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ABSTRACT

This paper presents an efficient framework for error-bounded

compression of high-dimensional discrete attributed datasets.

Such datasets, which frequently arise in a wide variety of
applications, pose some of the most significant challenges in
data analysis. Subsampling and compression are two key
technologies for analyzing these datasets. PROXIMUS pro-
vides a technique for reducing large datasets into a much
smaller set of representative patterns, on which traditional
(expensive) analysis algorithms can be applied with minimal
loss of accuracy. We show desirable properties of PROX-
IMUS in terms of runtime, scalability to large datasets, and
performance in terms of capability to represent data in a
compact form. We also demonstrate applications of PROX-
IMUS in association rule mining. In doing so, we establish
PROXIMUS as a tool for preprocessing data before apply-
ing computationally expensive algorithms or as a tool for
directly extracting correlated patterns. Our experimental
results show that use of the compressed data for associa-
tion rule mining provides excellent precision and recall val-
ues (near 100%) across a range of support thresholds while
reducing the time required for association rule mining dras-
tically.

Keywords

compressing discrete-valued vectors, semi-discrete decompo-
sition, non-orthogonal matrix decompositions.

1. INTRODUCTION

With the availability of large scale computing platforms
for high-fidelity simulations, and instrumentation for data
gathering, increased emphasis is being placed on efficient

techniques for analyzing large and extremely high-dimensional

datasets. These datasets may comprise discrete attributes,
such as those from business processes, information retrieval,
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and bio-informatics, as well as continuous attributes such as
those in scientific simulations, astrophysical measurements,
and engineering design. Analysis of high dimensional data
typically takes the form of extracting correlations between
data items, discovering meaningful information in data, clus-
tering data items, and finding efficient representations for
clustered data, classification, and event association. Since
the volume (and dimensionality) of data is typically large,
the emphasis of new algorithms must be on efficiency and
scalability to large datasets. Analysis of continuous at-
tribute data generally takes the form of eigenvalue/singular

value problems (PCA /rank reduction), clustering, least squares

problems, etc. Analysis of discrete datasets, however, gen-
erally leads to NP-complete/hard problems, especially when
physically interpretable results in discrete spaces are de-
sired. Consequently, the focus here is on effective heuristics
for reducing the problem size. Two possible approaches to
this problem are probabilistic subsampling and data reduc-
tion. This paper focuses on algorithms and heuristics for
error-bounded compression of very large high-dimensional
discrete-attributed datasets.

Compression of discrete data is a particularly challeng-
ing problem when compressed data is required to directly
convey the underlying patterns in the data. Conventional
techniques such as singular value decomposition (SVD), fre-
quency transforms such as discrete cosine transforms (DCT)
and wavelets, and others do not apply here because the
compressed data (orthogonalized vectors or frequency coeffi-
cients) are not directly interpretable as signals in noisy data.
Techniques for clustering do not generalize easily to ex-
tremely high dimensions (10* or more) while yielding error-
bounded cluster centroids. Unfortunately, the runtimes of
all these methods are unacceptably large when scaled to mil-
lions of records, or more.

In order to overcome the computational requirements of
the problem while providing efficient analysis of data we pro-
pose a new technique — binary({0,1}) non-orthogonal ma-
trix transformations to extract dominant patterns. In this
technique, elements of singular vectors of a discrete, positive
valued matrix are constrained to binary entries with an asso-
ciated singular value of 1. In contrast, in a related technique
called Semi-Discrete Decomposition (SDD), elements of sin-
gular vectors are in the set {—1,0,1} and the associated
singular value is continuous. We show here that our vari-
ant results in an extremely efficient algorithm and powerful
framework within which large datasets can be summarized.

PROXIMUS is a non-orthogonal matrix transform based
on recursive partitioning of a dataset depending on the dis-



tance of a relation from the dominant pattern. The domi-
nant pattern is computed as a binary singular vector of the
matrix of relations. PROXIMUS computes only the first sin-
gular vector and consequently, each discovered pattern has a
physical interpretation at all levels in the hierarchy of the re-
cursive process. For the discovery of the dominant singular
vector, we adopt an iterative alternating heuristic. Due to
the discrete nature of the problem, initialization of singular
vectors is critical for convergence to desirable local optima.
Taking this fact into account, we derive effective initializa-
tion strategies, along with algorithms for a multiresolution
representation of the dataset.

PROXIMUS provides several facilities to analyze discrete
attributed data. These include:

e discovering dominant and deviant patterns in the data
in a hierarchical manner,

e clustering of data in an error-bounded and physically
interpretable form,

e finding a concise representation for the data,

o isolating signal from noise in a multi-resolution frame-
work.

We also demonstrate the use of PROXIMUS for prepro-
cessing data for subsequent analysis using conventional tech-
niques. Using the a-priori algorithm [2] for association rule
mining we clearly show PROXIMUS’ ability to accurately
represent data in a highly compact form. Our experimental
results show that use of the compressed data for associa-
tion rule mining provides excellent precision and recall val-
ues (near 100%) across a range of support thresholds while
reducing the time required for association rule mining dras-
tically.

In the next section, we discuss the use of matrix trans-
forms in the context of data analysis and compression and
review existing approaches such as SVD, SDD, Centroid De-
compositions and PDDP. In Section 3, we present the basic
idea of PROXIMUS using representative examples, formu-
late the problem and provide heuristics to solve the discrete
rank-one approximation problem efficiently, present our re-
cursive algorithm for hierarchical discovery of patterns, and
discuss implementation issues of these algorithms. In Sec-
tion 4, we present an application of PROXIMUS in associ-
ation rule mining. We demonstrate effectiveness of PROX-
IMUS on both synthetic and experimental data and explore
the effect of various parameters on precision, recall and
speedup in this application in Section 5. We also illustrate
the scalability of PROXIMUS to extremely large datasets.
Finally, in Section 6, we draw conclusions and outline some
avenues for future research.

