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Abstract

Comparative analyses of cellular interaction networks enable understanding of the cell’s

modular organization through identification of functionalmodules and complexes. These tech-

niques often rely on topological features such as connectedness and density, based on the

premise that functionally related proteins are likely to interact densely and that these interac-

tions follow similar evolutionary trajectories. Significant recent work has focused on efficient

algorithms for identification of such functional modules and their conservation. In spite of al-

gorithmic advances, development of a comprehensive infrastructure for interaction databases is

in relative infancy compared to corresponding sequence analysis tools. One critical, and as yet

unresolved aspect of this infrastructure is a measure of thestatistical significance of a match,

or a dense subcomponent. In the absence of analytical measures, conventional methods rely on

computationally expensive simulations based on ad-hoc models for quantifying significance.

In this paper, we present techniques for analytically quantifying statistical significance of dense

components in reference model graphs. We consider two reference models – aG(n, p) model

in which each pair of nodes in a graph has an identical likelihood,p, of sharing an edge, and

a two-levelG(n, p) model, which accounts for high-degree hub nodes generally observed in

interaction networks. Experiments performed on a rich collection of protein interaction (PPI)

networks show that the proposed model provides a reliable means of evaluating statistical sig-

nificance of dense patterns in these networks. We also adapt existing state-of-the-art network

clustering algorithms by using our statistical significance measure as an optimization criterion.

Comparison of the resulting module identification algorithm, SIDES, with existing methods

shows that SIDES outperforms existing algorithms in terms of sensitivity and specificity of

identified clusters with respect to available GO annotations.
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1 Introduction

Effective analysis of the interactome holds the key to functional characterization, phenotypic map-

ping, and identification of pharmacological targets, amongother important tasks [3, 42]. Com-

putational infrastructure for supporting analysis of the interactome is in relative infancy, com-

pared to its sequence counterparts [40]. A large body of workon computational analysis of these

graphs has focused on identification of dense components (proteins that densely interact with each

other) [4, 7, 22, 23, 26, 31]. These methods are based on the premise that functionally related

proteins generally manifest themselves as dense components in the network [36]. The hypothe-

sis that proteins performing a particular cellular function together are expected to be conserved

across several species along with their interactions, is also used to guide the process of identifying

conserved networks across species. Based on this observation, PPI network alignment methods

superpose PPI networks that belong to different species andsearch for connected, dense, or heavy

subgraphs in these superposed graphs [14, 18, 20, 19, 29, 30].

There are two critical aspects of identifying meaningful structures in data – the algorithm for

the identification and a method for scoring an identified pattern. In this context, the score of a

pattern corresponds to its significance. A score is generally computed with respect to a reference

model – i.e., given a pattern and a reference model, how likely is it to observe the pattern in the

reference model. The less likely such an occurrence is in thereference model, the more interesting

it is, since it represents a significant deviation from the reference (nominal) behavior. One such

score, in the context of sequences is theE-value returned by BLAST matches [41]. This score

broadly corresponds to the likelihood that a match between two sequences is generated by a random

process. The lower this value, the more meaningful the match. It is very common in a variety
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of applications to use a threshold onE-values to identify homologies across sequences. It is

reasonable to creditE-value as one of the key ingredients of the success of sequence matching

algorithms and software.

While significant progress has been made towards developingalgorithms on graphs for iden-

tifying patterns (motifs, dense components), conservation, alignment, and related problems, ana-

lytical methods for quantifying the significance of such patterns are limited. Existing algorithms

for detecting general patterns typically adopt simple ad-hoc measures (such as frequency or rel-

ative density) [4, 18], computez-scores forthe observed pattern based on simplifying assump-

tions [20, 29, 30], or rely on Monte-Carlo simulations [29] to assess the significance of identified

patterns. Itzkovitz et al. [15] analyze the expected numberof occurrences of specifictopological

motifs in a variety of random networks. This paper represents the first effort at analytically quan-

tifying the statistical significance of theexistenceof apattern with observed property, with respect

to a reference model. Specifically, it presents a framework for analyzing the occurrence of dense

patterns in randomly generated graph-structured data (based on the underlying model) with a view

to assessing the significance of a pattern based on the statistical relationship between subgraph

density and size. This result generalized in a straightforward manner to the problem of assessing

statistical significance of matches between two interaction networks.

The selection of an appropriate reference model for data andthe method of scoring a pattern

or match, are important aspects of quantifying statisticalsignificance. Using a reference model

that fits the data very closely makes it more likely that an experimentally observed biologically

significant pattern is generated by a random process drawingdata from this model. Conversely,

a reference model that is sufficiently distinct from observed data is likely to tag most patterns as

being significant. Clearly, neither extreme is desirable for good coverage and accuracy. In this
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paper, we consider two reference models (i) aG(n, p) model of a graph withn nodes, where each

pair of nodes has an identical probability,p, of sharing an edge, and (ii) a two levelG(n, p) model

in which the graph is modeled as two separateG(n, p) graphs with intervening edges. The latter

model captures the heavy nodes corresponding to hub proteins, typically observed in PPIs. For

these models, we analytically quantify the behavior of the largest dense subgraph and use this to

derive a measure of significance. We show that a simpleG(n, p) model can be used to assess

the significance of dense patterns in graphs with arbitrary degree distribution, with a conservative

adjustment of parameters so that the model stochastically dominates a graph generated according

to a given distribution. In particular, by choosingp to be maximal, we ensure that the largest

dense subgraph in ourG(n, p) model stochastically dominates that of a power-law graph. Our

two-level G(n, p) model is devised to mirror key properties of the underlying topology of PPI

graphs, and consequently yields a more conservative estimate of significance. Finally, we show

how existing graph clustering algorithms [13] can be modified to incorporate statistical significance

in identification of dense patterns, resulting in an effective module identification algorithm, SIDES.

(SIDES is available as a standalone application and as a plugin to Cytoscape over the public domain

from our lab.) We also generalize our results and methods to the comparative analysis of PPI

networks and show how the significance of a match between two networks can be quantified in

terms of the significance of the corresponding dense component in a suitable specified product

graph.

Our analytical results are supported by extensive experimental results on a large collection of

PPI networks derived from BIND [3] and DIP [42]. These results demonstrate that the proposed

model and subsequent analysis provide reliable means for evaluating the statistical significance

of highly connected and conserved patterns in PPI networks.We also compare the resulting al-
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gorithmic technique, SIDES, with the module identification algorithm, MCODE [4] and show

that SIDES outperforms this algorithm in terms of specificity and sensitivity of identified clusters

with respect to GO annotations. The framework proposed herecan be extended to include more

general networks that capture the degree distribution of PPI networks more accurately, namely

power-law [38, 43], geometric [24], or exponential [9] degree distributions.

