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Abstract

Comparative analyses of cellular interaction networksbnanderstanding of the cell's
modular organization through identification of functionaddules and complexes. These tech-
niques often rely on topological features such as conneetsdand density, based on the
premise that functionally related proteins are likely ttemact densely and that these interac-
tions follow similar evolutionary trajectories. Signifiarecent work has focused on efficient
algorithms for identification of such functional modulesidheir conservation. In spite of al-
gorithmic advances, development of a comprehensive infiisre for interaction databases is
in relative infancy compared to corresponding sequenclysiadools. One critical, and as yet
unresolved aspect of this infrastructure is a measure déttiestical significance of a match,
or a dense subcomponent. In the absence of analytical nesasonventional methods rely on
computationally expensive simulations based on ad-hocefaddr quantifying significance.
In this paper, we present techniques for analytically gfang statistical significance of dense
components in reference model graphs. We consider tweeragfermodels — &(n, p) model
in which each pair of nodes in a graph has an identical likelih p, of sharing an edge, and
a two-levelG(n, p) model, which accounts for high-degree hub nodes generbBgroed in
interaction networks. Experiments performed on a richemtibn of protein interaction (PPI)
networks show that the proposed model provides a reliabnmef evaluating statistical sig-
nificance of dense patterns in these networks. We also agiting state-of-the-art network
clustering algorithms by using our statistical significameeasure as an optimization criterion.
Comparison of the resulting module identification algarithSDES, with existing methods
shows that 8)ES outperforms existing algorithms in terms of sensitivityd aspecificity of

identified clusters with respect to available GO annotation



1 Introduction

Effective analysis of the interactome holds the key to fiomal characterization, phenotypic map-
ping, and identification of pharmacological targets, amotiger important tasks [3, 42]. Com-
putational infrastructure for supporting analysis of theeractome is in relative infancy, com-
pared to its sequence counterparts [40]. A large body of warkomputational analysis of these
graphs has focused on identification of dense componerdte(ps that densely interact with each
other) [4, 7, 22, 23, 26, 31]. These methods are based on #mige that functionally related
proteins generally manifest themselves as dense comoimetite network [36]. The hypothe-
sis that proteins performing a particular cellular funotiogether are expected to be conserved
across several species along with their interactionsss @ed to guide the process of identifying
conserved networks across species. Based on this observ@®l network alignment methods
superpose PPI networks that belong to different specieseath for connected, dense, or heavy
subgraphs in these superposed graphs [14, 18, 20, 19, 29, 30]

There are two critical aspects of identifying meaningfalistures in data — the algorithm for
the identification and a method for scoring an identifiedgratt In this context, the score of a
pattern corresponds to its significance. A score is geryetalinputed with respect to a reference
model — i.e., given a pattern and a reference model, howylikeilt to observe the pattern in the
reference model. The less likely such an occurrence is irefleeence model, the more interesting
it is, since it represents a significant deviation from thfemence (nominal) behavior. One such
score, in the context of sequences is walue returned by BLAST matches [41]. This score
broadly corresponds to the likelihood that a match betweersequences is generated by a random

process. The lower this value, the more meaningful the malicis very common in a variety



of applications to use a threshold dfitrvalues to identify homologies across sequences. It is
reasonable to credif-value as one of the key ingredients of the success of sequeatching
algorithms and software.

While significant progress has been made towards devel@bgugithms on graphs for iden-
tifying patterns (motifs, dense components), consermaatignment, and related problems, ana-
lytical methods for quantifying the significance of suchteats are limited. Existing algorithms
for detecting general patterns typically adopt simple ad-imeasures (such as frequency or rel-
ative density) [4, 18], compute-scores forthe observed pattern based on simplifying assump-
tions [20, 29, 30], or rely on Monte-Carlo simulations [28]dssess the significance of identified
patterns. Itzkovitz et al. [15] analyze the expected nunab@ccurrences of specifiopological
motifsin a variety of random networks. This paper represents thedifort at analytically quan-
tifying the statistical significance of thexistencef a pattern with observed property, with respect
to a reference model. Specifically, it presents a framewaorkahalyzing the occurrence of dense
patterns in randomly generated graph-structured datedo@sthe underlying model) with a view
to assessing the significance of a pattern based on thetistdtrelationship between subgraph
density and size. This result generalized in a straightiotwnanner to the problem of assessing
statistical significance of matches between two interaatigtworks.

The selection of an appropriate reference model for datatadnethod of scoring a pattern
or match, are important aspects of quantifying statisseghificance. Using a reference model
that fits the data very closely makes it more likely that aneexpentally observed biologically
significant pattern is generated by a random process drasdtayfrom this model. Conversely,
a reference model that is sufficiently distinct from obsdrdata is likely to tag most patterns as

being significant. Clearly, neither extreme is desirablegood coverage and accuracy. In this
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paper, we consider two reference models (@, p) model of a graph witln nodes, where each
pair of nodes has an identical probability,of sharing an edge, and (ii) a two lev&(n, p) model

in which the graph is modeled as two sepai@te, p) graphs with intervening edges. The latter
model captures the heavy nodes corresponding to hub psotgically observed in PPIs. For
these models, we analytically quantify the behavior of #rgést dense subgraph and use this to
derive a measure of significance. We show that a sim{ile, p) model can be used to assess
the significance of dense patterns in graphs with arbitragrek distribution, with a conservative
adjustment of parameters so that the model stochasticattyrthtes a graph generated according
to a given distribution. In particular, by choosipgto be maximal, we ensure that the largest
dense subgraph in od¥(n, p) model stochastically dominates that of a power-law graphr O
two-level G(n,p) model is devised to mirror key properties of the underlyiogaiogy of PPI
graphs, and consequently yields a more conservative dstiofigignificance. Finally, we show
how existing graph clustering algorithms [13] can be modifeincorporate statistical significance
in identification of dense patterns, resulting in an effecthodule identification algorithm | BES.
(SIDES is available as a standalone application and as a plugiytts€ape over the public domain
from our lab.) We also generalize our results and methodeg¢acomparative analysis of PPI
networks and show how the significance of a match between etwanks can be quantified in
terms of the significance of the corresponding dense conmpane suitable specified product
graph.