2. BACKGROUND AND RELATED WORK

Conventional approaches to analysis of large scale data
focus on probabilistic subsampling and data compression.
Data reduction techniques based on probabilistic subsam-
pling have been explored by several researchers [13, 23, 24,
25]. Data compression techniques are generally based on the
idea of finding compact representations for data through
discovery of dominant patterns or signals. A natural way
of compressing data relies on matrix transforms, which have

found various applications in large scale data analysis. Vari-
ants of orthogonal and non-orthogonal matrix transforma-
tions such as truncated SVD, SDD, Centroid Decomposition
and PDDP have been widely used in information retrieval [3,
4, 6, 15, 16]. In the rest of this section, we summarize com-
monly used orthogonal and non-orthogonal matrix transfor-
mations and their applications in data analysis and explore
alternate approaches for binary datasets.

2.1 Rank Reduction and the Singular Value
Decomposition (SVD)

SVD forms the basis for Latent Semantic Indexing (LSI)
commonly used in information retrieval [3]. LSI is based
on the idea of representing data by term-document matrices
with entries corresponding to the frequency of occurrence of
a term in a particular document, and selecting an appro-
priate number of singular vectors to represent the data to
eliminate noise. SVD transforms a matrix into two orthog-
onal matrices and a diagonal matrix of the singular values.
Specifically, an m by n rectangular matrix A can be de-
composed into

A=UzVT, (1)

where U is an m X r orthogonal matrix, V is an n x r
orthogonal matrix and X is an r x r diagonal matrix of the
singular values of A. Here r denotes the rank of matrix
A. The matrix A = uyo1v¥ is a rank-one approximation
of A, where w1 and v denote the first columns of matrices
U and V, respectively. These vectors are the left and right
singular vectors of A corresponding to the largest singular
value.

If we think of a matrix as a multi-attributed dataset with
rows corresponding to relations and columns corresponding
to attributes, we can say that each 3-tuple consisting of a
singular value oy, k** column in U, and k" column in V'
represents a pattern in A characterized by o . For larger
singular values, the corresponding pattern is more dominant
in the dataset. Taking advantage of this property of SVD,
LSI summarizes the underlying data represented by matrix
A by truncating the SVD of A to an appropriate number
of singular values. In doing so, the insignificant patterns
corresponding to small singular values are filtered.

2.2 Semi-Discrete Decomposition(SDD)

SDD is a variant of SVD in which the values of the en-
tries in matrices U and V are constrained to be in the set
{—1,0,1} [16]. The main advantage of SDD is its lower
storage requirement, since each element only requires 1.5
bits, thus enabling a higher rank representation for a given
amount of memory. SDD applied to LSI has been shown
to do as well as truncated SVD, while using less than one-
tenth the storage [15]. SDD also finds application in image
compression and pattern matching and has been shown to
provide fast and accurate pattern matching though perform-
ing slightly worse than DCT-based image compression [26].
McConnell and Skillicorn show that SDD differs from SVD
in that it is extremely effective in finding outlier clusters in
datasets and works well in information retrieval for datasets
containing a large number of small clusters [20].

Since the entries of the singular vectors are constrained
to be in the set {-1,0,1}, computation of SDD becomes an
integer programming problem, which is NP-hard. Kolda
and O’Leary [16] propose an iterative alternating heuristic



to solve the problem of finding rank-one approximations to
a matrix in polynomial time. Each iteration of this heuristic
has linear time complexity.

2.3 Centroid Decomposition (CD)

Centroid Decomposition (CD) is an approximation to SVD
that is widely used in factor analysis. It has been shown em-
pirically that CD provides a measurement of second order
statistical information of the original data [6]. CD represents
the underlying matrix in terms of centroid factors that can
be calculated without knowledge of the entire matrix; the
computation only depends on the correlations between the
rows of the matrix. Centroid factors are computed via the
centroid method, which is a fast iterative heuristic for parti-
tioning the data. This heuristic aims to modify the coordi-
nate system to increase the eccentricity of the system vari-
ables with respect to the origin. The transformation aims
to move the discovered centroid far away from the origin, so
that it represents a better essential factor. The main dif-
ference between SVD and the centroid method is that SVD
tends to discover a single dominant pattern while centroid
method tends to discover the overall trend of some part of
the data, which may be a collection of several independent
patterns.

The centroid method runs in time linear in number of
rows of the matrix but requires knowledge of correlations
between all pairs of rows. This requires quadratic time and
space in the number of rows. Thus, while adapting centroid
method to binary data, an alternative for the correlation
matrix must be provided that takes advantage of the discrete
nature of data and is much sparser.

2.4 Principal Direction Divisive Partitioning
(PDDP)

Principal Direction Divisive Partitioning (PDDP) is a hi-
erarchical clustering strategy for high dimensional real-valued
sparse datasets [4]. PDDP splits documents (rows) into
two parts, recursively, based on the principal direction of
the document-term matrix. Here, principal direction corre-
sponds to the first singular vector of the matrix obtained
by moving the centroid of the original matrix to the origin.
The idea of recursively partitioning the matrix based on the
first singular vector is similar to that used by PROXIMUS.
However, PROXIMUS is designed specifically for binary-
attributed data and works on the original matrix rather than
moving its centroid to the origin, in contrast to PDDP. For
this reason, PROXIMUS is significantly faster than PDDP.

2.5 Other Work on Summarizing
Discrete-Attribute Datasets

Other work on summarizing discrete-attributed datasets
is largely focused on clustering very large categorical datasets.
A class of approaches is based on well-known techniques
such as vector-quantization [9] and k-means clustering [19].
The k-modes algorithm [12] extends k-means to the discrete
domain by defining new dissimilarity measures. Another
class of algorithms is based on similarity graphs and hyper-
graphs. These methods represent the data as a graph or
hypergraph to be partitioned and apply partitioning heuris-
tics on this representation. Graph-based approaches repre-
sent similarity between pairs of data items using weights as-
signed to edges and cost functions on this similarity graph [8,
10]. Hypergraph-based approaches observe that discrete-

attribute datasets are naturally described by hypergraphs
and directly define cost functions on the corresponding hy-
pergraph [11, 22].