The rest of this manuscript is organized as follows: In the next section, we discuss graph

models for PPI networks. We then analyze the behavior of the largest dense subgraph and derive

measures for assessing statistical significance of highly connected as well as highly conserved

subgraphs in PPI networks. In Section 3, we introduce the SIDES algorithm. We present and

discuss experimental results in Section 4 and conclude our discussion in Section 5.

2 Probabilistic Analysis of Dense Subgraphs

Since proteins that are part of a functional module are likely to densely interact with each other,

while being somewhat isolated from the rest of the network [36], many commonly used methods

focus on discovering dense regions of the network for identification of functional modules or pro-

tein complexes [4, 7, 22, 26, 31]. Subgraph density is also central to many algorithms that target

identification of conserved modules and complexes [14, 20, 29]. In order to assess the statistical

significance of such dense patterns, we analyze the distribution of the largest “dense” subgraph

generated by an underlying reference model. Using this distribution, we estimate the probability

that an experimentally observed pattern will occur in the network by chance. The reference model

must mirror the basic characteristics of experimentally observed networks in order to capture the

underlying biological process correctly, while being simple enough to facilitate theoretical and
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computational analysis.

2.1 Modeling PPI Networks

With the increasing availability of high-throughput interaction data, there has been significant ef-

fort aimed at modeling PPI networks. The key observation on these networks is that a few central

proteins interact with many proteins, while most proteins in the network have few interacting part-

ners [16, 25]. A commonly accepted model that confirms this observation is based on power-law

degree distribution [5, 37, 38, 43]. In this model, the number of nodes in the network that haved

neighbors is proportional tod−γ, whereγ is a network-specific parameter. It has also been shown

that there exist networks that do not possess a power-law degree distribution [12, 35]. In this re-

spect, alternative models that are based on geometric [24] or exponential [9] degree distribution

have been also proposed.

While assessing the statistical significance of identified patterns, existing methods that target

identification of highly connected or conserved patterns inPPI networks generally rely on the

assumption that interactions in the network are independent of each other [17, 20, 29]. Since

degree distribution is critical to the generation of interesting patterns, these methods estimate the

probability of each interaction based on the degree distribution of the underlying network. These

probabilities can be estimated computationally by generating several random graphs with the same

degree distribution via repeated edge swaps and counting the occurrence of each edge in this large

collection of random graphs [29]. Alternately, they can be estimated analytically, by relying on a

simple random graph model that is based on a given degree distribution [8, 15]. In this model, each

nodeu ∈ V (G) of graphG = (V, E) is associated with expected degreedu and the probability
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of existence of an edge betweenu andv is defined asP (uv ∈ E(G)) = dudv/
∑

u∈V (G) d(u).

In order for this function to be a well-defined probability measure for simple graphs, we must

haved2
max ≤

∑

u∈V (G) d(u), wheredmax = maxu∈V (G) du. However, available protein interaction

data generally does not conform to this assumption. For example, based on the PPI networks we

derive from BIND [3] and DIP [42] databases, yeastJsn1protein has 298 interacting partners,

while the total number of interactions in theS. cerevisiaePPI network is 18193. Similarly, theD.

MelanogasterPPI network with 28830 interactions contains a protein (CG12470-PA ORF) with

207 interacting partners. Such problems complicate the analysis of the significance of certain

structures for models that are based on arbitrary degree distribution.

While models that assume power-law [38, 43], geometric [24], or exponential [9] degree distri-

butions may capture the topological characteristics of PPInetworks accurately, they require more

involved analysis and may also require extensive computation for assessment of significance. To

the best of our knowledge, the distribution of dense subgraphs, even maximum clique, which forms

a special case of this problem, has not been studied for power-law graphs. In this paper, we first

build a framework for the simple and well-studiedG(n, p) model and attempt to generalize our

results to more complicated models that assume heterogeneous degree distribution.

2.2 Largest dense subgraph

Given graphG, let F (U) ⊆ E(G) be the set of edges in the subgraph induced by node subset

U ⊆ V (G). The density of this subgraph is defined asδ(U) = |F (U)|/|U |2. Note here that we

assume directed edges and allow self-loops for simplicity.PPI networks are undirected graphs and

they contain self-loops in general, but any undirected network can be easily modeled by a directed
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graph and this does not impact the asymptotic correctness ofthe results. We define aρ-dense

subgraph to be one with densitylarger than pre-defined thresholdρ, i.e., U induces aρ-dense

subgraph ifF (U) ≥ ρ|U |2. For anyρ, we are interested in the number of nodes in the largest

ρ-dense subgraph. This is because anyρ-dense subgraph in the observed PPI network with size

larger than this value will be “unusual”,i.e., statistically significant. Note that maximum clique is

a special case of this problem withρ = 1.

We first analyze the behavior of the largest dense subgraph for theG(n, p) model of random

graphs. We subsequently generalize these results to the piecewise degree distribution model in

which there are two different probabilities of generating edges. In theG(n, p) model, a graphG

containsn nodes and each edge occurs independently with probabilityp.

Let random variableRn(ρ) be the size of the maximum subset of vertices that induce aρ-dense

subgraph,i.e.,

Rn(ρ) = max
U⊆V (G):δ(U)≥ρ

|U |. (1)

The behavior ofRn(1), which corresponds to maximum clique, is well studied for theG(n, p)

model and its typical value is shown to beO(log1/p n) [6]. In the following theorem, we derive a

general result for the typical value ofRn(ρ) for anyρ > p.

Theorem 1 If G is a random graph withn vertices, where every edge exists with probabilityp and

ρ > p, then

lim
n→∞

Rn(ρ)

log n
=

1

κ(p, ρ)
(pr.), (2)

where

κ(p, ρ) = −Hp(ρ) = ρ log
ρ

p
+ (1− ρ) log

1− ρ

1− p
. (3)

8



Here,Hp(ρ) denotes weighted entropy. More precisely,

P (Rn(ρ) ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (4)

where

r0 =
log n− log log n + log κ(p, ρ)− log e + 1

κ(p, ρ)
(5)

for largen.

Proof. We first prove the upper-bound. LetXr,ρ denote the number of subgraphs of sizer with

density at leastρ, i.e., Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|. From first moment

method, we obtainP (Rn(ρ) ≥ r) ≤ P (Xr,ρ ≥ 1) ≤ E[Xr,ρ].