Our analytical results are supported by extensive expeatiaheesults on a large collection of
PPI networks derived from BIND [3] and DIP [42]. These resulemonstrate that the proposed
model and subsequent analysis provide reliable means &uating the statistical significance
of highly connected and conserved patterns in PPl netwofes.also compare the resulting al-
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gorithmic technique, ®ES, with the module identification algorithm, MCODE [4] andosh
that SDES outperforms this algorithm in terms of specificity and g@nty of identified clusters
with respect to GO annotations. The framework proposed temebe extended to include more
general networks that capture the degree distribution afrieRvorks more accurately, namely
power-law [38, 43], geometric [24], or exponential [9] degdistributions.

The rest of this manuscript is organized as follows: In thet rsection, we discuss graph
models for PPI networks. We then analyze the behavior ofatgebt dense subgraph and derive
measures for assessing statistical significance of highiywected as well as highly conserved
subgraphs in PPI networks. In Section 3, we introduce th2eS algorithm. We present and

discuss experimental results in Section 4 and concludeisauskion in Section 5.

2 Probabilistic Analysis of Dense Subgraphs

Since proteins that are part of a functional module areyikeldensely interact with each other,
while being somewhat isolated from the rest of the netwo,[Bxany commonly used methods
focus on discovering dense regions of the network for idieation of functional modules or pro-

tein complexes [4, 7, 22, 26, 31]. Subgraph density is alstrakto many algorithms that target
identification of conserved modules and complexes [14, 90, [& order to assess the statistical
significance of such dense patterns, we analyze the distnmbaf the largest “dense” subgraph
generated by an underlying reference model. Using thisiloligion, we estimate the probability

that an experimentally observed pattern will occur in thisvoek by chance. The reference model
must mirror the basic characteristics of experimentallyestded networks in order to capture the

underlying biological process correctly, while being siempnough to facilitate theoretical and



computational analysis.

2.1 Modeling PPI Networks

With the increasing availability of high-throughput ireetion data, there has been significant ef-
fort aimed at modeling PPI networks. The key observatiorhesé networks is that a few central
proteins interact with many proteins, while most protemthie network have few interacting part-
ners [16, 25]. A commonly accepted model that confirms thieolation is based on power-law
degree distribution [5, 37, 38, 43]. In this model, the nundfenodes in the network that have
neighbors is proportional t¢—7, wherev is a network-specific parameter. It has also been shown
that there exist networks that do not possess a power-laveeefistribution [12, 35]. In this re-
spect, alternative models that are based on geometric [2dfmonential [9] degree distribution
have been also proposed.

While assessing the statistical significance of identifiatlgons, existing methods that target
identification of highly connected or conserved pattern®i networks generally rely on the
assumption that interactions in the network are independerach other [17, 20, 29]. Since
degree distribution is critical to the generation of ingtieg patterns, these methods estimate the
probability of each interaction based on the degree digioh of the underlying network. These
probabilities can be estimated computationally by gemegateveral random graphs with the same
degree distribution via repeated edge swaps and countngciturrence of each edge in this large
collection of random graphs [29]. Alternately, they can bBrneated analytically, by relying on a
simple random graph model that is based on a given degre#bdtgin [8, 15]. In this model, each

nodeu € V(G) of graphG = (V, E) is associated with expected degrkeand the probability



of existence of an edge betweerandv is defined as”(uv € E(G)) = dudv/ Y- ,cv(q) ).

In order for this function to be a well-defined probability aseire for simple graphs, we must
haved?,, < Zuev(G) d(u), whered,., = max,cy () d,. However, available protein interaction
data generally does not conform to this assumption. For pkgrbased on the PPI networks we
derive from BIND [3] and DIP [42] databases, yedshlprotein has 298 interacting partners,
while the total number of interactions in ti& cerevisia®Pl network is 18193. Similarly, the.
MelanogastePPI network with 28830 interactions contains a protein (24¥D-PA ORF) with
207 interacting partners. Such problems complicate théysisaof the significance of certain
structures for models that are based on arbitrary degrégbdison.

While models that assume power-law [38, 43], geometric,[@A¢xponential [9] degree distri-
butions may capture the topological characteristics ofrigfalvorks accurately, they require more
involved analysis and may also require extensive compuutdtir assessment of significance. To
the best of our knowledge, the distribution of dense sublggagven maximum clique, which forms
a special case of this problem, has not been studied for plawmegraphs. In this paper, we first

build a framework for the simple and well-studiétin, p) model and attempt to generalize our

results to more complicated models that assume heterogsegree distribution.

2.2 Largest dense subgraph

Given graphG, let F(U) C E(G) be the set of edges in the subgraph induced by node subset
U C V(G). The density of this subgraph is definedd@&') = |F'(U)|/|U|?. Note here that we
assume directed edges and allow self-loops for simpliBiBl. networks are undirected graphs and

they contain self-loops in general, but any undirected ngtwan be easily modeled by a directed



graph and this does not impact the asymptotic correctnesiseofesults. We define adense
subgraph to be one with densilgrger than pre-defined threshold i.e, U induces ap-dense
subgraph ifF'(U) > p|U|*. For anyp, we are interested in the number of nodes in the largest
p-dense subgraph. This is because ardense subgraph in the observed PPI network with size
larger than this value will be “unusual’g., statistically significant. Note that maximum clique is
a special case of this problem wiph= 1.

We first analyze the behavior of the largest dense subgraphéd-(n, p) model of random
graphs. We subsequently generalize these results to thewise degree distribution model in
which there are two different probabilities of generatiges. In the7(n, p) model, a graphtz
containsn nodes and each edge occurs independently with probagility

Let random variablé?,,(p) be the size of the maximum subset of vertices that indyedense
subgraphi.e.,

R,.(p) = Ul. 1
0= ey B, @

The behavior of?,,(1), which corresponds to maximum clique, is well studied fer@{n, p)
model and its typical value is shown to bilog, ,,n) [6]. In the following theorem, we derive a

general result for the typical value &, (p) for anyp > p.

