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ABSTRACT
Motivation: Extracting functional information from protein-protein
interactions (PPI) poses significant challenges arising from the noisy,
incomplete, generic, and static nature of data obtained from high-
throughput screening. Typical proteins are composed of multiple
domains, often regarded as their primary functional and structural
units. Motivated by these considerations, domain-domain interactions
(DDI) for network-based analyses have received significant recent
attention. This paper performs a formal comparative investigation
of the relationship between functional coherence and topological
proximity in PPI and DDI networks. Our investigation provides the
necessary basis for continued and focused investigation of DDIs
as abstractions for functional characterization and modularization of
networks.
Results: We investigate the problem of assessing the functional
coherence of two biomolecules (or segments thereof) in a formal fra-
mework. We establish essential attributes of admissible measures of
functional coherence, and demonstrate that existing, well-accepted
measures are ill-suited to comparative analyses involving different
entities (i.e., domains vs. proteins). We propose a statistically moti-
vated functional similarity measure that takes into account functional
specificity as well as the distribution of functional attributes across
entity groups to assess functional similarity in a statistically meaning-
ful and biologically interpretable manner. Results on diverse data,
including high-throughput and computationally predicted PPIs, as well
as structural and computationally inferred DDIs for different orga-
nisms show that: (i) the relationship between functional similarity and
network proximity is captured in a much more (biologically) intuitive
manner by our measure, compared to existing measures, and (ii)
network proximity and functional similarity are significantly more cor-
related in DDI networks than in PPI networks, and that structurally
determined DDIs provide better functional relevance as compared to
computationally inferred DDIs.
Contact: Jayesh Pandey, jpandey@cs.purdue.edu

1 INTRODUCTION
Availability of high-throughput protein-protein interaction (PPI)
data makes it possible to study the function of biological systems
from a network perspective. Recent advances in this area have
focused on the development of computational infrastructure for
network-based functional annotation (Sharan et al., 2007), identi-
fication of functionally coherent modules (Spirin and Mirny, 2003),
and evolutionary network analysis (Koyutürk et al., 2006). Howe-
ver, the use of PPI data for computational assessment of network
function poses several challenges: (i) PPI data generated by high-
throughput screening is generally noisy and incomplete (Titz et al.,
2004), (ii) PPI data provides only a generic and static picture of

the cellular network, i.e., it does not capture the spatio-temporal
dynamics of biological systems (Han et al., 2004), and (iii) proteins
themselves are typically composed of multiple functional domains.
For this reason, significant efforts are devoted to increasing the qua-
lity and reliability of PPI data, as well as using other data sources
and abstractions to study interaction data (Lee et al., 2004).

An important limitation of PPI data that relates to the dynamics
of cellular systems is that it does not explicitly capture the domain
specificity of interactions. Domains in proteins are often regarded as
primary functional and structural units (Bateman et al., 2004). The-
refore, the functional relevance of an interaction may be considered
at the domain level as well. However, the specificity of interactions
at this level cannot be captured by high-throughput screening. Con-
sequently, domain-domain interactions (DDI) are often identified
using either dedicated structural analysis (Gong et al., 2005) or com-
putational inference from PPI data (Deng et al., 2002; Riley et al.,
2005). As DDI data and databases become commonplace (Ng et al.,
2003; Raghavachari et al., 2007), DDI networks provide an attrac-
tive abstraction for functional network analysis (Schlicker et al.,
2007; Wuchty, 2006).

In this paper, we investigate how functional modularity manifests
itself in a network of molecular interactions, considering different
molecular entities – proteins and domains. This question is stu-
died extensively on PPI and gene co-expression networks (Sevilla
et al., 2005), however, knowledge on interactions involving diffe-
rent molecular entities is relatively scarce. In order to provide a basis
and motivation for computational analysis of DDI networks, we
investigate how network proximity in a DDI network relates to the
functional coherence of domains. For this purpose, we consider PPI
networks as a reference, and compare PPI and DDI networks com-
prehensively in terms of the relationship between network proximity
and functional similarity.