Let Yr denote the number of edges induced byr vertices. Then,E[Xr] =
(

n
r

)

P (Yr ≥ ρr2).

Moreover, sinceYr is a Binomial r.v.B(r2, p) andρ > p, we have

P (Yr ≥ ρr2) ≤ (r2 − ρr2)P (Yr = ρr2) ≤
(

r2

ρr2

)

(r2 − ρr2)pρr2

(1− p)r2−ρr2

. (6)

Hence, we getP (Rn(ρ) ≥ r) ≤
(

n
r

)(

r2

ρr2

)

(r2 − ρr2)pρr2
(1− p)r2−ρr2

.

Using Stirling’s formula, we find the following asymptoticsfor
(

n
r

)

:

(

n

r

)

∼















1√
2πr

nr

rr e−r if r = o(
√

n)

1√
2πα(1−α)n

2nH(α) if r = αn

(7)

whereH(α) = −α log α− (1− α) log(1− α) denotes the binary entropy.

Let Q = 1/pρ(1− p)1−ρ. Plugging the above asymptotics into (2.2), we obtain

P (Rn(ρ) ≥ r) ≤ r
√

1− ρ

2π
√

ρ
exp2(−r2 log Q + r log n− r log r + r2H(ρ)− r log e) (8)

Defining κ(p, ρ) = log Q − H(ρ), we find P (Rn(ρ) ≥ r0) ≤ r0
√

1−ρ
2π

√
ρ

exp2(f(r0)), where

f(r0) = −r0(r0κ(p, ρ) − log n + log r + log e). Plugging in (5) and working out the algebra, we
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obtainf(r0) = −r0

(

1− O
(

log log n
log n

))

. Hence,P (Rn(ρ) ≥ r0) ≤ O (2−r0) = O
(

log n
n1/κ(p,ρ)

)

. This

completes the proof for the upper-bound.

For the lower bound, we have

P (Rn(ρ) < r) = P (Xr,ρ = 0) ≤
E[X2

r,ρ]

E[Xr,ρ]2
. (9)

from second moment method [33]. Lettingm = ρr2, we obtainE[Xr,ρ] =
(

n
r

)(

r
m

)

pmqr2−mand

E[X2
r,ρ] =

(

n

r

) r
∑

l=0

(

r

l

)(

n− r

r − l

)

∑

k∈Il

(

l2

k

)

pk(1− p)l2−k

[(

r2 − l2

m− k

)

pm−k(1− p)r2−l2−(m−k)

]2

(10)

whereIl = {k : max(0, l2 + m− r2) ≤ k ≤ min(l2, m)}. Here, for two node subsetsUr andVr,

l denotes the number of nodes at the intersection ofUr andVr, i.e., l = |Ur ∩ Vr|. On the other

hand,k denotes the number of edges at the intersection of the subgraphs induced byUr andVr,

i.e., k = |F (Ur) ∩ F (Vr)|. Hence,

E[X2
r,ρ]

E[Xr,ρ]2
=

r
∑

l=0

∑

k∈Il

f(r, l, k) (11)

where

f(r, l, k) =

(

n−r
r−l

)(

r
l

)(

l2

k

)(

r2−l2

m−k

)2
p−k(1− p)k−l2

(

n
r

)(

r2

m

)2 . (12)

Therefore,

P (Rn(ρ) < r) ≤
r

∑

l=0

∑

k∈Il

f(r, l, k) ≤ r3 max
l,k

f(r, l, k). (13)

For r = (1−ǫ) log n
κ(ρ,p)

, 0 ≤ l ≤ r andk ∈ Il, we will show that

f

(

(1− ǫ) log n

κ(ρ, p)
, l, k

)

≤ n
−ǫ(1−ǫ) log n

κ(ρ,p) (14)

to conclude thatP (Rn(ρ) < r) ≤ (log n)3

n
ǫ(1−ǫ) log n

κ(ρ,p)

. To achieve this, letα = l2/r2 andβ = k/l2. Then,

assumingρ > 1/2 without loss of generality, the interval corresponding toIl for 0 ≤ α ≤ 1
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becomes

Jα =































β :

0 ≤ β ≤ 1 if 0 ≤ α ≤ 1− ρ

α+ρ−1
α
≤ β ≤ 1 if 1− ρ ≤ α ≤ ρ

α+ρ−1
α
≤ β ≤ ρ

α
if ρ ≤ α ≤ 1.































(15)

Insertingl =
√

αr andk = αβr2 in (12), we obtain

fα,β(r) =

(

r√
αr

)(

n−r
(1−

√
α)r

)(

αr2

αβr2

)(

(1−α)r2

(ρ−αβ)r2

)2
p−αβr2

(1− p)α(β−1)r2

(

n
r

)(

r2

ρr2

)2 . (16)

Plugging Stirling’s approximation (7) for appropriate regimes, we get

log(fα,β(r)) ∼ −r(
√

α log n)

+r2(αH(β)− α(β log p + (1− β) log(1− p)) + 2(1− α)H
(

ρ−αβ
1−α

)

− 2H(ρ)).

(17)

Hence, forr = (1−ǫ) log n
κ(p,ρ)

, we have

log

(

fα,β

(

(1− ǫ) log n

κ(p, ρ)

))

∼ 1− ǫ

κ(p, ρ)
(log n)2

[

−
√

α +
1− ǫ

κ(p, ρ)
g(α, β)

]

(18)

where

g(α, β) = αH(β)− α(β log p + (1− β) log(1− p)) + 2(1− α)H

(

ρ− αβ

1− α

)

− 2H(ρ). (19)

Working out the algebra, we observe that

max
0≤α≤1,β∈Jα

g(α, β) = g(1, ρ) = κ(ρ, p) (20)

where the maximum corresponds to the boundary pointl = r andk = ρr2. Hence, it immediately

follows from (18) thatlog(f) ≤ −ǫ(1−ǫ)
κ(p,ρ)

(log n)2 for 0 ≤ α ≤ 1 andβ ∈ Jα, which leads to (14).