Theorem 1 If G is a random graph with: vertices, where every edge exists with probabijlignd

p > p, then

. Ru(p) 1
lim = T. 2
n—oo logn  k(p, p) ) @)

where

3)

p
K(p,p) = —Hy(p) = /)logz—j +(1—p)logy



Here, H,(p) denotes weighted entropy. More precisely,

logn
P(Rn(p) > 10) <O (W) ) (4)
where
logn —loglogn + log k(p, p) — loge + 1
To = (5)
k(P p)
for large n.

Proof. We first prove the upper-bound. L&t , denote the number of subgraphs of sizeith
density at leasp, i.e, X,, = {U C V(G) : |U| = r A|F(U)| > pr?}|. From first moment

method, we obtai(R,(p) > r) < P(X,, > 1) <E[X, ]

Let Y, denote the number of edges inducedrbyertices. ThenE[X,] = (") P(Y; > pr?).

Moreover, sinc€’, is a Binomial r.v.B(r?, p) andp > p, we have

7”2

PGz ) < (0= )P =) < (1) 00 ot - @

pr

Hence, we geP(R,,(p) > r) < (") (") (r2 — pr2)p™ (1 — p) =™,

r/) \pr2

Using Stirling's formula, we find the following asymptotifesr (”):

(7)

T

(n) \/éﬁf—:e_r if r =o0(y/n)

1 2nH(a)
2ra(l—a)n

if r=an
whereH (o) = —aloga — (1 — a) log(1 — «) denotes the binary entropy.

LetQ = 1/p”(1 — p)'~*. Plugging the above asymptotics into (2.2), we obtain

Vs —
P(R,(p) >1) < r P expy(—r2log @ + rlogn — rlogr +r*H(p) —rloge)  (8)
27\/p
Defining x(p, p) = log@ — H(p), we find P(R,(p) > 19) < ’”%Tvl\/%Pesz(f(ro))’ where

f(ro) = —ro(rok(p, p) — logn + logr + loge). Plugging in (5) and working out the algebra, we
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logn nl/k(p,p)

obtain f(ry) = —rg (1 -0 (k’glﬂ» Hence,P(R,(p) > 19) < O (27) = O (—782) . This
completes the proof for the upper-bound.

For the lower bound, we have

9)

from second moment method [33]. Letting= pr?, we obtainE[X,.,] = (") (" )p™¢” ~™and

r 2
21_ (N1 ry[(n—r *\ & N2k r? =1\ _\r2—12—(m—k)
E[X?,] = (T) > (l) (r_ l) > (k)p (1-p) Km— L )P =)
=0 kel
(10)
wherel; = {k : max(0,1*> + m — r?) < k < min(I?>, m)}. Here, for two node subsets. andV/,
[ denotes the number of nodes at the intersectioli,adndV/, i.e,, | = |U, N V,|. On the other

hand,k denotes the number of edges at the intersection of the suifgraduced by, andV.,

ie, k=|F(U,) N F(V,)|. Hence,

EX7] <
E[X, ]2 ZZf rl,k) (11)
P 1=0 keI,
where
(DO ) -
flr,l k) = ==i=r (n)’zﬂ)z : (12)
Therefore,
P(R.(p Z flr k) < r?’rrll%xf(r,l,k:). (13)
1=0 ke ’
Forr = (e o < | < andk € I, we will show that
f (L —9) logn,l,k) < wew (14)
k(p, p)

to conclude thaf’(R,(p) < r) < Ell‘igi")g To achieve this, let = [?/r? and3 = k/I%. Then,

€)logn
n  &(p.p)

assumingp > 1/2 without loss of generality, the interval corresponding/tdor 0 < a < 1
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becomes ) \

0<p<1 if0<a<l-—p

Jo = ﬁ:Lﬂ-lgggl if 1-p<a<p (15)

e

atp—1 p H
\ P <p<e if p<a<ll )

Insertingl = /ar andk = afr? in (12), we obtain
r n—r ar? (1—04)7"2 )2 —afr? _ a(f—1)r2
(ar)( —ozr)(ozr2)< —aB)r2) P (1 p)
(r) (pr2)
Plugging Stirling’s approximation (7) for appropriate ireg@s, we get

fap(r) =

log(fa,8(r)) ~ —r(yalogn)

+r2(aH () — a(Blogp + (1 — ) log(1 — p)) +2(1 — a)H (527) — 2H (p)).

(17)
Hence, forr = (1_? logn \ve have
w(p,p)
(1—e)logn>) 1—e¢ 2[ 1—e¢ ]
log | fag | ————— ) | ~ logn)® | —va + a, 3 18
(1 (505 <o) T
where

g0 8) = aH(9) = a(Flogp + (1 9)log(1 ) + 201 - )17 (5= ) 211(y). (1)

Working out the algebra, we observe that

max  g(a, 3) = g(1, p) = K(p, p) (20)

0<a<l1,8€Jq
where the maximum corresponds to the boundary goint andk = pr2. Hence, it immediately
follows from (18) thatlog(f) < %(log n)? for0 < o < 1andg € J,, which leads to (14).
U
Observe that, if: is large enough, the probability that a dense subgraph efrgiexists in
the subgraph is very small. Consequentlymay provide a threshold for deciding whether an

observed dense pattern is statistically significant.
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For a graph of arbitrary degree distribution, dgt,, denote the maximum expected degree as
defined in Section 2.1. Estimating the probability of obssgan edge between any two nodes
in the G(n, p) model byp = d..x/n, it IS possible to conservatively assess the significanae of
dense subgraph using the above results. The above resupralgdes a means for quantifying
the significance of an observed dense subgraph. For a stibgrdpsizer > r, and densityp,
lete = %m. Then, it follows from (8) that the probability of observitigs subgraph in a

graph generated according to the reference model is bounded

< V1—0p (1+€)10g7? . 21)
~ 2m/p ne(l+e) logn/k(p,p)

P(Bn(p) = (1+ €)logn/k(p,p))
While these results for thé'(n, p) model provide a simple yet effective way of assessing sta-
tistical significance of dense subgraphs, we extend outysisalo a more complicated model,

which takes into account the degree distribution to capgtue@opology of the PPI networks more

accurately.