Our approach differs from these methods in that it discov-
ers naturally occurring patterns with no constraint on clus-
ter sizes or number of clusters. Thus, it provides a generic
interface to the problem, which may be used in diverse appli-
cations. Furthermore, the superior execution characteristics
of our approach make it particularly suited to extremely
high-dimensional attribute sets.

3. NON-ORTHOGONAL DECOMPOSITION
OF BINARY MATRICES

PROXIMUS is a collection of novel algorithms and data
structures that rely on modified SDD to find error-bounded
approximations to binary attributed datasets. While rely-
ing on the idea of orthogonal matrix transforms, PROX-
IMUS provides a framework that captures the properties of
discrete datasets more accurately and takes advantage of
their binary nature to improve both the quality and effi-
ciency of the analysis. Our approach is based on recursively
computing discrete rank-one approximations to the matrix
to extract dominant patterns hierarchically [17].

The problem of error-bounded approximation can also be
thought of as finding dense patterns in sparse matrices. A
binary rank-one approximation for a matrix is defined as
an outer product of two binary vectors that is at minimum
Hamming distance from the matrix over all outer products of
the same size. In other words, the rank-one approximation
problem for matrix A with m columns and n rows is one
of finding two vectors z and y that maximize the number
of zeros in the matrix (A — zy”), where z and y are of
dimensions m and m, respectively. The following example
illustrates this concept:

EXAMPLE 1. Given a matrizc A, we compute a rank-one
approzimation as follows:

110 1
A=[1 1 0f=[1{[1 1 0]==y"
110 1

Here, vector y is the pattern vector which is the best ap-
proximation for the objective (error) function specified. In
our case, this vector is [1 1 0]7. Vector x is the presence vec-
tor representing the rows of A that are well approximated
by the pattern described by y. Since all rows contain the
same pattern in this rank-one matrix, x is vector of all ones.
We further clarify this discussion with a slightly non-trivial
example.

EXAMPLE 2. Consider now a binary matriz A, which does
not have an exact rank-one representation (i.e., the matric
18 of higher rank).

0110 1
loo 101
A=l0 0 0 1 1
(10101
M1 0010 1
~| 1 oo 101
~[gltoo1ro11=[3%3 01
1 0010 1

The pattern vector hereis [0 0 1 0 1]¥ and corresponding
presence vector is [L 1 0 1)7. This presence vector indicates



that the pattern is dominant in the first, second and fourth
rows of A. A quick examination of the matrix confirms
this. In this way, a rank-one approximation to a matrix
can be thought of as decomposing the matrix into a pattern
vector, and a presence vector that signifies the presence of
the pattern.

Conventional singular value decompositions (SVDs) can
be viewed as summations of rank-one approximations to a
sequence of matrices. Here, the first matrix is the original
matrix itself and each subsequent matrix is a residual ma-
trix, i.e., the difference between the given matrix and the
matrix produced by sum of previous rank-one approxima-
tions. However, the application of SVDs to binary matri-
ces has two drawbacks. First, the resulting decomposition
contains non-integral vector values, which is generally hard
to interpret for binary datasets. SDD partially solves this
problem by restricting the entries of singular vectors to the
set {-1, 0, 1}. However, the second drawback is associated
with the idea of orthogonal decomposition, and therefore,
SDD also suffers from this problem: if the underlying data
consists of non-overlapping (orthogonal) patterns only, SVD
successfully identifies these patterns. However, if patterns
with similar strengths overlap, then, because of the orthogo-
nality constraint, the features contained in some of the pre-
viously discovered patterns are extracted from each pattern.
Furthermore, in orthogonalizing the second singular vector
with respect to the first, SVD introduces negative values
into the second vector. There is no easy interpretation of
these negative values in the context of most postprocessing
techniques, such as evaluating frequent itemsets. A simple
approach to this problem is to cancel the effect of the first
singular vector by removing this singular vector and intro-
ducing all subsets of this vector with appropriate weights.
This can prove to be computationally expensive. What is
required here is a non-orthogonal transform that does not
introduce negative values into the composing vectors.

Based on these observations, our modification to SDD for
binary matrices has two major components:

e pattern and presence vectors are restricted to binary
elements,

e the matrix is partitioned based on the presence vec-
tor after each computation of rank-one approximation,
and the procedure is applied recursively to each parti-
tion. This method provides a hierarchical representa-
tion of dominant patterns.

3.1 Discrete Rank-one Approximation of Bi-
nary Matrices

The problem of finding the optimal discrete rank-one ap-
proximation for a binary matrix can be stated as follows.

DEFINITION 3.1. Rank-one approximation
Given matriz A € {0,1}™ x {0,1}", find = € {0,1}™ and
y € {0,1}" to minimize the error:

1A = 2y"||F = {ai; € (A=2y") : Jai;l =1} (2)

In other words, the error for a rank-one approximation is the
number of nonzero entries in the residual matrix. This prob-
lem is closely related to finding maximal cliques in graphs.
This problem is known to be NP-hard and there exist no
known approximation algorithms or effective heuristics in
literature. As a matter of fact, if we view the problem as one

of discovering significant patterns in the matrix, the optimal
solution is not necessarily the desired rank-one approxima-
tion. We illustrate this point with a simple example:

EXAMPLE 3. Consider a simple binary matriz A as fol-
lows:

1110
1110
01 11

1

Since A is dense enough, the optimal rank-one approxima-
tion to A is the outer product of two vectors both consist-
ing of all 1’s with error 4. However, there are two visible
patterns in this matrix, namely [1 1 1 0] and [0 1 1 1],
lying on first two and last two columns, respectively. The
rank-one approximation corresponding to the first pattern
is [1100]x[1110]T with error 6, which is a local min-
imum. Therefore, if we were able to compute the optimal
rank-one approximation to A, we would not be aware of the
two dominant patterns lying in the matrix. This, in fact, is
a fortunate property for an NP-hard problem as a heuristic
can work well enough to discover a desired local optimum,
which does not have to be the globally optimal solution. For
this purpose we adapt an alternating iterative heuristic of
SDD computation to binary matrices with suitable initial-
ization heuristics.

