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Complex phenotypes

� Many diseases/phenotypes are based on
complex interactions between multiple
genetic and environmental factors.
� Heart disease, high blood pressure,

Alzheimer’s disease, diabetes, cancer,
obesity, etc.

� Traditional approaches: single genes.

� Characterization of multiple markers and
the dynamics of their interactions is
important.

Motivation



Networks and complex phenotypes

� Protein-protein interactions (PPIs) highlight functional
relationships among proteins.
� Products of genes implicated in similar diseases are highly connected

in PPI networks.

Goh et al., PNAS, 2007

Background



Dysregulated subnetworks

� Network data + Molecular
expression data ⇒ Network
dynamics of phenotype.

� Earlier studies: Connected
subgraphs of the PPI network that
are rich in differentially expressed
genes.

� Subnetwork score:
∑

gi∈S

zi/
√

|S|.

� Differential expression is assessed
individually for each gene!

Ideker et al., Bioinformatics, 2002

Background



Coordinate dysregulation

� By assessing dysregulation collectively for a subnetwork,
coordination of genes can be captured at a sample-specific level.

Chuang et al., Nature Mol. Sys. Biol., 2007

� Algorithmic challenge: combinatorial objective function, greedy
algorithms!

Background



Cover-based formulation

� Key idea: For paired samples, assess the differential expression of
each gene for each sample.
� A gene positively covers/ negatively covers a sample if it is

up-regulated/down-regulated in the phenotype sample.
� Differential expression for a single sample can be assessed by properly

quantizing gene expression levels.

Phenotype:

Control:

s1 s2 s3 s4 s5

P = {s4}

N = {s2, s5}

� Objective: Identify subnetworks composed of genes that
complement each other in covering all samples.

Methods



Cover and dysregulation

� How is the cover of a gene related to its dysregulation?

� Information-theoretic formulation of dysregulation.
� Normalized expression of gene gi in sample sj : Eij .
� Phenotype of sample j : Cj .
� Dysregulation of gene gi : I (Ei ; C ) = H(C ) − H(C |Ei).

� Cover of a gene.
� Binarized expression of gene gi in sample sj : Êij .
� Positive cover of gene gi : Pi = {sj : Êij(Ph) =↑, Êij(Co) =↓}.

Theorem

For any two genes gi and gj , if | |Pi | − |Ni | |>| |Pj | − |Nj | |, then

I (Êi ;C ) > I (Êj ;C ).

Methods



Cover of a subnetwork

Phenotype:

Control:

g1

g2

g3

g4

g5

s1 s2 s3 s4 s5

P1 = {s1, s2}

P2 = ∅

P3 = {s4, s5}

P4 = {s3}

P5 = {s4}N1 = ∅

N2 = {s2, s5}

N3 = ∅

N4 = ∅

N5 = {s2}

P(S) = {s1, s2, s3, s4, s5} N (S) = ∅S = {g1, g3, g4}

Methods



Cover and coordinate dysregulation

� How is the cover of a subnetwork related to the coordinate
dysregulation of the genes in the subnetwork?

� Coordinate dysregulation.

� Subnetwork activity of S: E (S) =
∑

gi∈S

Ei/
√

|S|.

� Coordinate dysregulation of S: I (E (S); C ) = H(C ) − H(C |E (S)).

� Cover of a subnetwork.
� Positive cover of S: P(S) =

⋃

gi∈S

P(gi).

� Negative cover of S: N (S) =
⋃

gi∈S

N (gi ).

� Conjecture: I (E (S);C ) can be maximized by maximizing
| |P(S) \ N (S)| |.

Methods



Problem definition

Minimal covering subnetwork associated with a gene

The minimal covering subnetwork associated with gene gi is defined
as a subnetwork Si satisfying the following conditions:
1. gi ∈ Si .

2. ∀ gj ∈ Si , ∃ gk ∈ Si such that δ(gj , gk) ≤ ℓ, where δ denotes
network distance and ℓ is an adjustable parameter.