2.3 Piecewise degree distribution model

In the piecewise degree distribution model, nodes of thplgeae divided into two classes, namely
high-degree and low-degree nodes. More precisely, we defirdom grapld; with node set/ (G)

that is composed of two disjoint subséfs C V(G) andV, = V(G) \ V4, wheren;, = |V,| <

|Vi| = ny andny, + ny = n = |V(G)]. In the reference graph, the probability of an edge is defined

based on the classes of its incident nodes as:

(

pn fuvel,

Pluw € E(G)) = p fu,vel] (22)

p fueVy,,veViorueV,velV,

\
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Here,p; < py < p. This model captures the key lethality and centrality props of PPI networks
in the sense that a few nodes are highly connected while nomssnin the network have low
degree [16, 25]. Observe that, under this modelcan be viewed as a superposition of three
random graph§:,, G, andG,. Here,G, andG, areG(n, p) graphs with parametefs,,, p;,) and
(ny, p1), respectively.G,, on the other hand, is a random bipartite graph with node 1sets),,
where each edge occurs with probability Hence, we havé’(G) = E(G;) U E(Gy) U E(Gy).
This facilitates direct employment of the results in thevjpas section for analyzing graphs with
piecewise degree distribution.

We now show that the high-degree nodes in the piecewise eldigibution model contribute
a constant factor to the typical size of the largest densgraph as long as,, is bounded by a

constant.

Theorem 2 Let G be a random graph with piecewise degree distribution, asddfby (22). If
ny, = O(1), then

nl/6@u,p)

P(Ra(p) = 11) < O (M) | (23)

where
_ logn —loglogn + 2ny, log B 4 log k(p1, p) —loge + 1
K<pl7p>

1 (24)

andB = % + q», Whereg, = 1 — p, andg, = 1 — p;.

Proof. Let X"

" le:p be the number ofp-dense subgraphs induced by only nodes in

Gy or Gy, respectively. LetX}?,p be the number of these induced by nodes from both sets.
Clearly, X,, = X]' + X, + X! . The analysis forG(n,p) directly applies forE[X}" ]

and E[X! ], hence we emphasize db[X} |. Sincen, = O(1), we haveE[X] | < (1 —

S () () B2 (49 (G g wereg, = 1
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andg; = 1 — p;. Then,

2npr 2
n 2n r r npTr— T — re—pr
E[X},] < c(1 —p)rznh<7f) < lh )( B l)pr§ v g (25)
=0

pr?

wherec is a constant. Since= o(pr?), we have(mf_l) < (;;) for 0 <1 < 2n,r. Therefore,

sz () Qe BT () e e
=0

Using B = 2% + g, as defined in Theorem 2, we fifd( R, (p) > r) < O(2/1"), wheref,(r) =
—r(rr(p) —log n-+log r—log e+ 2ny log B).Hence,P(R,(p) > ) < O(271()) < ( _logn__ p))

for largen. O

Note that the above result is based on asymptotic behavigr bénce théog n term dominates
asn — oo. However, ifn is not large enough, thi, log B term may cause over-estimation of the
critical value of the largest dense subgraph. Thereforeagplication of this theorem is limited
for smallern and the choice of,, is critical.

A heuristic approach for estimating, is as follows. Assume that the underlying graph is
generated by a power-law degree distribution, where thebeumof nodes with degre@is given
by nd=7/((v) [1]. Here,((.) denotes the Riemann zeta-function. If we divide the noddhisf
graph into two classes where high-degree nodes are thdselegteel > (n/¢(v))"/” so that the
expected number of nodes with degreés at most one, then;, = Zzi(n/m))l” nd=7/((y) is

bounded, provided the above series converges.

2.4 Conservation of dense subgraphs

Comparative methods that target identification of congkeisugbnets in PPI networks induce a
cross-product, or superposition, of several networks irckvieach node corresponds to a group

14



of orthologous proteins [17, 20, 19, 29, 30]. Here, we relyooimolog groups available in the
COG database [34] to relate proteins in different PPI neta/¢t9]. Labeling each node in the
PPI network with the COG family of the protein it represemt®, obtain an intersection of two
PPI networks by inserting an edge between two COG familigsibproteins that belong to these
families interact in both graphs. In the case of the:, p) model, the above framework directly
applies to the identification of dense subgraphs in thigsetgion graph, where the probability of
observing a conserved interaction is estimateg;as p;p,. Herep; andp, denote the probability
of observing an edge in the first and second networks, respbct For the piecewise degree
distribution model, on the other hand, we have to assumehbkairthologs of high-degree nodes
in one graph are high-degree nodes in the other graph as Mvélis assumption is removed, it
can still be shown that the low-degree nodes dominate theahipehavior of the largest conserved
subgraph. Note that the reference model assumes that tt@agy relationship between proteins
in the two networks is already established and the modehastis the conditional probability that

the interactions between these given ortholog proteindemsely conserved.

3 SIDES: An Algorithm for the Identification of Significantly

Dense Subgraphs

We use the above results to modify an existing state-ofathegraph clustering algorithm,
HCS [13], in order to incorporate statistical significancédentification of interesting dense sub-
graphs. HCS is a recursive algorithm that is based on decsimgpohe graph into dense sub-

graphs by recursive application of min-cut partitioningmin-cut partition of the nodes of a graph
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G = (V, E) is a disjoint partition of” into 1, andV; such that the cut

CVo,Vi)={uv e E:ue Vy,veViVue Vi,veVy} (27)

is minimized. In the original HCS algorithm, the density afyassubgraph found in this recursive
decomposition is compared with a pre-defined density tioddslf a subgraph is dense enough, it
is reported as a highly-connected cluster of nodes, elsgdrititioned again. While this algorithm
provides a strong heuristic that is well suited to the ideration of densely interacting proteins in
PPI networks [23], the selection of density threshold pesesnportant problem. In other words,
itis hard to provide a biologically justifiable answer to theestion “How dense must a subnetwork
of a PPI network be to be considered biologically interegin Our framework provides an answer
to this question from a statistical point of view by estdtilig the relationship between subgraph
size and density as a stopping criterion for the algorithm.