3.1.1 Alternating Iterative Heuristic
Since the objective (error) function can be written as

T T
1A =2y [|F = [|AllF — 22" Ay + [le|3]lyll5,  (3)
minimizing the error is equivalent to maximizing
T
Ca(z,y) = 2" Ay — ||z|[3]lyll3. (4)

If we fix y and set s = Ay, the corresponding z that max-
imizes this function is given by the following equation.

= { b 1220 2 -

0, otherwise

This equation follows from the idea that a nonzero ele-
ment of £ can have a positive contribution to Cq(z,y) if
and only if at least half of the nonzero elements of y match
with the nonzero entries on the corresponding row of A.
Clearly, this equation leads to a linear time algorithm in the
number of nonzeros of A to compute z, as computation of
s requires O(nz(A)) (nz(A) is the number of non-zeros in
matrix A) time and Equation 5 can be evaluated in O(m)
time. Similarly, we can compute vector y that maximizes
Ci(z,y) for a fixed z in linear time. This leads to an al-
ternating iterative algorithm based on the computation of
SDD [16], namely initialize y, then solve for . Now, solve
for y based on updated value of x. Repeat this process
until there is no improvement in the objective function. In-
deed, this technique is distantly related to expectation max-
imization, which is a commonly used technique in statistical
analysis [7].

Although the objective function of Equation 4 leads to
this linear time algorithm and guarantees convergence to a
local maximum, it has a significant drawback due to the
discrete nature of the domain. Specifically, this algorithm
does not have any global awareness, i.e, it always converges
to the local maximum closest to initialization. This leaves
the task of solving the problem to initialization of the pat-
tern vector. A continuous objective function approximating



Cq(z,y), alleviates this problem. This is more successful in
forcing convergence to desired local maxima, especially for
very sparse matrices.

3.1.2 Approximate Continuous Objective Function

In the case of decomposing continuous valued matrices, it
has been shown [21] that the objective function of rank-one
approximation is equivalent to maximizing

_ (a7 Ay)?

o) = eyl ©
Although this function is not equivalent to the objective
function in the case of binary matrices, i.e., Cq(z,y) and
Ce(z,y) do not have their global maximum at the same
point, the behavior of these two functions is highly corre-
lated. Thus, we can use C.(x,y) as a continuous approx-
imation to Cy4(z,y). Fixing y and letting s = Ay/||yl|3
(zTs)?

B
This can be done in linear time by sorting elements of2 s
via counting sort and visiting elements of x in the result-
ing order until no improvement in the objective function is
possible.

This continuous function has the desirable property of
having a broader range of convergence compared to the
discrete objective function. Furthermore, since the rate of
growth of this function declines less rapidly with increas-
ing number of nonzeros in z, it favors discovery of sparser
patterns. Although a local maximum of C.(z,y) does not
necessarily correspond to a local maximum of the binary ob-
jective function, it may correspond to a point that is close
to a local maximum and has a higher objective value than
many undesirable local maxima. Note that although this
metric provides more flexibility in initialization, selection of
the initial pattern vector still has a significant impact on
the quality of the solution due to the discrete nature of the
domain.

as above, the objective becomes one of maximizing

3.2 Recursive Decomposition of Binary Ma-
trices

We use the rank-one approximation of the given matrix
to partition the rows into two submatrices. This is in con-
trast to conventional SVD-based techniques that compute
the residual matrix and apply the transformation repeat-
edly.

DEFINITION 3.2. Partitioning based on rank-one ap-
proximation:
Given rank-one approzimation A = zy” , a partition of A
with respect to this approzimation is defined by two sub-
matrices A1 and Ao, where

. A, if z(@) =1
A() € { Ap, otherwise

for 1 <i<m. Here, A(i) denotes the i*" row of A.

The intuition behind this approach is that the rows cor-
responding to 1’s in the presence vector are the rows of a
maximally connected submatrix of A. Therefore, these rows
have more similar non-zero structures among each other
compared to the rest of the matrix. This partitioning can
also be interpreted as creating two new matrices Ao and
Aj;. Since the rank-one approximation for A gives no infor-
mation about Ao, we further find a rank-one approximation

and partition this matrix recursively. On the other hand, we
use the representation of the rows in A; given by the pat-
tern vector y and check if this representation is adequate
via some stopping criterion. If so, we decide that matrix A;
is adequately represented by matrix zy” and stop; else, we
recursively apply the procedure for A; as for Ap.

This partitioning-and-approximation process continues un-
til the matrix cannot be further partitioned or the resulting
approximation adequately represents the entire matrix. We
define a metric called normalized Hamming radius to mea-
sure the adequacy of the representation in terms of the Ham-
ming distances of rows to the underlying pattern vector.

DEeFINITION 3.3. Normalized Hamming distance
Given two n-dimensional binary vectors  and y, the nor-
malized Hamming distance between x and y is defined as:

_llz XORy|l _ 2"z +y"y — 22"y
n n ’

h(z,y)

where ||z|| = ||z||3 = ||z||1 is the number of nonzeros in a
binary vector x.

Normalized Hamming distance measures the fraction of un-
matched nonzeros between x and y among all entries of
and y. Note that 0 < h(z,y) < 1. The normalized Ham-
ming distance between a row of the matrix and a pattern
vector measures the fraction of the row that is not repre-
sented by the pattern as well as the fraction of the pattern
that does not exist in the row. Thus, normalized Hamming
distance provides a measure for detecting mismatched pat-
terns as well as underrepresentation of a row by the under-
lying pattern.

DEFINITION 3.4. Normalized Hamming radius
Given a set of binary vectors X = {zx1,z2,...,2,} and a
binary vector y, the normalized Hamming radius of X cen-
tered around y is defined as:

#(X,y) = max h(z,y).