While comparing networks composed of different molecular enti-
ties, it is particularly difficult to quantify the functional similarity
between two entities in an unbiased manner. This is because functio-
nal similarity may have different meanings for different molecular
entities. Furthermore, from a practical standpoint, the functional
information available for different types of molecular entities may
have different characteristics. This is indeed the case for prote-
ins and domains. Most of the available functional annotations for
domains are derived from annotations for proteins (Schug et al.,
2002). Consequently, they are more general, scarce, and incomplete
compared to protein annotations. Motivated by this observation, we
develop a formal framework for evaluating metrics for assessing
functional similarity between two molecular entities. We establish
essential attributes of admissible measures of functional coherence,
and demonstrate that existing, well-accepted measures are ill-suited
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to comparative analyses involving different entities. We propose an
information theoretic functional similarity measure that takes into
account functional specificity as well as distribution of functional
attributes across entities. This results in a more statistically mea-
ningful and biologically interpretable functional similarity measure
that relies on only positive evidence to quantify the functional cohe-
rence of molecular entities – thus eliminating any artifacts caused
by incompleteness of annotations. On a comprehensive collection
of PPI and DDI data, we show that our measure indeed captures the
relation between network proximity and functional coherence in a
more biologically interpretable manner.

Using our proposed functional similarity measure, we compare
PPI and DDI networks for diverse species comprehensively. We
consider PPIs from large public databases that integrate different
sources of data, as well DDIs that are derived from different sources,
ranging from structural analysis to computational inference. Our
results show that functional coherence is more closely related to
network proximity in DDI networks as compared to PPI networks,
clearly motivating the use of DDI data in the analysis of networks for
functional inference. We also show that, for different sub-ontologies
of Gene Ontology (Ashburner et al., 2000), functional coherence
manifests itself differently in the networks.

2 METHODS
Understanding the relationship between network topology and func-
tional modularity requires measures for assessing the functional
similarity (or coherence) of a group of entities with respect to each
other. For example, in testing the hypothesis that functional modu-
larity is related to high connectivity in PPI networks, it is common
to investigate the functional purity of groups of proteins that induce
dense subgraphs in the network (Grossmann et al., 2006). In this
work, we focus on the relationship between the topological pro-
ximity of two entities in a network and their functional similarity.
The eventual goal is to determine whether functional relationship
manifests itself better in PPI or DDI networks.

There exist several approaches to assessing functional similarity
of bio-molecules (e.g., genes, proteins, domains) (Lord et al., 2003;
Schlicker et al., 2007). Since functional categories are not isola-
ted, but rather related to each other through a taxonomy (e.g., Gene
Ontology), it is necessary to consider the underlying taxonomy
while comparing molecules in terms of their functional annota-
tion (Resnik, 1995). Various approaches take into account diffe-
rent factors, including taxonomical distance, specificity/generality
(rank in hierarchy) of common ancestor, and associated number
of molecules for the functional terms being compared. Since most
molecules are associated with multiple functional terms, assessment
of functional similarity between two molecules poses an additio-
nal challenge, namely one of evaluating the similarity between two
sets of terms, as opposed to a pair of terms. Common, and rela-
tively straightforward approaches to this problem include taking the
maximum (Schlicker et al., 2007) or average (Lord et al., 2003)
of similarities among all pairs of terms in the two sets. We show
that neither of these alternatives provide robust metrics for exten-
ding term similarity to set similarity. We develop an information
theoretic measure for set-similarity that directly computes simila-
rity of sets as a whole, as opposed to computing an aggregate of
pairwise term-similarities. Our measure takes into account the infor-
mation content of the most specific of the common ancestors of all

terms, and quantifies positive reinforcement of similar terms, avoi-
ding negative contributions arising from incomplete data. In order to
motivate this approach, we provide a formal framework for the pro-
blem, and identify the desirable properties of a metric for evaluating
the functional similarity between two molecules in this framework.

2.1 Concepts and Ontologies
Let C = {ci|1 ≤ i ≤ N} be a finite partially ordered set of con-
cepts. In terms of Gene Ontology (GO), these concepts represent
the GO terms (i.e., molecular function, biological process, and cel-
lular component). Without loss of generality, we refer to concepts as
terms throughout this paper. Terms are related to each other through
is a and part of relationships, such that ci → cj denotes ci is a/part
of cj . Note that, if ci → cj , then the molecules associated with ci

are also associated with cj , known as the true path rule. Based on
these relationships, we define a binary relation over C, denoted by
�. We say cj is an ancestor of ci, denoted by ci � cj if and only if
either ci → cj , or for some ` ≥ 1, there exist ckl

∈ C for 1 ≤ l ≤ `
such that ci → ck1

, ckl
→ ckl+1

for 1 ≤ l < `, and ck`
→ cj (cj

is an ancestor of ci in GO hierarchy). Two terms ci, cj are compa-
rable, denoted by ci ∼ cj , if either cj � ci or ci � cj . If ci and cj

are comparable, then the shortest path between ci and cj is given by
L(ci, cj) = L(cj , ci) = ` + 1 for minimum such `.