For any subgraph encountered during the course of the diggrive estimate the critical size
of the subgraph to be considered interesting, by pluggintsidensity in (5) or (24). If the size
of the subgraph is larger than this probabilistic upperdshuve report the subgraph as being
statistically significant. Otherwise, we continue paotiing the graph.

An important problem relating to the use of min-cut partititg is that min-cut partitioning
tends to single out a node in one part, since no balance eamtsis imposed. Hence, recursive
application of min-cut on large graph is likely to result imny clusters containing a single node,
which indeed is not significant. This problem is particytarhportant in PPl networks because
of their characteristic degree distributiarg., most proteins in the network are low-degree nodes,
which are likely to be singled out by min-cut partitioninge\iésolve this problem by an additional

modification to the HCS algorithm and we patrtition the netwiar minimize the ratio cut rather
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than the edge cut. Ratio cut partitioning is a well-studieazbfem in various contexts. It targets
minimization of the edge cut while maintaining balance iy, without imposing any strict
balance constraints [11]. Although being NP-hard, in casttto the min-cut problem [39], the
problem can be solved effectively by heuristic methods andery well suited for partitioning of
PPI networks since no strict balance is required but singlde partitioning needs to be avoided.

In our implementation, we define ratio-cut as

C(Vo, V1)

RV V) = Srival D

(28)

and adopt a simple min-cut algorithm [32] to heuristicalbtve this problem. The underlying
algorithm considers$V'| partitions, which are locally optimal and chooses the orz thduces
minimum edge-cut, which is shown to be the global optimunounimplementation, we consider
the sameV/| partitions, but choose the one that minimizes the ratio £(#&) to heuristically favor
a more balanced partition.

The resultingsignificantdensesubgraph identification algorithm,|BES, is shown in Figure 1.
Details of the recursive algorithm and the min-cut algaenittan be found in [13] and [32], respec-
tively. Note that this algorithm only identifies disjointlsgraphs, but can be easily extended to
obtain overlapping dense subgraphs by greedily growing eathe resulting subgraphs until sig-
nificance is lost. The C source code and a Java implementasi@nCytoscape [28] plug-in for
SIDES are available as open sourcéat p: / / ww. cs. pur due. edu/ homes/ koyut ur k/

si des/.
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4 Results and Discussion

In this section, we first compare the behavior of dense spibgran experimentally available net-
work data with the theoretical results presented in thigpaphen, we present experimental results
on the performance ofiBES, which uses statistical significance as an optimizatigaran, and
demonstrate the excellent performance d&S in identifying biologically relevant protein clus-
ters as compared to existing algorithms. We do this by qgfyamg the biological significance of

identified clusters in terms of specificity and sensitivity.

4.1 Behavior of Largest Dense Subgraph

We experimentally analyze connectivity and conservatioBRFI networks of 11 species gathered
from BIND [3] and DIP [42] databases. These networks varpiicantly in size and comprehen-
siveness and cover a broad range of organisms. Relativgl/danounts of interaction data is avail-
able forS.cerevisia¢18192 interactions between 5157 proteirf3)melanogastg28829 among
8577),H. sapieng7393 among 4541);. elegan$5988 among 3345F. coli(1329 among 1079),
while the networks for other organisms are restricted to allsportions of their networks. With
a view to assessing the impact on performance of mergingank$Arom diverse data sources, we
also consider a network in which interactions from thesalzdes are merged to obtain network
with binary interactions, i.e., there is an edge betweengxeteins in the network if these proteins
interact in at least one of the databases.

In Figure 2, we examine the behavior of largest subgraph sepect to number of nodes in
the PPI network for two different values of density thresh@)). Note that, in the context of the

experimental results reported in this section, the t&rgest dense subgrapéfers to the dense
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subgraph of maximal size identified by our algorithm, andsdoat necessarily correspond to the
largest dense subgraph of the underlying graph. In the figgaeh organism corresponds to a
sample point, which is marked by its name. Since the spaasiydegree distribution of these net-
works vary significantly across different organisms, thested values of edge probabilities vary
accordingly. Hence, the curves far(G(n, p) model) and- (piecewise degree distribution model)
do not show a linear behavior. As seen in the figure, piecesidgeee distribution model provides
a more conservative assessment of significance. This isphnbecause of the constant factor in
the critical value of-;. The observed size of the largest dense subgraph in smatigorks is not
statistically significant, while larger and more comprediea networks contain subgraphs that are
twice as large as the theoretical estimate, with the exaet theD. melanogastéPP| network.
The lack of dense subnets in tBe melanogastaretwork may be due to differences in experimen-
tal techniquesé€.g, two hybrid vs AP/MS) and/or the incorporation of identifiederactions in
the interaction network modeg&(g, spoke vs matrix) [27]. In order to avoid problems assodiate
with such variability, it may be necessary to revise the dksdim of subgraph density or preprocess
the PPI networks to standardize the topological representaf protein complexes in the network
model.

The behavior of largest dense subgraph size with respeertsity threshold is shown in Fig-
ure 3 forS. CerevisiaandH. Sapien$Pl networks and their intersection. It is evident from the
figure that the observed size of the largest dense subgrédiptv$oa similar trajectory with the
theoretical values estimated by both models. Moreoverpih betworks, the largest dense sub-
graph turns out to be significant for a wide range of densitggholds. For lower values pf the
observed subgraphs are either not significant or are mdisgsignificant. This is a desirable char-
acteristic of significance-based analysis since identifinaof very large sparse subgraphs should
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be avoided while searching for dense patterns in PPl nesv@kserving that thé'(n, p) model
becomes more conservative than the piecewise degredodigin model for lower values of, we

conclude that this model may facilitate fine-grain analg$isiodularity in PPl networks.

4.2 Performance ofSIDES

In this section we demonstrate the performanceI®fES in identification of significantly dense
subgraphs on the available yeast PPI network derived framadd BIND databases and compare
it with an existing complex identification algorithm, MCOOE]. Both algorithms work on a
set of interactions modeled as a simple graph and return @f gebtein clusters, each of which
induce unusually dense subgraphs in the network. MCODEc&sss each cluster with a score
defined as the ratio of number of interactions to the numberatkins in the cluster. IBES, on
the other hand, associates each cluster wjthvalue, which estimates the likelihood of observing
the number of interactions between an identical number ateprs in a graph generated by the
reference model, as discussed in Section 2.