We use the normalized Hamming radius as the major stop-
ping criterion for the algorithm to decide whether the un-
derlying pattern can represent all rows of the correspond-
ing submatrix adequately. The recursive algorithm does not
partition submatrix A; further if one of the following two
conditions holds for the rank-one approximation A; = x;y; .

e 7#(As1,y:) < €, where ¢ is the prescribed bound on the
normalized Hamming radius of identified clusters.

e z;(j) = 1Vj, i.e, all the rows of A; are present in
il

If one of the above conditions holds, the pattern vector y; is
identified as a dominant pattern in matrix A. The resulting
approximation for A is represented as A = UVT where U
and V are mxk and n Xk matrices containing the presence
and pattern vectors in their rows respectively and £ is the
number of identified patterns.

3.3 Initialization of lterative Process

While finding a rank-one approximation, initialization is
crucial for not only the rate of convergence but also the
quality of the solutions since a wrong choice can result in
poor local minima. In order to have a feasible solution, the
initial pattern vector should have magnitude greater than



zero, i.e., at least one of the entries in the initial pattern
vector should be equal to one. It is important that the
initialization of the pattern vector must not require more
than ©(nz(A)) operations, since it will otherwise dominate
the runtime of the overall algorithm. Possible procedures
for finding an initial pattern vector include:

e Partition: Select a separator column and identify the
rows that have a nonzero on that column. Initialize
the pattern vector to the centroid of these rows. The
idea is to partition the rows of the matrix along one
dimension expecting that such a partition will include
rows that contain a particular pattern.

e Greedy Graph Growing: Based on the idea of itera-
tive improvement heuristics in graph partitioning [14],
this scheme starts with a randomly selected row in one
part and grows that part by including the rows that
share a nonzero with that part until a balanced par-
tition is obtained. The initial pattern vector is set to
the center of rows in this part.

e Neighbor: Observing that a balanced partition of
rows is not necessary due to the nature of the problem,
we select a row randomly and initialize the pattern vec-
tor to the centroid of the neighbors of that row, i.e.,
the set of rows that share a nonzero with that partic-
ular row.

All of the above initialization schemes require O(nz(A))
time. Our observations show that the Neighbor scheme tends
to initialize the pattern vector close to a desired local min-
ima, ¢.e., the resulting rank-one approximation includes a
specific pattern that represents a small set of rows ade-
quately. On the other hand, Greedy Graph Growing provides
hierarchical extraction of patterns, the resulting rank-one
approximation generally contains a combination of patterns,
which can be further decomposed in the recursive course of
the algorithm. The Partition scheme lies somewhere be-
tween the first two schemes as the balance of the partition
depends on the selection of the dimension. In our implemen-
tation, we select the dimension that yields the most balanced
partition in order to increase the probability of partitioning
along a significant dimension.

3.4 Computational Complexity

In the alternating iterative heuristic for computing rank-
one approximations, each solution to the optimization prob-
lem of Equation 4 takes O(nz(A)) time. The number of
iterations required to compute a rank-one approximation is
a function of the initialization vector and strength of asso-
ciated local minima. In general, if the underlying pattern
is strong, we observe very fast convergence. In our experi-
ments, we observe the computation time of a rank-one ap-
proximation to be linear in the number of nonzeros of the
matrix for all instances.

If we view the recursive process as a tree with each node
being a rank-one approximation to a matrix, we can observe
that the total number of nonzeros of the matrices at each
level of the recursion tree is at most equal to the number of
nonzeros in the original matrix. Thus, the overall time com-
plexity of the algorithm is O(h x nz(A)), where h denotes
the height of the recursion tree. If the resulting decomposi-
tion has k pattern vectors (which is equal to the number of
leaves) in the recursion tree, then h < k — 1. Therefore, we

T : {beer, snacks}
T : {beer, snacks, bread}
Ts : {milk, bread}
T4 : {milk, bread, butter}
Ts : {milk, butter}
Ts : {bread, butter}

(a)

beer snacks bread milk butter

Ty 1 1 0 0 0
T 1 1 1 0 0
T= T; 0 0 1 1 0
T 0 0 1 1 1
Ts 0 0 0 1 1
Te 0 0 1 0 1

(b)

Figure 1: (a) A sample transaction set of 6 transac-
tions on 5 items and (b) its corresponding transac-
tion matrix.

0 1

01

1 0 0 0 1 1 1
T'~ 1 0 1 1.1 00

10

10

(a)

Virtual transaction Weight

Ti : {bread, milk, butter} 4
T; : {beer, snacks, bread} 2

(b)

Figure 2: (a) Decomposition of transaction matrix
of the transaction set of Figure 1 and (b) the corre-
sponding approximate transaction set.

can conclude that the time complexity of overall algorithm
is O(k x nz(A)). Note that k is a function of the underly-
ing pattern structure of the input matrix and the prescribed
bound on the normalized Hamming radius of the identified
clusters.

4. APPLICATIONTO ASSOCIATION RULE
MINING

In this section, we demonstrate a simple application of
PROXIMUS in accelerating association rule mining, a well-
known and extensively studied problem in data mining. Given
a set of transactions and a set of items, transactions be-
ing subsets of the entire item set, association rule mining
aims to discover association rules between itemsets that sat-
isfy the minimum support and confidence constraints pre-
scribed by the user. An association rule is an assertion of
kind “{bread,milk}=>{butter}” meaning that if a transac-
tion contains bread and milk, then it is also likely to contain
butter. Support of a rule in a transaction set is defined as
the fraction of the transactions that contain all items in the
rule among all transactions in the set. Confidence of a rule
is the fraction of the transactions that contain the right-
hand-side of the rule among all transactions that contain
the left-hand-side of the rule.