�

Observe that, ifn is large enough, the probability that a dense subgraph of size r0 exists in

the subgraph is very small. Consequently,r0 may provide a threshold for deciding whether an

observed dense pattern is statistically significant.
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For a graph of arbitrary degree distribution, letdmax denote the maximum expected degree as

defined in Section 2.1. Estimating the probability of observing an edge between any two nodes

in theG(n, p) model byp = dmax/n, it is possible to conservatively assess the significance ofa

dense subgraph using the above results. The above result also provides a means for quantifying

the significance of an observed dense subgraph. For a subgraph with sizer̂ > r0 and densitŷρ,

let ǫ = r̂−log n/κ(ρ̂,p)
log n/κ(ρ̂,p)

. Then, it follows from (8) that the probability of observingthis subgraph in a

graph generated according to the reference model is boundedby

P (Rn(ρ̂) ≥ (1 + ǫ) log n/κ(ρ̂, p)) ≤
√

1− ρ

2π
√

ρ

(1 + ǫ) log n

nǫ(1+ǫ) log n/κ(ρ̂,p)
. (21)

While these results for theG(n, p) model provide a simple yet effective way of assessing sta-

tistical significance of dense subgraphs, we extend our analysis to a more complicated model,

which takes into account the degree distribution to capturethe topology of the PPI networks more

accurately.

2.3 Piecewise degree distribution model

In the piecewise degree distribution model, nodes of the graph are divided into two classes, namely

high-degree and low-degree nodes. More precisely, we definerandom graphG with node setV (G)

that is composed of two disjoint subsetsVh ⊂ V (G) andVl = V (G) \ Vh, wherenh = |Vh| ≪

|Vl| = nl andnh + nl = n = |V (G)|. In the reference graph, the probability of an edge is defined

based on the classes of its incident nodes as:

P (uv ∈ E(G)) =































ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

(22)
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Here,pl < pb < ph. This model captures the key lethality and centrality properties of PPI networks

in the sense that a few nodes are highly connected while most nodes in the network have low

degree [16, 25]. Observe that, under this model,G can be viewed as a superposition of three

random graphsGl, Gh, andGb. Here,Gh andGl areG(n, p) graphs with parameters(nh, ph) and

(nl, pl), respectively.Gb, on the other hand, is a random bipartite graph with node setsVl, Vh,

where each edge occurs with probabilitypb. Hence, we haveE(G) = E(Gl) ∪ E(Gh) ∪ E(Gb).

This facilitates direct employment of the results in the previous section for analyzing graphs with

piecewise degree distribution.

We now show that the high-degree nodes in the piecewise degree distribution model contribute

a constant factor to the typical size of the largest dense subgraph as long asnh is bounded by a

constant.

Theorem 2 Let G be a random graph with piecewise degree distribution, as defined by (22). If

nh = O(1), then

P (Rn(ρ) ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

, (23)

where

r1 =
log n− log log n + 2nh log B + log κ(pl, ρ)− log e + 1

κ(pl, ρ)
(24)

andB = pbql

pl
+ qb, whereqb = 1− pb andql = 1− pl.

Proof. Let Xh
r,ρ, X l

r,ρ be the number ofρ-dense subgraphs induced by only nodes in

Gh or Gl, respectively. LetXb
r,ρ be the number of these induced by nodes from both sets.

Clearly, Xr,ρ = Xh
r,ρ + X l

r,ρ + Xb
r,ρ. The analysis forG(n, p) directly applies forE[Xh

r,ρ]

and E[X l
r,ρ], hence we emphasize onE[Xb

r,ρ]. Sincenh = O(1), we haveE[Xb
r,ρ] ≤ (1 −

ρ)r2
∑nh

k=0

(

nh

k

)(

nl

r−k

)
∑2k(r−k)

l=0

(

2k(r−k)
l

)(

(r−k)2

ρr2−l

)

pl
bq

2k(r−k)−l
b pρr2−l

l q
(r−k)2−ρr2+l
l ,whereqb = 1 − pb
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andql = 1− pl. Then,

E[Xb
r,ρ] ≤ c(1− ρ)r2nh

(

nl

r

) 2nhr
∑

l=0

(

2nhr

l

)(

r2

ρr2 − l

)

pl
bq

2nhr−l
b pρr2−l

l qr2−ρr2+l
l , (25)

wherec is a constant. Sincel = o(ρr2), we have
(

r2

ρr2−l

)

≤
(

r2

ρr2

)

for 0 ≤ l ≤ 2nhr. Therefore,

E[Xb
r,ρ] ≤ (1− ρ)r2

(

n

r

)(

r2

ρr2

)

pρr2

l qr2−ρr2

l

2nhr
∑

l=0

(

2nhr

l

) (

pbql

pl

)l

q2nhr−l
b . (26)

UsingB = pbql

pl
+ qb as defined in Theorem 2, we findP (Rn(ρ) > r) ≤ O(2f1(r)), wheref1(r) =

−r(rκ(ρ)−log n+log r−log e+2nh log B).Hence,P (Rn(ρ) > r1) ≤ O(2f1(r1)) ≤ O
(

log n

n1/κ(pl,ρ)

)

for largen. �

Note that the above result is based on asymptotic behavior ofr1, hence thelog n term dominates

asn→∞. However, ifn is not large enough, the2nh log B term may cause over-estimation of the

critical value of the largest dense subgraph. Therefore, the application of this theorem is limited

for smallern and the choice ofnh is critical.

A heuristic approach for estimatingnh is as follows. Assume that the underlying graph is

generated by a power-law degree distribution, where the number of nodes with degreed is given

by nd−γ/ζ(γ) [1]. Here,ζ(.) denotes the Riemann zeta-function. If we divide the nodes ofthis

graph into two classes where high-degree nodes are those with degreed ≥ (n/ζ(γ))1/γ so that the

expected number of nodes with degreed is at most one, thennh =
∑∞

d=(n/ζ(γ))1/γ nd−γ/ζ(γ) is

bounded, provided the above series converges.

2.4 Conservation of dense subgraphs

Comparative methods that target identification of conserved subnets in PPI networks induce a

cross-product, or superposition, of several networks in which each node corresponds to a group
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of orthologous proteins [17, 20, 19, 29, 30]. Here, we rely onortholog groups available in the

COG database [34] to relate proteins in different PPI networks [19]. Labeling each node in the

PPI network with the COG family of the protein it represents,we obtain an intersection of two

PPI networks by inserting an edge between two COG families only if proteins that belong to these

families interact in both graphs. In the case of theG(n, p) model, the above framework directly

applies to the identification of dense subgraphs in this intersection graph, where the probability of

observing a conserved interaction is estimated aspI = p1p2. Herep1 andp2 denote the probability

of observing an edge in the first and second networks, respectively. For the piecewise degree

distribution model, on the other hand, we have to assume thatthe orthologs of high-degree nodes

in one graph are high-degree nodes in the other graph as well.If this assumption is removed, it

can still be shown that the low-degree nodes dominate the typical behavior of the largest conserved

subgraph. Note that the reference model assumes that the orthology relationship between proteins

in the two networks is already established and the model estimates the conditional probability that

the interactions between these given ortholog proteins aredensely conserved.