We evaluate the biological relevance of identified clustersed on Gene Ontology [2]. We
estimate the statistical significance of the enrichmentacheGO term in the cluster using On-
tologizer [10]. For a given cluster, Ontologizer assodatach GO term with @-value, which
estimates the probability of the observed enrichment of3feterm in a set of randomly chosen
proteins conditioned on the enrichment of the parents aftime in GO hierarchy, based on a refer-
ence model that assumes hypergeometric distribution oféa@st among proteins. In our experi-
ments, we use the “Parent-Child” option of Ontologizer foaacterization of over-representation

of GO Terms. Note that thg-values reported in this section are corrected for multghlesters
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using the Bonferroni correction option provided by Ontakey.

The distribution of they»-value for the most significant annotation with respect testEr size
for clusters identified by ®ES and MCODE on the yeast PPI network is shown in Figure 4(a).
Since each cluster is generally associated with more tharsmgmificant GO term, we report the
p-value that corresponds to the most significant term(s)mFatatistical perspective, this term(s)
correspond(s) to the most biologically meaningful annotatOn theS. cerevisia®PI network,
SIDES identifies 73 significantly dense subgraphs, while MCODEealiers 103 dense clusters.
As evident in the figure, ®ES tends to discover smaller clusters as compared to MCODE and
preserves specificity of identified clusters in terms of GOaations irrespective of cluster size.

In order to quantify the quality of the clusters with resperiGO annotations, we use two
metrics measuring thspecificityand sensitivityof a cluster with respect to the associated GO
term. Assume that a clustér containingn proteins is associated with a teffithat is attached
to np proteins in the set of all proteins in the network. Thenpdfr of the proteins inC' are

attached td’, we define specificity as

speci ficity = 100 x nﬂ, (29)
ne

measuring the purity of the cluster with respect to the ggoading term. Similarly, sensitivity is
defined as

sensitivity = 100 x nﬂ, (30)
nr

measuring the extent to which the cluster represents thiesymnding term.

Since a single cluster is generally associated with more tme significant annotation, we
define the specificity and sensitivity of a cluster as the maxn among all significant annotations.
Note that the maximum specificity and sensitivity do not iseeeily correspond to the same GO
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term, i.e., we evaluate both methods optimistically, consideringhesignificantly enriched term
as potentially of biological relevance, since a dense efustay indeed correspond to multiple
processes. Therefore, specificity of a cluster measuretuttwtional purity of a cluster, while
sensitivity measures the ability of the cluster to repreadanctional annotation alone. The scatter-
plot of specificity vs. sensitivity for all clusters discaed by the two algorithms is shown in
Figure 4(b). As evident in the figure, only four of the 7@&S clusters have specificity less than
70%. Most (62%) of the blue circles (corresponding t®&S clusters) reside on the upper right
guarter of the plane, illustrating BES’s ability to accurately identify most of the proteins tadsi
part in a specific process, while maintaining specificityhaf €énrichment of clusters. The behavior
of cluster specificity and sensitivity with respect to clrstize is shown in Figure 5.

A comparison of clusters identified by[3eS and MCODE in terms of biological specificity
and sensitivity is shown on Table 1. As seen in the tablBES is about 20% more specific and
15% more sensitive than MCODE on the yeast network on avefagea cluster, zero specificity
or sensitivity corresponds to the case where no significambition for the cluster is found. Note
that, for all of the 73 8DES clusters, at least one GO term is significantly enricheterctuster.

We also evaluate the performance oD&S and MCODE on a probabilistic interaction network
that is obtained through integration of various sourceatefraction data [21]. In this network, each
protein pair is assigned an interaction likelihood scorgebleon statistical aggregation of experi-
mentally observed interactions and computationally mtedi functional linkages. This network
is expected to be more comprehensive and less noisy comiuatiealse that rely on a single data
source. We run the two algorithms on the networks@4000 interactions with highest likelihood.
These are highlighted asonfidentinteractions (ConfidentNet) by Lee et al. Interestinglye th
specificity and sensitivity of dense clusters identified byhbalgorithms on this network are sig-
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nificantly lower than that on the network obtained from BINRJaDIP. Namely, 8DES provides
73% specificity and 46% sensitivity on ConfidentNet, while ®IQE provides 69% specificity and
37% sensitivity. This difference in the purity of identifidénse clusters with respect to GO anno-
tations may be explained as follows. While most of the inteoas in BIND and DIP databases
correspond to some form of physical binding, ConfidentNigrates various forms of interaction,
from physical binding to higher level functional asso@atsuch as co-citation and co-evolution,
which may also include indirect interactions. Therefohe, dense subgraphs in this network may
correspond to higher level functional modularity, incluglicrosstalk between various processes -
resulting in functionally heterogeneous clusters. Thduaten of functional enrichment in On-
tologizer, as well as the specificity and sensitivity measphowever, evaluate the homogeneity of
clusters. Consequently, we speculate that the biologerabsitics of subgraph density may depend
on the nature of interactions in the network. Specificalgnge subgraphs on networks of physi-
cal interactions are more likely to correspond to lower levedules with functional homogeneity
than those on higher level networks.

As would be expected, this significant increase in accuracyes at the price of increased
computation time. In other words, MCODE is faster thaD&S since it adapts a greedy heuristic
with local optimization, while 8DES solves a more expensive min-cut algorithm repeatedly and
the resulting recursion tree is generally imbalanced. Hewet should be noted that both algo-
rithms are fast enough to allow online application with fiéae performance for small networks
and offline application with reasonable performance orelangtworks. Namely, for networks of a
few thousand interactions, both algorithms work in secondisle for ConfidentNet with~34000
interactions, both MCODE and the C implementation dD&S provide results in a few minutes.