Given a transaction set on a set of items, we can con-
struct a binary transaction matrix by mapping transactions



to rows and items to columns and setting entry ¢;; of trans-
action matrix T to 1 if item j is in transaction T;. Fig-
ure 1(a) and (b) illustrate a sample transaction set of 6
transactions on the item set {beer, snacks, bread, milk, but-
ter} and its corresponding transaction matrix, respectively.
A locally optimal rank-one approximation to T is ziyi
with pattern vector 41 = [0 0 1 1 1]7 and presence vector
£1 =[001111]7. This means that the pattern {bread,
milk, butter} is present in transactions T3,74,75 and Ts.
Based on this pair of singular vectors, we can create a vir-
tual transaction T]={bread, milk, butter} that represents
all these transactions. Partitioning 7' with respect to z1
and finding a locally optimal rank-one approximation to the
resulting matrix, we end up with pattern and presence vec-
tors 492 =[111000]7 and 2 =[11 000 0]7, respectively.
Based on these singular vectors, we can create a second vir-
tual transaction Ty ={beer, snacks, bread}, which represents
transactions 71 and T». We associate weights w(T]) = 4
and w(T3) = 2 representing the number of transactions that
each virtual transaction represents. Finally, we end up with
a transaction set of two transactions that is an approxima-
tion to the original transaction set. We can mine this smaller
approximate transaction set for association rules on behalf
of the original transaction set. This will clearly be faster
than mining the original transaction set as the cardinality
of the approximate transaction set is one third of the original
set. Figure 2(a) and (b) show the decomposition of 7' into
two pairs of singular vectors and the resulting approximate
transaction set respectively.

In general, in order to reduce the time required for asso-
ciation rule mining we decompose the corresponding trans-
action matrix of the original transaction set and create an
approximate transaction set based on the set of identified
pattern vectors. We associate a weight with each virtual
transaction that is defined as the number of nonzeros in the
corresponding presence vector, i.e., the number of transac-
tions that contain the corresponding pattern. We then mine
the approximate transaction set. Extension of the a-priori
algorithm to the case of weighted transactions is straightfor-
ward; we consider transaction T} as occurring w(T}) times
in the transaction set while counting the frequencies of item-
sets.

5. EXPERIMENTAL RESULTS

In this section, we illustrate the desirable properties of
PROXIMUS in the context of association rule mining. In
our implementation, we use the well-known a-priori algo-
rithm [2] as the benchmark algorithm for association rule
mining. While improved algorithms that reduce the num-
ber of passes over data have been developed, these improved
algorithms can also be applied to the output of PROXIMUS.
In order to illustrate the effectiveness of PROXIMUS in asso-
ciation rule mining and to explore the effects of parameters
such as size of the transaction set, number of underlying
patterns in the data, and bound on normalized Hamming
radius, we test our framework on synthetically generated
association data using the data generator made available
by the IBM Quest Research Group [1]. We also test our
method on the Agaricus Lepiota dataset in order to illus-
trate the effectiveness of PROXIMUS on real data. We use
an efficient implementation of the a-priori algorithm which
is available as open source [5] for our experiments. We create
a second version of the software which is capable of mining

Dataset # trans. # items # patterns # nonzeros
M10K 7513 472 100 95048
L100K 76025 178 20 965210
M100K 75070 852 100 955555
H100K 74696 3185 500 958733
M1M 751357 922 100 9557237

Table 1: Description of generated data in terms
number of transactions, items and patterns.

min. time time rules rules rules

sup. orig. comp. orig. comp. match. prec. recall
% sec. sec. # # # % %
0.5 13.76 1.06 332395 333046 331087 99.6 99.8
1.0 8.01 0.39 138745 139519 137200 98.3 99.0
1.5 5.12 0.18 60500 59580 59580 100.0 98.5
2.0 3.14 0.11 36061 39117 35366 90.4 98.1
2.5 0.86 0.03 14750 14645 14645 100.0 99.3
3.0 0.68 0.02 11180 11070 11070 100.0 99.0
3.5 0.67 0.02 11075 10965 10965 100.0 99.0
4.0 0.51 0.02 7005 10965 7005 63.9 100.0
4.5 0.50 0.02 7005 6900 6900 100.0 98.5
5.0 0.48 0.01 6900 6270 6270 100.0 90.9
5.5 0.31 0.01 3960 3960 3960 100.0 100.0
6.0 0.30 0.01 3960 3960 3960 100.0 100.0

Table 2: Performance of PROXIMUS on M100K
dataset.

weighted transaction sets by slightly modifying the original
software. In each instance of the generated data, we mine
the given transaction set with the original software as well
as the approximate transaction set with the modified soft-
ware and compare the results in terms of both precision and
recall rates and the runtime of the software on these two
transaction sets. We have made the source code of PROX-
IMUS available for free download at
http://www.cs.purdue.edu/homes/koyuturk/proximus/.

We generate two sets of data, one for varying number
of transactions and the other for varying number of pat-
terns. In the first set, the number of patterns is fixed at 100
(medium), and three instances named M10K, M100K and
M1M containing ~ 10K (low), ~ 100K (medium) and =
1M (high) transactions, respectively, are generated. In the
second set, the number of transactions is fixed to ~ 100K
(medium) and three instances named L100K, M100K and
H100K containing 20 (low), 100 (medium) and 500 (high)
patterns, respectively, are generated. The average number
of items per transaction and the average number of items
in a pattern are set to 10 while generating the data. The
average correlation between each pair of patterns and the av-
erage confidence of a rule are set to 0.1 and 90% respectively.
Table 1 shows the general description of the five instances
in terms of number of transactions, number of items, and
number of patterns.