3 SIDES: An Algorithm for the Identification of Significantly

Dense Subgraphs

We use the above results to modify an existing state-of-the-art graph clustering algorithm,

HCS [13], in order to incorporate statistical significance in identification of interesting dense sub-

graphs. HCS is a recursive algorithm that is based on decomposing the graph into dense sub-

graphs by recursive application of min-cut partitioning. Amin-cut partition of the nodes of a graph
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G = (V, E) is a disjoint partition ofV into V0 andV1 such that the cut

C(V0, V1) = |{uv ∈ E : u ∈ V0, v ∈ V1 ∨ u ∈ V1, v ∈ V0}| (27)

is minimized. In the original HCS algorithm, the density of any subgraph found in this recursive

decomposition is compared with a pre-defined density threshold. If a subgraph is dense enough, it

is reported as a highly-connected cluster of nodes, else it is partitioned again. While this algorithm

provides a strong heuristic that is well suited to the identification of densely interacting proteins in

PPI networks [23], the selection of density threshold posesan important problem. In other words,

it is hard to provide a biologically justifiable answer to thequestion “How dense must a subnetwork

of a PPI network be to be considered biologically interesting?”. Our framework provides an answer

to this question from a statistical point of view by establishing the relationship between subgraph

size and density as a stopping criterion for the algorithm.

For any subgraph encountered during the course of the algorithm, we estimate the critical size

of the subgraph to be considered interesting, by plugging inits density in (5) or (24). If the size

of the subgraph is larger than this probabilistic upper-bound, we report the subgraph as being

statistically significant. Otherwise, we continue partitioning the graph.

An important problem relating to the use of min-cut partitioning is that min-cut partitioning

tends to single out a node in one part, since no balance constraint is imposed. Hence, recursive

application of min-cut on large graph is likely to result in many clusters containing a single node,

which indeed is not significant. This problem is particularly important in PPI networks because

of their characteristic degree distribution,i.e., most proteins in the network are low-degree nodes,

which are likely to be singled out by min-cut partitioning. We resolve this problem by an additional

modification to the HCS algorithm and we partition the network to minimize the ratio cut rather
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than the edge cut. Ratio cut partitioning is a well-studied problem in various contexts. It targets

minimization of the edge cut while maintaining balance implicitly, without imposing any strict

balance constraints [11]. Although being NP-hard, in contrast to the min-cut problem [39], the

problem can be solved effectively by heuristic methods and is very well suited for partitioning of

PPI networks since no strict balance is required but single-node partitioning needs to be avoided.

In our implementation, we define ratio-cut as

R(V0, V1) =
C(V0, V1)

min(|V0|, |V1|)
(28)

and adopt a simple min-cut algorithm [32] to heuristically solve this problem. The underlying

algorithm considers|V | partitions, which are locally optimal and chooses the one that induces

minimum edge-cut, which is shown to be the global optimum. Inour implementation, we consider

the same|V | partitions, but choose the one that minimizes the ratio cut of (28) to heuristically favor

a more balanced partition.

The resultingsignificantdensesubgraph identification algorithm, SIDES, is shown in Figure 1.

Details of the recursive algorithm and the min-cut algorithm can be found in [13] and [32], respec-

tively. Note that this algorithm only identifies disjoint subgraphs, but can be easily extended to

obtain overlapping dense subgraphs by greedily growing each of the resulting subgraphs until sig-

nificance is lost. The C source code and a Java implementationas a Cytoscape [28] plug-in for

SIDES are available as open source athttp://www.cs.purdue.edu/homes/koyuturk/

sides/.
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4 Results and Discussion

In this section, we first compare the behavior of dense subgraphs in experimentally available net-

work data with the theoretical results presented in this paper. Then, we present experimental results

on the performance of SIDES, which uses statistical significance as an optimization criterion, and

demonstrate the excellent performance of SIDES in identifying biologically relevant protein clus-

ters as compared to existing algorithms. We do this by quantifying the biological significance of

identified clusters in terms of specificity and sensitivity.

4.1 Behavior of Largest Dense Subgraph

We experimentally analyze connectivity and conservation in PPI networks of 11 species gathered

from BIND [3] and DIP [42] databases. These networks vary significantly in size and comprehen-

siveness and cover a broad range of organisms. Relatively large amounts of interaction data is avail-

able forS.cerevisiae(18192 interactions between 5157 proteins),D. melanogaster(28829 among

8577),H. sapiens(7393 among 4541),C. elegans(5988 among 3345),E. coli (1329 among 1079),

while the networks for other organisms are restricted to a small portions of their networks. With

a view to assessing the impact on performance of merging networks from diverse data sources, we

also consider a network in which interactions from these databases are merged to obtain network

with binary interactions, i.e., there is an edge between twoproteins in the network if these proteins

interact in at least one of the databases.

In Figure 2, we examine the behavior of largest subgraph withrespect to number of nodes in

the PPI network for two different values of density threshold (ρ). Note that, in the context of the

experimental results reported in this section, the termlargest dense subgraphrefers to the dense
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subgraph of maximal size identified by our algorithm, and does not necessarily correspond to the

largest dense subgraph of the underlying graph. In the figure, each organism corresponds to a

sample point, which is marked by its name. Since the sparsityand degree distribution of these net-

works vary significantly across different organisms, the estimated values of edge probabilities vary

accordingly. Hence, the curves forr0 (G(n, p) model) andr1 (piecewise degree distribution model)

do not show a linear behavior. As seen in the figure, piecewisedegree distribution model provides

a more conservative assessment of significance. This is primarily because of the constant factor in

the critical value ofr1. The observed size of the largest dense subgraph in smaller networks is not

statistically significant, while larger and more comprehensive networks contain subgraphs that are

twice as large as the theoretical estimate, with the exception of theD. melanogasterPPI network.

The lack of dense subnets in theD. melanogasternetwork may be due to differences in experimen-

tal techniques (e.g., two hybrid vs AP/MS) and/or the incorporation of identifiedinteractions in

the interaction network model (e.g., spoke vs matrix) [27]. In order to avoid problems associated

with such variability, it may be necessary to revise the definition of subgraph density or preprocess

the PPI networks to standardize the topological representation of protein complexes in the network

model.