The most significant dense subgraphs identified YeS in the yeast PPI network are shown
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in Table 2. As seen in the tablejJ[&S is able to capture many protein complexes, including
transcription factor complex, mRNA cleavage factor comppeoteasome complex, nuclear ubig-
uitin ligase complex, mediator complex, schistoseome dexpgxosome, oligosaccharyl trans-
ferase complex, TRAPP complex, eukaryotic transcriptiimation factor 2B complex, hydrogen-
translocating V-type ATPase complex, CCR4-NOT complex,A$Ccomplex, and transcription
export complex. The modularity of many fundamental proesss also captured by BES. For
example, 12 nuclear ubiquitin ligase complex proteins thdtice a subgraph of 62 interactions
make up 91.7% of the proteins that take part in cyclin metfabol A complete list of protein
clusters that induce significantly dense subgraphs, whiah oe regarded as putative functional
modules, are also available at thdD&S website.

Significant dense subgraphs that are conservel icerevisiaand H. sapien® Pl networks
are shown in Table 3. Most of these dense components arevat/ah fundamental processes
and the proteins that are parts of these components shardaulaa function. Among these, the
7-protein conserved subnet that consists of 6 Exosomal 8&ribonuclease complex subunits
and Succinate dehydrogenase is interesting. As in the dagense subgraphs in a single net-
work, the conserved dense subgraphs provide an insighthetorosstalk between proteins that
perform different functions. For example, the largest eowsd subnet of 11 proteins contains
Mismatch repair proteins, Replication factor C subunits] RNA polymerase Il transcription ini-
tiation/nucleotide excision repair factor TFIIH subunpitgich are all involved in DNA repair. The
conserved subnets identified by%S are small and appear to be partial, since we employ a strict
interpretation of conserved interaction here. In paréiguimiting the ortholog assignments to pro-
teins that have a COG assignment and considering only nmatchiect interactions as conserved
interactions, limits the ability of the algorithm to idefiyte. comprehensive set of conserved dense
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graphs. Algorithms that rely on sequence alignment scardscansider indirect or probable in-
teractions [19, 29, 30] coupled with adaptation of the sti&ihl framework presented in this paper
have the potential of increasing the coverage of identifegitepns, while correctly evaluating the

interestingness of observed patterns.

5 Conclusion

In this paper, we present a technique for analytically assgstatistical significance of connectiv-
ity and conservation in PPI networks. Specifically, we exanhe occurrence afensesubgraphs,
which forms one of the most well-studied pattern structumesxtracting biologically novel in-
formation from PPI networks. While the analysis based ondle, p) model and its extension
provides a good way of assessing significance, models thavmtine topological characteristics
of PPI networks should be further analyzed. This paper pies/a stepping stone for the analysis

of such complicated models.
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procedure MINCUTPHASE(SubgraphS, Nodes € V (S))
> grows graph starting from seed noglby adding most heavily connected nodes
> returns the last two nodes and the cut between last node and others
> w(uv): number of edges between nodes representaddnd those represented by
YV — {s}
while |[V| < |V(S)| — 1do
U = argmaky ey ()Y ey W(W'v')
YV —VU{v}
u—V(S)\V
return {v,u,> o w(u'u)}

procedure RATIO CUTPARTITION(Subgraphs)

>returns partition that locally minimizes ratio-cut
>w(w): number of nodes represented by
for u € V(S) do

w(u) «— 1
W — |V (9)]
R+~ E(S)+1
pick arbitrary seed nodee V (S)
while [V (S)| > 1 do

{v,u,C} «— MINCUTPHASE(S, S)

R =C/min(w(u), W —w(u))

if R< RthenR «+ R

mergeu into v, w(v) «— w(v) + w(u)
return partition that corresponds @

procedure RECURSIVERATIO CUT(SubgraphS, Integern, Realp)
>returns set of dense subgraphs $fthat are significant w.r.tz andp
p—ES)|/IV(S)P
Estimater, as given by (5)
if [V(S)| > rothen
Estimate significance f as given by (21)
return {S}
else
{S0, 51} < RATIOCUTPARTITION(S)
return RECURSIVERATIOCUT(Sy, n, p) | J RECURSIVERATIOCUT(SY, n, p)

procedure SIDES(NetworkG)
>returns set of significantly dense subgraphs(of
p — maxyuey [{v € V(G) : wv € E(G)}|/|V(G)]
return RECURSIVERATIOCUT(G, |V (G)], p)

Figure 1. SDES algorithm for identifying significantly dense subgraphsinetwork, based on
recursive ratio-cut partitioning.
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Figure 2: The behavior of the size of largest dense subgraibhrespect to number of proteins
in the network where a subgraph is considered denge=if 0.5 andp = 1.0 (clique), respec-

tively. Each sample point corresponds to the PPI networkparéicular species, as marked by its
name. The critical values of largest dense subgraph sizdb@sG(n, p) and piecewise degree

distribution models are also shown.
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Figure 4: (a) The behavior of the significance of attached @G@btation with minimunyp-value

with respect to cluster size for the dense clusters idedftifjethe SDES and MCODE algorithms.

Cluster size and significance of GO annotation are significaorrelated (0.76p < 9e — 15) for

SIDES, showing that 8ES is able to tune the size of cluster to accurately capturétleaning”.

The correlation of size and significance for MCODE is 0.43<( 5e — 06). (b) Sensitivity vs

Specificity of clusters identified by the two algorithms. @fdur of the 73 $DES clusters have

specificity less than 70%. Most (62%) of the blue circles dustered on the upper right quarter

of the plane, illustrating ®@ES’s ability to accurately identify most of the proteins tadgipart in a

specific process, while maintaining specificity of the eémment of clusters.
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Figure 5: The behavior of specificity and sensitivity witlspect to cluster size for dense clusters

identified by the 8DES and MCODE algorithms. (a) Size vs Specifity, correlationSIDES is

0.22 (p < 0.06), while itis -0.02 p < 0.83) for MCODE. Note that if the clusters were constructed

randomly, size and specificity would be negatively coredafl he positive correlation fon BES’s

clusters is illustrative of @ES’s ability of tuning cluster size to optimize specificityp) (Size vs

Sensitivity, correlation for SiDeS is 0.2 & 0.02), while it is 0.36 < 2¢ — 04) for MCODE.