Table 2 shows the comparison of rules obtained by running
a-priori on original and approximate transaction sets for
support values ranging from 0.5% to 6.0%, which is selected
as a meaningful range of support values for this dataset. The
approximate data is obtained by decomposing the M100K
matrix with € = 0.01 resulting in 2479 patterns or equiva-
lently, virtual transactions. The preprocessing time for this
dataset is 5.89 seconds. The rules displayed in the table are
the rules of cardinality 5, which is selected to be large enough
for transactions that contain 10 items on the average. The
performance of PROXIMUS for different rule cardinalities
is further analyzed in Section 5.2. The table displays the
run time of a-priori on original and approximate transac-



tion sets, the number of rules discovered on original and
approximate transaction sets, number of rules that are dis-
covered on both transaction sets (matching rules), and the
precision and recall rates for sample support values in the
range. Precision is defined as the number of matching rules
over all rules that are discovered on the approximate trans-
action set, measuring how precise are the results that are
obtained on the approximate set. Recall is defined as the
fraction of the rules discovered on the original transaction
set that are also discovered on the approximate set, measur-
ing how successful compression is in recalling the rules that
are present in the original data.

As seen in Table 2, the precision and recall values are close
to 100% for almost all support values while the runtime of
a-priori is significantly smaller on the approximate set com-
pared to that on the original transaction set; the speedup is
observed to be as high as two orders of magnitude for some
support values! Note that the same 3960 rules are discov-
ered on both transaction sets for support values up to 9%,
so the precision and recall values are all 100% in this range,
which are not displayed in the table. Notice also the glitch in
precision at support around 4%. This phenomenon is some-
times observed for all datasets for both precision and recall.
It is caused by the fact that a group of rules has the same
support value for all rules in the group in both original and
approximate transaction sets. Although the approximate
set represents the original set accurately enough, so that
such groups are the same on both transaction sets as can
be seen on the table, there is a small discrepancy between
the support of each particular group of rules on original and
approximate transaction sets. For example, as we derived
from our more detailed results, a group of about 4000 rules
have support about (4 + )% on the original set while hav-
ing support about (4—43)% on the approximate set, § being
small. Thus, this group of rules are discovered on the ap-
proximate transaction set for a support threshold of 4%, but
have not yet been discovered on the original transaction set,
making the observed precision lower for a small interval.

5.1 Effect of Number of Transactions and Pat-
terns

Evaluation of PROXIMUS’ performance on varying num-
ber of transactions is displayed in Table 3 for approximately
10K, 100K and 1M transactions. The table shows the aver-
age values of speedup, precision and recall over 100 uniform
sample support values on the meaningful support range of
each instance. Here, meaningful support range refers to an
interval that has lower-bound that results in less than 500K
rules (set to ignore the rules that are not interesting) and
upper-bound above which a-priori is not able to discover
any rules. Based on this principle, the meaningful range
is set to [0.5%,9.0%)] for all three datasets. The results of
preprocessing the transaction sets via PROXIMUS, namely
the preprocessing time and number of singular vectors are
also displayed in the table. Based on these results, we can
conclude that the benefit of compressing transaction sets in-
creases with increasing number of transactions, if the num-
ber of underlying patterns does not change. Although the
cost of preprocessing also grows with increasing number of
transactions, the increase in the speedup makes it especially
suitable for very large datasets since preprocessing is done
only once while the set might be mined several times for
association rules. Note also that the runtime of a-priori on

data prep. sing. speedup prec. recall

set time  vecs.

sec. # % %
M10K 0.51 870 6.1 96.1 98.9
M100K 5.89 2479 30.4 95.2 97.8
M1M 43.88 4460 209.8 95.9 95.8

Table 3: Effect of number of transactions on the

performance of PROXIMUS.

data prep. sing. speedup prec. recall
set time  vecs.

sec. # % %
L100K 3.15 480 112.3 95.6 99.1
M100K 5.80 2479 30.4 95.2 97.8
H100K 28.8 7652 8.9 95.6 98.8

Table 4: Effect of number of patterns on the perfor-
mance of PROXIMUS.

the original transaction set for lower support thresholds in
the meaningful support range is significantly higher than the
preprocessing time for all datasets. In addition, the preci-
sion and recall values are not significantly affected by the
number of transactions.

Table 4 shows the performance of PROXIMUS on trans-
action sets containing 20, 100 and 500 patterns based on
the same experimental setup discussed above. The mean-
ingful support ranges are set to [1.0%,10.0%], [0.5%, 9.0%]
and [0.3%, 1.5%)] for datasets L100K, M100K, and H100K,
respectively. As seen in the table, increasing the number
of patterns causes PROXIMUS to approximate the matrix
with a higher number of singular vectors increasing the pre-
processing time, as expected. Thus, increasing number of
patterns reduces the speedup as shown in the table. Also
note that PROXIMUS attains over 95% average precision
and recall rates for all datasets.

5.2 Effect of Other Parameters

We have also explored the effect of the bound on nor-
malized Hamming radius (e) on the performance of PROX-
IMUS. Our experimental results confirm the trade-off be-
tween obtaining higher speedups from decreasing the num-
ber of singular vectors by increasing ¢ and obtaining higher
precision and recall values from improving the quality of
compression by reducing €. We observe that this trade-off
is more apparent for harder problem instances (e.g., datasets
with larger number of patterns). We adjust e properly based
on the number of transaction sets and patterns to obtain
consistent approximation for all datasets, in order to evalu-
ate the effect of other parameters fairly.

Finally, we discuss the performance of PROXIMUS for
varying levels of itemset cardinality. As the average cardi-
nality of patterns is set to 10, rules of interest are expected
to contain less than 10 items. Therefore, we compare the
performance of PROXIMUS on M100K dataset for rules of
cardinality between 2 and 10. Both precision and recall are
higher for rules with larger number of items, generally. The
benefit of compression becomes more apparent with increas-
ing rule size since speedup also increases with increasing rule
size in addition to precision and recall.

