang et al., Nature Mol. Sys. Biol., 2007

Background



Additive coordinate dysregulation

� Subnetwork activity: Aggregate expression of the genes coding for
the proteins in the subnetwork.

� Dysregulated subnetworks: Those with differential aggregate
expression in pathogenic samples.
� Captures coordinate dysregulation at a sample-specific resolution.
� Enables use of subnetworks as markers for classification.

Nibbe et al., PLoS Comp. Biol., 2010

Background



Finding coordinately dysregulated subnetworks

� Limitations of existing methods:
� Additive formulation coordinate dysregulation.

� How about interacting proteins that are regulated in different directions?

� Greedy algorithms.
� But the objective function is combinatorial in nature.

Our approach

� Combinatorial formulation of coordinate dysregulation.

� Exhaustive, but efficient search algorithms.

Approach



Formulating coordinate dysregulation

� S = {g1, g2, ..., gm}: A subnetwork of the human PPI network.

� Ei (j): Expression of gene gi in the jth sample.

� C (j): Phenotype of jth sample (e.g., metastatic vs. primary).

Additive coordinate dysregulation

� Subnetwork activity: ES =
∑m

i=1 Ei/
√

m

� Additive coordinate dysregulation: I (ES ;C ) = H(C ) − H(C |ES)

Combinatorial coordinate dysregulation

� Subnetwork state: FS = {Ê1, Ê2, ..., Êm} ∈ {H, L}m

� Combinatorial coordinate dysregulation:
I (FS);C ) = H(C ) − H(C |FS)

Methods



Combinatorial vs. additive coordinate dysregulation
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� Additive formulation can capture the dysregulation of S1, but not
that of S2.

� Combinatorial formulation captures both.

Methods



Finding combinatorially dysregulated subnetworks

� Identification of combinatorially dysregulated subnetworks is
computationally intractable.
� Synergistic dysregulation is also defined combinatorially, but in a more

conservative manner (Anastassiou, Mol. Sys. Biol., 2007).
� Current applications of synergytic dysregulation are limited to pairs of

genes.

Price et al., PNAS, 2007 Watkinson et al., BMC Sys. Biol., 2008

Methods



State functions

� Decompose the objective function:

I (FS ;C ) =
∑

fS∈{H,L}m

J(fS ;C )

where

J(fS ;C ) = p(fS)
∑

c∈{0,1}

p(c |fS) log(p(c |fS)/p(c)).

� FS : Random variable that represents the expression state of
subnetwork S.

� fS : A specific expression state of S (termed state function).

� High J(fS ;C ) ⇒ State function fS is informative of phenotype.

Methods



Algorithmic insight

� J(.) can be bounded for larger state functions using statistics on
smaller state functions.
� Based on a similar result on association rule mining (Smyth &

Goodman, IEEE TKDE, 1992).

Theorem

For any superstate fR of state function fS (where S ⊆ R), the
following bound holds:

J(fR;C ) ≤ p(fS) max
c∈{0,1}

{

p(c |fS) log
1

p(c)

}

.

⇒ We can search exhaustively for state functions that indicate

phenotype.

Methods



Crane

� Algorithm for the identification of
Combinatorially Dys-Regulated
Sub-Networks.
� j∗: Threshold on J-value.
� b: Breadth of search.
� d : Depth of search.

f1 = H

f12 = HH f12 = HL f13 = HH f13 = HL

f123 = HLH f123 = HLL

Jbound(f12 = HH) < j∗ J(f13 = HH) < J(f1 = H)

Methods



Using informative state functions for classification

� Not straighforward to represent the combinatorial relationship
among multiple genes using traditional classifiers (e.g., SVMs).

� We build neural networks in which each subnetwork is represented
by an input layer neuron.

Methods



Experimental Setup

Human PPI Network (HPRD) Gene Expression Dataset 1 Gene Expression Dataset 2

Identify

dysregulated subnetworks

Sort by coordinate dysregulation,

take top K

Expression states of subnetworks

Train Test
neural networks

(Crane, Greedy)

Results



Predicting colon cancer metastasis

� Datasets:
� GSE6988: 27 vs. 20 tumor samples w/ vs. w/o liver metastasis (Ki et

al., Int J Cancer, 2007).
� GSE3964: 30 vs. 18 tumor samples w/ vs. w/o liver metastasis

(Graudens et al., Genome Biol, 2006).

� Algorithms:
� Crane.
� Greedy algorithm with combinatorial dysregulation.
� Greedy algorithm with additive dysregulation (NN+SVM).
� Single gene markers (no network information).

Results



GSE6988 on GSE3964

� Subnetwork discovery & training: GSE6988.

� Testing: GSE3964.

Results



GSE3964 on GSE6988

� Subnetwork discovery & training: GSE3964.

� Testing: GSE6988.

Results



Enrichment analysis

Five subnetworks that are associated with the most informative state
functions discovered on GSE6988:

Rank
Proteins Most Significantly Enrichment

Enriched Process p-value

1 SERPINA3, KLK3, EPOR, GNB2L1, RASA1, RAF1 Inflammation 1 × 10−3

2 E2F4, CCNE1, GSK3B, HNRPD, SF3B2, RPL13 Cell Movement 1 × 10−3

3 DMTF1, CCND2. AKAP8, DDX5, FN1, CRP Cell Migration 1 × 10−4

4 ANXA11, PLSCR1, EWSR1, PTK2B, ITGB2, HP Cell Adhesion 1 × 10−4

5 SKP1A, CCNA2, CDKN1A, GADD45G, EEF1G, RGL2 Inflammation 1 × 10−4

Results



Generating novel insights

� State function LLLLLH indicates metastasis with J = 0.33.

� Overall combinatorial dysregulation: 0.72.

� Overall additive dysregulation: 0.37.

Results



Conclusions

1. Information theoretic formulation of coordinate dysregulation is
promising.

2. Consideration of “cellular states” appears to be more effective as
compared to “superposition” of information on multiple molecules.

3. Improving upon greedy may improve performance in the search for
relevant subnetworks.

4. Combinatorial coordinate dysregulation ⇒ novel modeling
paradigms for cellular signaling.

Discussion
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