If the clusters were constructed at random, one would exgiemhg positive correlation between

size and sensitivity.



Table 1: Comparison ofiIBES and MCODE algorithms in terms of their specificity and stvij

with respect to GO annotations.

SIDES MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity(%) 43.0 100.0 912 0.0 100.0 77.8

Sensitivity(%) 2.0 100.0 55.8 0.0 100.0 47.6
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Table 2: The most significant protein clusters that inducesdesubgraphs on ti# cerevisia®PI
network and their annotation.

Size Density % % Annotation
(#P, #1)  p-value  Annotation Spec. Sens. p-value
(22,145) 2e-234  [F] transcription regulator activity 90.9 6.9 4e-20
[C] transcription factor complex 90.9 17.1 6e-20
[P] protein amino acid acylation 63.6 32.6 le-11
(21,123) 3e-181  [C] cytoplasmic mRNA processing body 36.8 00.0 le-14
[P] mRNA metabolism 94.7 10.2 2e-05
(20,114) 1e-169  [P] cytoplasm organization and biogenesis 90.0 8.4 3e-12
[C] nucleolus 80.0 7.7 1le-09
(20,112) 4e-163 [C] mRNA cleavage factor complex 90.0 94.7 e-38
[P] RNA 3’-end processing 80.0 69.6 2e-16
(18, 94) 5e-138  [C] proteasome complex (sensu Eukaryota) 4 94 39.5 5e-32
[P] proteolysis 94.4 11.0 3e-10
[F] peptidase activity 83.3 155 le-09
(12, 62) 2e-134  [C] nuclear ubiquitin ligase complex 100.0 7.84 2e-20
[P] cyclin catabolism 100.0 917 2e-14
[F] ligase activity 90.9 9.9 8e-11
(17, 82) 2e-114  [F] transcription regulator activity 100.0 5.9 5e-19
[C] mediator complex 88.2 75.0 6e-10
[P] transcription 100.0 3.8 3e-06
(15, 64) 6e-85 [C] spliceosome complex 93.3 18.9 le-17
[F] binding 100.0 1.7 2e-09
[P] mRNA processing 100.0 11.8 le-05
(14, 55) 5e-69 [C] exosome (RNase complex) 92.9 100.0 4e-34
[P] mRNA catabolism 92.9 25.5 2e-06
(10, 38) 1le-66 [C] oligosaccharyl transferase complex a00. 88.9 2e-18
[P] glycoprotein metabolism 100.0 15.1 9e-09
[F] oligosaccharyl transferase activity 100.0 88.9 3e-07
(13, 48) 5e-59 [C] proteasome complex (sensu Eukaryota) 6 84.25.6 1le-20
[P] biopolymer catabolism 76.9 4.5 le-05
(13, 48) 5e-59 [C] TRAPP complex 76.9  100.0 3e-23
[C] Golgi cis-face 76.9 76.9 2e-11
[P] ER to Golgi vesicle-mediated transport 76.9 15.2 le-03
(10, 35) 7e-54 [C] Golgi apparatus 80.0 5.4 3e-08
[C] cytoplasmic membrane-bound vesicle 70.0 8.0 3e-07
[P] Golgi vesicle transport 90.0 6.9 2e-04
(12, 42) le-51 [C] hydrogen-translocating V-type ATPasaplex  75.0 64.3 2e-15
[P] vacuolar transport 100.0 19.7 2e-09
[P] regulation of pH 100.0 50.0 2e-06
(9, 30) 8e-49 [C] eukaryotic TIF 2B complex 55.6  100.0 2e-12
[F] translation regulator activity 77.8 15.2 3e-11
[P] macromolecule biosynthesis 88.9 2.0 2e-03
(10, 32) 4e-42 [C] CCR4-NOT complex 90.0 75.0 3e-09
[P] regulation of RNA metabolism 60.0 27.3 4e-06
(11, 33) 3e-33 [C] cell cortex 100.0 11.6 8e-15
[P] cytoskeleton organization and biogenesis 72.7 4.0 Be-0
(9, 26) 2e-32 [C] spliceosome complex 77.8 9.5 4e-07
[P] RNA splicing 88.9 7.0 2e-02
(10, 29) 4e-31 [C] proton-transporting ATP synthase comple 90.0 56.2 3e-20
[P] hydrogen transport 90.0 50.0 2e-14
(8,22) 2e-29 [C] histone methyltransferase complex 87.5 .587 7e-15
[P] protein amino acid alkylation 87.5 36.8 2e-07
[F] protein methyltransferase activity 87.5 50.0 8e-04
(7,17) le-21 [F] DNA clamp loader activity 57.1 57.1 5e-05
[P] DNA replication 100.0 6.9 3e-03
[C] replication fork 85.7 154 4e-03
(8,20) 2e-21 [C] HOPS complex 75.0 100.0 8e-14
[P] vacuole organization and biogenesis 75.0 17.6 le-07
(8,19) le-17 [C] transcription export complex 71.4 71.4 10e-
[P] establishment of RNA localization 85.7 8.5 5e-05
(7, 15) 3e-13 [C] exocyst 100.0 875 4e-16
[P] exocytosis 100.0 20.0 le-05
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Table 3: Seven most significant conserved dense subgrapigfied inS. cerevisiaandH. sapi-
ensPPI networks by the modified HCS algorithm and their funaioenrichment according to

COG functional annotations.

# # Cons

Prot Int p <  COG Annotation

10 17 1075 RNA polymerase (100%)

11 11 10726 Mismatch repair (33%)
RNA polymerase Il TI/nucleotide excision repair factor THF(33%)

Replication factor C (22%),

7 7 1025 Exosomal 3'-5’ exoribonuclease complex (86%)

4 4 10~2*  Single-stranded DNA-binding replication protein A (50%)

DNA repair protein (50%)

5 4 10~'?2  Small nuclear ribonucleoprotein(80%)

snRNP component (20%)

5 4 10~'2  Histone (40%)
Histone transcription regulator (20%)

Histone chaperone (20%)

3 3 10~°  Vacuolar sorting protein (33%)
RNA polymerase Il transcription factor complex subunit¥33

Uncharacterized conserved protein (33%)
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