The behavior of largest dense subgraph size with respect to density threshold is shown in Fig-

ure 3 forS. CerevisiaeandH. SapiensPPI networks and their intersection. It is evident from the

figure that the observed size of the largest dense subgraph follows a similar trajectory with the

theoretical values estimated by both models. Moreover, in both networks, the largest dense sub-

graph turns out to be significant for a wide range of density thresholds. For lower values ofρ, the

observed subgraphs are either not significant or are marginally significant. This is a desirable char-

acteristic of significance-based analysis since identification of very large sparse subgraphs should
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be avoided while searching for dense patterns in PPI networks. Observing that theG(n, p) model

becomes more conservative than the piecewise degree distribution model for lower values ofρ, we

conclude that this model may facilitate fine-grain analysisof modularity in PPI networks.

4.2 Performance ofSIDES

In this section we demonstrate the performance of SIDES in identification of significantly dense

subgraphs on the available yeast PPI network derived from DIP and BIND databases and compare

it with an existing complex identification algorithm, MCODE[4]. Both algorithms work on a

set of interactions modeled as a simple graph and return a setof protein clusters, each of which

induce unusually dense subgraphs in the network. MCODE associates each cluster with a score

defined as the ratio of number of interactions to the number ofproteins in the cluster. SIDES, on

the other hand, associates each cluster with ap-value, which estimates the likelihood of observing

the number of interactions between an identical number of proteins in a graph generated by the

reference model, as discussed in Section 2.

We evaluate the biological relevance of identified clustersbased on Gene Ontology [2]. We

estimate the statistical significance of the enrichment of each GO term in the cluster using On-

tologizer [10]. For a given cluster, Ontologizer associates each GO term with ap-value, which

estimates the probability of the observed enrichment of theGO term in a set of randomly chosen

proteins conditioned on the enrichment of the parents of theterm in GO hierarchy, based on a refer-

ence model that assumes hypergeometric distribution of GO terms among proteins. In our experi-

ments, we use the “Parent-Child” option of Ontologizer for characterization of over-representation

of GO Terms. Note that thep-values reported in this section are corrected for multipleclusters
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using the Bonferroni correction option provided by Ontologizer.

The distribution of thep-value for the most significant annotation with respect to cluster size

for clusters identified by SIDES and MCODE on the yeast PPI network is shown in Figure 4(a).

Since each cluster is generally associated with more than one significant GO term, we report the

p-value that corresponds to the most significant term(s). From a statistical perspective, this term(s)

correspond(s) to the most biologically meaningful annotation. On theS. cerevisiaePPI network,

SIDES identifies 73 significantly dense subgraphs, while MCODE discovers 103 dense clusters.

As evident in the figure, SIDES tends to discover smaller clusters as compared to MCODE and

preserves specificity of identified clusters in terms of GO annotations irrespective of cluster size.

In order to quantify the quality of the clusters with respectto GO annotations, we use two

metrics measuring thespecificity andsensitivityof a cluster with respect to the associated GO

term. Assume that a clusterC containingnC proteins is associated with a termT that is attached

to nT proteins in the set of all proteins in the network. Then, ifnCT of the proteins inC are

attached toT , we define specificity as

specificity = 100× nCT

nC

, (29)

measuring the purity of the cluster with respect to the corresponding term. Similarly, sensitivity is

defined as

sensitivity = 100× nCT

nT
, (30)

measuring the extent to which the cluster represents the corresponding term.

Since a single cluster is generally associated with more than one significant annotation, we

define the specificity and sensitivity of a cluster as the maximum among all significant annotations.

Note that the maximum specificity and sensitivity do not necessarily correspond to the same GO
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term, i.e., we evaluate both methods optimistically, considering each significantly enriched term

as potentially of biological relevance, since a dense cluster may indeed correspond to multiple

processes. Therefore, specificity of a cluster measures thefunctional purity of a cluster, while

sensitivity measures the ability of the cluster to represent a functional annotation alone. The scatter-

plot of specificity vs. sensitivity for all clusters discovered by the two algorithms is shown in

Figure 4(b). As evident in the figure, only four of the 73 SIDES clusters have specificity less than

70%. Most (62%) of the blue circles (corresponding to SIDES clusters) reside on the upper right

quarter of the plane, illustrating SIDES’s ability to accurately identify most of the proteins taking

part in a specific process, while maintaining specificity of the enrichment of clusters. The behavior

of cluster specificity and sensitivity with respect to cluster size is shown in Figure 5.

A comparison of clusters identified by SIDES and MCODE in terms of biological specificity

and sensitivity is shown on Table 1. As seen in the table, SIDES is about 20% more specific and

15% more sensitive than MCODE on the yeast network on average. For a cluster, zero specificity

or sensitivity corresponds to the case where no significant annotation for the cluster is found. Note

that, for all of the 73 SIDES clusters, at least one GO term is significantly enriched in the cluster.

We also evaluate the performance of SIDES and MCODE on a probabilistic interaction network

that is obtained through integration of various sources of interaction data [21]. In this network, each

protein pair is assigned an interaction likelihood score based on statistical aggregation of experi-

mentally observed interactions and computationally predicted functional linkages. This network

is expected to be more comprehensive and less noisy comparedto those that rely on a single data

source. We run the two algorithms on the network of≈34000 interactions with highest likelihood.

These are highlighted asconfidentinteractions (ConfidentNet) by Lee et al. Interestingly, the

specificity and sensitivity of dense clusters identified by both algorithms on this network are sig-
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nificantly lower than that on the network obtained from BIND and DIP. Namely, SIDES provides

73% specificity and 46% sensitivity on ConfidentNet, while MCODE provides 69% specificity and

37% sensitivity. This difference in the purity of identifieddense clusters with respect to GO anno-

tations may be explained as follows. While most of the interactions in BIND and DIP databases

correspond to some form of physical binding, ConfidentNet integrates various forms of interaction,

from physical binding to higher level functional association such as co-citation and co-evolution,

which may also include indirect interactions. Therefore, the dense subgraphs in this network may

correspond to higher level functional modularity, including crosstalk between various processes -

resulting in functionally heterogeneous clusters. The evaluation of functional enrichment in On-

tologizer, as well as the specificity and sensitivity measures, however, evaluate the homogeneity of

clusters. Consequently, we speculate that the biological semantics of subgraph density may depend

on the nature of interactions in the network. Specifically, dense subgraphs on networks of physi-

cal interactions are more likely to correspond to lower level modules with functional homogeneity

than those on higher level networks.

As would be expected, this significant increase in accuracy comes at the price of increased

computation time. In other words, MCODE is faster than SIDES since it adapts a greedy heuristic

with local optimization, while SIDES solves a more expensive min-cut algorithm repeatedly and

the resulting recursion tree is generally imbalanced. However, it should be noted that both algo-

rithms are fast enough to allow online application with real-time performance for small networks

and offline application with reasonable performance on larger networks. Namely, for networks of a

few thousand interactions, both algorithms work in seconds, while for ConfidentNet with≈34000

interactions, both MCODE and the C implementation of SIDES provide results in a few minutes.