5.3 Performance of PROXIMUS on Real Data

In order to illustrate the effectiveness of PROXIMUS on
real data, we have also conducted experiments on the Agar-
icus Lepiota dataset that includes descriptions of samples
corresponding to 8124 species of gilled mushrooms in the



min. time time rules rules rules
sup. orig. comp. orig. comp. match. prec. recall

% sec. sec. # # # % %

. 497813 464546 464185 99.9 93.2
12.4  21.81 3.88 66695 66363 66191 99.7 99.2
14.8 14.98 2.19 63413 63299 63210 99.9 99.7
17.2 9.77 1.63 32691 32647 32647 100.0 99.9
19.6 7.43 1.30 32593 32589 32589  100.0 99.9
21.2 6.83 1.23 32593 32589 32589  100.0 99.9

24.4 1.61 0.28 147 156 147 94.2  100.0
26.8 1.01 0.17 108 108 108 100.0 100.0
29.2 0.70 0.11 26 26 26 100.0 100.0
31.6 0.56 0.09 2 2 2 100.0 100.0

Table 5: Performance of PROXIMUS on Agaricus
Lepiota dataset.

Agaricus and Lepiota family [18]. 23 categorical attributes
are associated with each species. We mine this dataset for
rules of kind “mushrooms with bell-shaped and fibrous caps
have brown gills” by defining 118 items corresponding to cat-
egories of the 23 attributes. This gives us a binary dataset
with 8124 transactions on 118 items, with all transaction
sizes being at most 23 (one category has missing values).
We represent this transaction set by a 8124 x 118 binary
matrix with 184372 non-zero entries.

We decompose the Agaricus Lepiota matrix with € = 0.05
getting an approximation consisting of 1142 patterns, which
means compressing the transaction set to nearly one seventh
of its original size. The preprocessing time for this dataset
is 15.73 seconds. Notice that this figure is about 50 times
the running time of PROXIMUS on M10K data. This un-
expected discrepancy between the running times is due to
the fact that the complexity of PROXIMUS is proportional
to the height of the recursion tree; number of discovered
patterns is only an upper-bound on this number. Inter-
estingly, the Agaricus Lepiota dataset almost attains this
upper-bound as the recursion tree turns out to be totally
imbalanced for this particular dataset. In addition, high
variance in pattern structure degrades the rate of conver-
gence of the iterative algorithm, increasing the execution
time. Therefore, we can conclude that the running time of
PROXIMUS is mostly determined by the structure of the
data rather than its size.

Table 5 shows the comparison of rules obtained by run-
ning a-priori on original and approximate data for support
values ranging from 10.0% to 31.6%, which is selected as
a meaningful range of support values for this dataset. In
the experiments reported here, we are looking for rules of
cardinality 10, which is reasonable since each mushroom is
characterized by 23 categorical attributes. Note that the re-
sults are similar for different rule sizes. As seen in the table,
the speed-up achieved by compressing the transaction set
is about 7 for all support values, which is roughly equal to
the compression factor. Both precision and recall rates are
above 90% for all of the support values (being above 99%
for most), which is outstanding for this value of speedup.
Note that the phenomenon of glitches in precision and re-
call values is not observed on the Agaricus Lepiota dataset,
which is as expected in real-life applications.

5.4 Runtime Scalability

The results displayed in Figure 3 demonstrate the scala-
bility of PROXIMUS in terms of number of rows, number
of nonzeros and number of patterns. The settings for these
three experiments are as follows:

12 5 7

ERG 5
Number of rows o

(a)

50 100 150 200 250 30 30 400
‘Average # of nonzeros per row

(b)

] 200 200 500 500 1000
Number of patterns

(c)

Figure 3: Runtime of PROXIMUS (secs.) with re-
spect to (a) number of rows (b) average number of
nonzeros per row (c)number of patterns.

1. Number of patterns and average number of nonzeros
per row are kept constant at 100 and 10, respectively.
The number of rows ranges from approximately 1K
to 1IM. Note that number of nonzeros grows linearly
with number of rows while number of columns remains
constant.

2. Number of rows and number of patterns are kept con-
stant at approximately 100K and 100 respectively. Av-
erage number of nonzeros per row ranges from 5 to 400.
Note that number of nonzeros and number of columns
grow linearly with average row density.

3. Number of rows and average row density are kept con-
stant at approximately 100K and 10 respectively. Num-
ber of patterns range from 5 to 1000. Note that num-
ber of columns grows linearly with number of patterns
while number of nonzeros remains constant.

All experiments are repeated with different randomly gen-
erated matrices 10 times for all values of the varying parame-
ter. The reported values are the average runtimes over these
10 experiments on a Pentium-IV 2.0 GHz server with 512
MB RAM. In the first case, the number of nonzeros grows
linearly with number of rows while the number of patterns is
constant. Therefore, we expect the runtime to grow linearly
with number of rows as discussed in Section 3.4. As seen
in Figure 3(a), the runtime of PROXIMUS grows linearly
with number of rows. In the second case, we expect runtime
to grow linearly with average row density since the num-
ber of patterns remains constant while number of nonzeros
grows linearly. We see this expected behavior of run time
in Figure 3(b). Finally, in the third case, it is important



to note that the runtime depends on the number of iden-
tified vectors, and not directly on the number of patterns
in the matrix. As we expect number of vectors to be lin-
ear in number of patterns, we expect a linear behavior of
runtime with growing number of patterns since the number
of nonzeros remains constant. Figure 3(c) shows that the
behavior of runtime with respect to number of patterns is
almost linear as expected. Note that, generally, the number
of identified vectors is slightly superlinear in terms of the
number of underlying patterns.

6. CONCLUSIONS AND ONGOING WORK

In this paper, we have presented a powerful new tech-
nique for analysis of large high-dimensional binary valued at-
tribute sets. Using a range of algebraic techniques and data
structures, this technique achieves excellent performance and
scalability. The application of the method to association
rule mining showed that compression of transaction sets via
PROXIMUS accelerates the association rule mining process
significantly while being able to discover association rules
that are consistent with those discovered on the original
transaction set. The results reported for this particular ap-
plication show that use of the method is promising in var-
ious applications including dominant and deviant pattern
detection, collaborative filtering, clustering, bounded error
compression, and classification. The method can also be ex-
tended beyond binary attributed datasets to general discrete
positive valued attribute sets.

PROXIMUS is available for free download at
http://www.cs.purdue.edu/homes/koyuturk/proximus/.
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