3. P(Si ) = U or N (Si ) = U , where U denotes the set of all samples.

4. If P(Si ) = U (N (Si ) = U), then |N (Si )| (|P(Si )|) is minimum
over all subnetworks that satisfy the above three conditions.

5. ∀gj ∈ Si , subnetwork Si \ {gj} does not satisfy the above
conditions.

Methods



NetCover

� Identifies a minimal covering subnetwork associated with each gene
in the network.
� Implements an adaptation of Chvátal’s (Math Op Res, 1979)

algorithm for the set-cover problem.

Algorithm NetCover

1. Initialize Si ← {gi}, T ← U \ Pi , Q ← {gj ∈ V : δ(gi , gj ) ≤ ℓ}.

2. For all gj ∈ Q, compute P ′

j
← Pj ∩ T

3. Find the genes in Q with maximum |P ′

j | and let gk be the gene among these genes

with minimum |Nj |.

4. Si ← Si ∪ {gk}.

5. T ← T \ P ′

k
.

6. Q ← Q∪ {gj ∈ V : δ(gk , gj ) ≤ ℓ} \ {gk}.

7. If T = ∅ or Q = ∅, return Si ; otherwise, go to step (2).

Methods



Human colorectal cancer (CRC)

� Second leading cause of cancer deaths in the United States
(American Cancer Society, 2009).

� CRC is a complex, progressive disease.
� Identification of multiple markers is important for effective diagnosis,

prognosis, modeling, and intervention.

Results



Classification framework

HPRD PPI Network Gene Expression Dataset 1 Gene Expression Dataset 2

Identify

dysregulated subnetworks

Sort by coordinate dysregulation,

take top K
Compute subnetwork activity

as features for classification

Train Test

classifierclassifier

(NetCover, Greedy)

(SVM, Quadratic Regression)

Cross-classification

Leave-one-out Cross-validation

Results



Experimental Setup

� Classification tasks
� Diagnosis: Discriminating tumor samples from normal.
� Prognosis: Discriminating metastatic samples from primary tumor.

� Datasets
� GSE8671: 32 adenoma samples paired with normal mucosa.
� GSE10950: 24 normal and tumor pairs.
� GSE6988: 27 liver metastasis, 20 primary colorectal tumors, 25

normal mucosa.

� Algorithms
� NetCover.
� Greedy algorithm with coordinate dysregulation as the objective

function.
� Single gene markers (no network information).

Results



Predicting tumor

� Subnetwork identification & training: GSE8671.

� Testing: GSE6988.

� Classifier: SVM, Cross-classification.

Results



Predicting metastasis

� Subnetwork identification & training: GSE8671.

� Testing: GSE6988.

� Classifier: Quadratic regression, Leave-one-out Cross-validation.

Results



Overall performance

� Classifier: SVM.

� Best performance achieved by each algorithm is reported.

Results



Effect of binarization

� Expression levels are normalized gene-wise (µ = 0, σ = 1).

� Top α-fraction of expression levels are set to ↑, the rest is set to ↓.

Results



Integration with genomic targets

� Comparative genomic studies reveal many genes with mutations
associated with CRC (Sjöblom et al., Science, 2006).
� Are subnetworks associated with genomic markers more likely to be

coordinately dysregulated?

� Genomic targets can be used to seed the search for dysregulated
subnetworks!

Results



Conclusions and future work

� Cover-based formulation generates subnetworks with high
predictive power and reproducibility.

� Mechanistic insights: Relevance to within- and between-pathway
models?

� Therapeutic intervention: Effect of interference with the expression of
multiple genes?

� Algorithmic improvements: Application to unpaired samples?

� Systems-wide perspective: Integration with genomic and proteomic
data?

Discussion



Acknowledgments

Salim A. Chowdhury Rod K. Nibbe Mark R. Chance

� Anyonymous reviewers and session organizers for their valuable
feedback.

� NSF CAREER Award CCF-0953195.

Thanks


	Motivation
	Background
	Methods
	Results
	Discussion
	Thanks