The most significant dense subgraphs identified by SIDES in the yeast PPI network are shown
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in Table 2. As seen in the table, SIDES is able to capture many protein complexes, including

transcription factor complex, mRNA cleavage factor complex, proteasome complex, nuclear ubiq-

uitin ligase complex, mediator complex, schistoseome complex, exosome, oligosaccharyl trans-

ferase complex, TRAPP complex, eukaryotic transcription initiation factor 2B complex, hydrogen-

translocating V-type ATPase complex, CCR4-NOT complex, HOPS complex, and transcription

export complex. The modularity of many fundamental processes is also captured by SIDES. For

example, 12 nuclear ubiquitin ligase complex proteins thatinduce a subgraph of 62 interactions

make up 91.7% of the proteins that take part in cyclin metabolism. A complete list of protein

clusters that induce significantly dense subgraphs, which may be regarded as putative functional

modules, are also available at the SIDES website.

Significant dense subgraphs that are conserved inS. cerevisiaeandH. sapiensPPI networks

are shown in Table 3. Most of these dense components are involved in fundamental processes

and the proteins that are parts of these components share a particular function. Among these, the

7-protein conserved subnet that consists of 6 Exosomal 3’-5’ exoribonuclease complex subunits

and Succinate dehydrogenase is interesting. As in the case of dense subgraphs in a single net-

work, the conserved dense subgraphs provide an insight intothe crosstalk between proteins that

perform different functions. For example, the largest conserved subnet of 11 proteins contains

Mismatch repair proteins, Replication factor C subunits, and RNA polymerase II transcription ini-

tiation/nucleotide excision repair factor TFIIH subunits, which are all involved in DNA repair. The

conserved subnets identified by SIDES are small and appear to be partial, since we employ a strict

interpretation of conserved interaction here. In particular, limiting the ortholog assignments to pro-

teins that have a COG assignment and considering only matching direct interactions as conserved

interactions, limits the ability of the algorithm to identify a comprehensive set of conserved dense
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graphs. Algorithms that rely on sequence alignment scores and consider indirect or probable in-

teractions [19, 29, 30] coupled with adaptation of the statistical framework presented in this paper

have the potential of increasing the coverage of identified patterns, while correctly evaluating the

interestingness of observed patterns.

5 Conclusion

In this paper, we present a technique for analytically assessing statistical significance of connectiv-

ity and conservation in PPI networks. Specifically, we examine the occurrence ofdensesubgraphs,

which forms one of the most well-studied pattern structuresin extracting biologically novel in-

formation from PPI networks. While the analysis based on theG(n, p) model and its extension

provides a good way of assessing significance, models that mirror the topological characteristics

of PPI networks should be further analyzed. This paper provides a stepping stone for the analysis

of such complicated models.
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procedure M INCUTPHASE(SubgraphS, Nodes ∈ V (S))
⊲ grows graph starting from seed nodes by adding most heavily connected nodes
⊲ returns the last two nodes and the cut between last node and others
⊲ w(uv): number of edges between nodes represented byu and those represented byv
V ← {s}
while |V| < |V (S)| − 1 do

v ← argmaxv′∈V (S)

∑

u′∈V w(u′v′)

V ← V ∪ {v}
u← V (S) \ V
return {v, u,

∑

u′∈V w(u′u)}

procedure RATIOCUTPARTITION(SubgraphS)
⊲returns partition that locally minimizes ratio-cut
⊲ w(u): number of nodes represented byu
for u ∈ V (S) do

w(u)← 1
W ← |V (S)|
R̄← E(S) + 1
pick arbitrary seed nodes ∈ V (S)
while |V (S)| > 1 do
{v, u,C} ← M INCUTPHASE(S, s)
R = C/min(w(u),W − w(u))
if R < R̄ then R̄← R
mergeu into v, w(v)← w(v) + w(u)

return partition that corresponds tōR

procedure RECURSIVERATIOCUT(SubgraphS, Integern, Realp)
⊲returns set of dense subgraphs ofS that are significant w.r.t.n andp
ρ← |E(S)|/|V (S)|2
Estimater0 as given by (5)
if |V (S)| > r0 then

Estimate significance ofS as given by (21)
return {S}

else
{S0, S1} ← RATIOCUTPARTITION(S)
return RECURSIVERATIOCUT(S0 , n, p)

⋃

RECURSIVERATIOCUT(S1 , n, p)

procedure SIDES(NetworkG)
⊲returns set of significantly dense subgraphs ofG
p← maxu∈V |{v ∈ V (G) : uv ∈ E(G)}|/|V (G)|
return RECURSIVERATIOCUT(G, |V (G)|, p)

Figure 1: SIDES algorithm for identifying significantly dense subgraphs in a network, based on
recursive ratio-cut partitioning.
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Figure 2: The behavior of the size of largest dense subgraph with respect to number of proteins

in the network where a subgraph is considered dense ifρ = 0.5 andρ = 1.0 (clique), respec-

tively. Each sample point corresponds to the PPI network of aparticular species, as marked by its

name. The critical values of largest dense subgraph size based onG(n, p) and piecewise degree

distribution models are also shown.
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Figure 3: Behavior of the size of the largest dense subgraph and largest conserved dense subgraph

with respect to density threshold (ρ) for S. cerevisiaeandH. sapiensPPI networks. Critical values

of largest dense subgraph size based onG(n, p) and piecewise degree distribution models are also

shown.
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Figure 4: (a) The behavior of the significance of attached GO annotation with minimump-value

with respect to cluster size for the dense clusters identified by the SIDES and MCODE algorithms.

Cluster size and significance of GO annotation are significantly correlated (0.76,p < 9e− 15) for

SIDES, showing that SIDES is able to tune the size of cluster to accurately capture the”meaning”.

The correlation of size and significance for MCODE is 0.43 (p < 5e − 06). (b) Sensitivity vs

Specificity of clusters identified by the two algorithms. Only four of the 73 SIDES clusters have

specificity less than 70%. Most (62%) of the blue circles are clustered on the upper right quarter

of the plane, illustrating SIDES’s ability to accurately identify most of the proteins taking part in a

specific process, while maintaining specificity of the enrichment of clusters.
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Figure 5: The behavior of specificity and sensitivity with respect to cluster size for dense clusters

identified by the SIDES and MCODE algorithms. (a) Size vs Specifity, correlation for SIDES is

0.22 (p < 0.06), while it is -0.02 (p < 0.83) for MCODE. Note that if the clusters were constructed

randomly, size and specificity would be negatively correlated. The positive correlation for SIDES’s

clusters is illustrative of SIDES’s ability of tuning cluster size to optimize specificity. (b) Size vs

Sensitivity, correlation for SiDeS is 0.27 (p < 0.02), while it is 0.36 (p < 2e − 04) for MCODE.