We denote the set of ancestors of a term ci by Ai = {ck ∈ C|ci �
ck}. Note that, not all ancestors of a term are comparable, since the
GO hierarchy is a directed acyclic graph, as opposed to a tree. We
represent the root term of GO with a terminal concept r, such that
ci � r ∀ci ∈ C.

2.2 Semantic Similarity of Terms
Semantic similarity measures are intended to quantify the similarity
between two terms based on the underlying taxonomical relation-
ships. For a semantic similarity measure δ : C2 → <, we identify
the following as properties that must be satisfied for the measure to
be meaningful:

(1) δ(ci, cj) = δ(cj , ci), for all ci, cj ,
(2) δ(ci, ci) ≤ δ(cj , cj) for cj � ci,
(3) δ(ci, cj) ≤ δ(cj , cj) for all ci, cj ,
(4) if ∃cm ∈ Ai ∩ Aj such that cm � cn, ∀cn ∈ Ak ∩ Al, then

δ(ci, cj) ≥ δ(ck, cl).

The first property states that a semantic similarity measure must
be symmetric. The second property states that more specific terms
should have at least as much self-similarity as more general terms.
The third property states that a term should not be less similar to
itself than to any other term. The fourth property states that terms
with more specific common ancestors should be more similar to
each other, compared to those with less specific common ancestors.
Note that if δ satisfies properties (3) and (4), then δ(r, r) ≤ δ(ci, cj)
and δ(ci, r) = δ(r, r) ∀i, j.

We now discuss candidate measures for assessing the semantic
similarity of two terms.

Distance. Let the depth of a term ci be d(ci) = L(ci, r)
and the depth of the entire hierarchy be D = max

1≤i≤N
L(ci, r).

For terms ci and cj that are not comparable, let L(ci, cj) =
min

ck∈Ai∩Aj

L(ci, ck) + L(ck, cj). Then, the distance between two

terms in the hierarchy is defined as δE(ci, cj) = 2D − L(ci, cj).
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S1 = {c4, c6, c7}, S2 = {c4}, S3 = {c4, c6},
S4 = {c6, c7}, S5 = {c4, c3}

Fig. 1. Sample ontology and associated annotations. Each node of the hier-
archy represents a GO term, each set of terms represents a protein (or
domain).

This measure satisfies all properties except (4), i.e., it does not take
into account the specificity of the common ancestor.

Information content. This measure takes into account the distri-
bution of terms among molecules. Let Gc be the set of molecules
that are associated with term c. Then, the information content of a
term is defined as I(c) = − log2(|Gc|/|Gr |) (where Gr is the set
of all molecules)(Resnik, 1995). Clearly, I(r) = 0, and as a conse-
quence of the true path rule, I(cj) ≥ I(ci) for cj � ci. Then, the
semantic similarity between two terms is defined as

δI(ci, cj) = max
c∈Ai∩Aj

I(c) = I(λ(ci, cj)). (1)

Note that, λ(ci, cj) = argmaxc∈Ai∩Aj
I(c)is said to be the

minimum common ancestor of ci and cj .
This measure satisfies all four properties described above, but

does not take into account the specificity of terms with identical
common ancestors, as illustrated in Figure 1. In the figure, we have
δI(c2, c3) = δI (c5, c6). Although c5 and c6 are more specific con-
cepts farther apart from each other, their similarity is equal to that
of their parents, c2 and c3. This problem can be alleviated by nor-
malizing the similarity between two terms by the self-similarities
of the terms being compared, e.g., δL(ci, cj) =

2δI (ci,cj)

I(ci)+I(cj)
(Lin,

1998), and δJC(ci, cj) = 1
1−2δI (ci,cj)+I(ci)+I(cj)

(Jiang and Con-
rath, 1997). It is evident in Figure 1 that these measures satisfy
δL(c2, c3) ≥ δL(c5, c6) and δJC(c2, c3) ≥ δJC(c5, c6). We now
generalize these term-similarity measures to set-similarity.