If the clusters were constructed at random, one would expectstrong positive correlation between

size and sensitivity.
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Table 1: Comparison of SIDES and MCODE algorithms in terms of their specificity and sensitivity

with respect to GO annotations.

SIDES MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity(%) 43.0 100.0 91.2 0.0 100.0 77.8

Sensitivity(%) 2.0 100.0 55.8 0.0 100.0 47.6
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Table 2: The most significant protein clusters that induce dense subgraphs on theS. cerevisiaePPI
network and their annotation.

Size Density % % Annotation
(#P, #I) p-value Annotation Spec. Sens. p-value

(22, 145) 2e-234 [F] transcription regulator activity 90.9 6.9 4e-20
[C] transcription factor complex 90.9 17.1 6e-20
[P] protein amino acid acylation 63.6 32.6 1e-11

(21, 123) 3e-181 [C] cytoplasmic mRNA processing body 36.8 100.0 1e-14
[P] mRNA metabolism 94.7 10.2 2e-05

(20, 114) 1e-169 [P] cytoplasm organization and biogenesis 90.0 8.4 3e-12
[C] nucleolus 80.0 7.7 1e-09

(20, 112) 4e-163 [C] mRNA cleavage factor complex 90.0 94.7 8e-36
[P] RNA 3’-end processing 80.0 69.6 2e-16

(18, 94) 5e-138 [C] proteasome complex (sensu Eukaryota) 94.4 39.5 5e-32
[P] proteolysis 94.4 11.0 3e-10
[F] peptidase activity 83.3 15.5 1e-09

(12, 62) 2e-134 [C] nuclear ubiquitin ligase complex 100.0 47.8 2e-20
[P] cyclin catabolism 100.0 91.7 2e-14
[F] ligase activity 90.9 9.9 8e-11

(17, 82) 2e-114 [F] transcription regulator activity 100.0 5.9 5e-19
[C] mediator complex 88.2 75.0 6e-10
[P] transcription 100.0 3.8 3e-06

(15, 64) 6e-85 [C] spliceosome complex 93.3 18.9 1e-17
[F] binding 100.0 1.7 2e-09
[P] mRNA processing 100.0 11.8 1e-05

(14, 55) 5e-69 [C] exosome (RNase complex) 92.9 100.0 4e-34
[P] mRNA catabolism 92.9 25.5 2e-06

(10, 38) 1e-66 [C] oligosaccharyl transferase complex 100.0 88.9 2e-18
[P] glycoprotein metabolism 100.0 15.1 9e-09
[F] oligosaccharyl transferase activity 100.0 88.9 3e-07

(13, 48) 5e-59 [C] proteasome complex (sensu Eukaryota) 84.6 25.6 1e-20
[P] biopolymer catabolism 76.9 4.5 1e-05

(13, 48) 5e-59 [C] TRAPP complex 76.9 100.0 3e-23
[C] Golgi cis-face 76.9 76.9 2e-11
[P] ER to Golgi vesicle-mediated transport 76.9 15.2 1e-03

(10, 35) 7e-54 [C] Golgi apparatus 80.0 5.4 3e-08
[C] cytoplasmic membrane-bound vesicle 70.0 8.0 3e-07
[P] Golgi vesicle transport 90.0 6.9 2e-04

(12, 42) 1e-51 [C] hydrogen-translocating V-type ATPase complex 75.0 64.3 2e-15
[P] vacuolar transport 100.0 19.7 2e-09
[P] regulation of pH 100.0 50.0 2e-06

(9, 30) 8e-49 [C] eukaryotic TIF 2B complex 55.6 100.0 2e-12
[F] translation regulator activity 77.8 15.2 3e-11
[P] macromolecule biosynthesis 88.9 2.0 2e-03

(10, 32) 4e-42 [C] CCR4-NOT complex 90.0 75.0 3e-09
[P] regulation of RNA metabolism 60.0 27.3 4e-06

(11, 33) 3e-33 [C] cell cortex 100.0 11.6 8e-15
[P] cytoskeleton organization and biogenesis 72.7 4.0 3e-04

(9, 26) 2e-32 [C] spliceosome complex 77.8 9.5 4e-07
[P] RNA splicing 88.9 7.0 2e-02

(10, 29) 4e-31 [C] proton-transporting ATP synthase complex 90.0 56.2 3e-20
[P] hydrogen transport 90.0 50.0 2e-14

(8, 22) 2e-29 [C] histone methyltransferase complex 87.5 87.5 7e-15
[P] protein amino acid alkylation 87.5 36.8 2e-07
[F] protein methyltransferase activity 87.5 50.0 8e-04

(7, 17) 1e-21 [F] DNA clamp loader activity 57.1 57.1 5e-05
[P] DNA replication 100.0 6.9 3e-03
[C] replication fork 85.7 15.4 4e-03

(8, 20) 2e-21 [C] HOPS complex 75.0 100.0 8e-14
[P] vacuole organization and biogenesis 75.0 17.6 1e-07

(8, 19) 1e-17 [C] transcription export complex 71.4 71.4 1e-10
[P] establishment of RNA localization 85.7 8.5 5e-05

(7, 15) 3e-13 [C] exocyst 100.0 87.5 4e-16
[P] exocytosis 100.0 20.0 1e-05
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Table 3: Seven most significant conserved dense subgraphs identified inS. cerevisiaeandH. sapi-

ensPPI networks by the modified HCS algorithm and their functional enrichment according to

COG functional annotations.

# # Cons

Prot Int p < COG Annotation

10 17 10−68 RNA polymerase (100%)

11 11 10−26 Mismatch repair (33%)

RNA polymerase II TI/nucleotide excision repair factor TFIIH (33%)

Replication factor C (22%),

7 7 10−25 Exosomal 3’-5’ exoribonuclease complex (86%)

4 4 10−24 Single-stranded DNA-binding replication protein A (50%)

DNA repair protein (50%)

5 4 10−12 Small nuclear ribonucleoprotein(80%)

snRNP component (20%)

5 4 10−12 Histone (40%)

Histone transcription regulator (20%)

Histone chaperone (20%)

3 3 10−9 Vacuolar sorting protein (33%)

RNA polymerase II transcription factor complex subunit (33%)

Uncharacterized conserved protein (33%)
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