2.3 Functional Similarity of Molecules
Since most molecules are associated with multiple molecular func-
tions and sometimes involved in multiple processes, the annotation
of a molecule consists of a set of terms. While assessing the simila-
rity of term sets, we assume that each set consists of terms that are
not comparable, i.e., each branch of the hierarchy is represented by
at most one term in each set. In GO, this involves considering only
the most specific annotations associated with a gene, which enables
non-redundant representation of functional annotation. In this repre-
sentation, the association between the gene and the ancestors of the
most specific term is implied by the true path rule.

A set of terms S ⊆ C is said to be non-redundant if ∀ci, cj ∈
S, ci � cj . Note that, to satisfy non-redundancy requirement for
any set, we define the trim of a term set S as Υ(S) = {ci ∈ S :
∃ no cj ∈ S s.t. cj � ci}. By definition, Υ(S) is non-redundant for
any S. Now we can define the semantic similarity measure for sets
assuming that the sets are non-redundant, since any set of terms has

a unique trim1. For two non-redundant sets Si, Sj ⊆ C, we need
a measure ρ(Si, Sj) to assess their semantic similarity. We identify
the following as properties of any such measure:

(i) ρ(Si, Sj) = ρ(Sj, Si) for all Si, Sj ,
(ii) ρ(Si, Sj) ≤ ρ(Si∪ck, Sj∪ck) where ∀cl ∈ Si, ∪Sj , cl � ck

for all Si, Sj ,
(iii) ρ(Si, Sj) ≤ ρ(Si, Sj ∪ Sk) for all Si, Sj , Sk,
(iv) ρ(Si, Sj) ≤ ρ(Sj, Sj) for all Si, Sj .

Property (ii) states that adding a common annotation for two
molecules should not decrease the similarity between these two
molecules. Property (iii) states that if new annotations are added
for a new molecule, the similarity of this molecule to any other
molecule should not decrease. This seemingly unintuitive property
is motivated by the fact that existing annotations are quite incom-
plete. For this reason, we require semantic similarity measures to
rely only on positive evidence, avoiding negative conclusions based
on lack of annotations. Property (iv) states that a set of annotations
should be at least as similar to itself as it is to any other set.

Common approaches to computing similarity between sets
include, taking the average or maximum of the similarities between
all pairs in the two sets. We first discuss the limitations of such
straightforward approaches, and propose a generalization of Res-
nik’s information-content based term similarity measure to sets of
terms. This also relates to the statistical significance of the similarity
between two term sets.

Average: ρA(Si, Sj) = 1
|Si||Sj |

X

ck∈Si

X

cl∈Sj

δ(ck, cl) (Lord

et al., 2003). The idea behind this measure is that the semantic
similarity between any two pairs of annotations contributes to the
functional similarity between two molecules, so that molecules with
more similar functions are assigned a higher similarity score. By let-
ting Si = {a}, Sj = {b}, and choosing ck such that 3δ(a, b)/4 >
δ(ck, ck) + δ(a, ck) + δ(b, ck), it can be shown that this measure
does not satisfy property (ii). Furthermore, it satisfies property (iii)
only if ρA(Si, Sj) = ρA(Si, Sk). Similarly, letting Si = {a, b},
Sj = {c} and 2(δ(a, c) + δ(b, c) − δ(a, b)) > δ(a, a) + δ(b, b), it
can be seen that this measure violates property (iv) as well.

Maximum: ρM (Si, Sj) = max
ck∈Si,cl∈Sj

δ(ck, cl) (Sevilla et al.,

2005). This measure is based on the notion that if two molecu-
les perform similar functions in at least one context, then they can
be considered functionally similar. While this measure satisfies all
properties, it satisfies (ii) weakly, i.e., ρM (Si, Sj) = ρM (Si ∪
ck, Sj ∪ ck) unless there exists no cm ∈ Si and cn ∈ Sj such
that δ(cm, cn) ≥ δ(ck, ck).

Average of maximums: Average functional similarity between
two proteins can be defined in terms of a compromise between
these two measures (Schlicker et al., 2007), namely ρH(Si, Sj) =

max

8

<

:

1

|Si|

X

ck∈Si

max
cl∈Sj

δ(ck, cl),
1

|Sj |

X

cl∈Sj

max
ck∈Si

δ(ck, cl)

9

=

;

.This

1 To see that Υ(S) is unique for S, recall that the underlying hierarchy of
terms is represented by a directed acyclic graph. Consequently, its transitive
closure is also an acyclic graph, in which an edge represents ancestral rela-
tionship between two terms. Observe that the trim of a term set is equivalent
to the set of nodes with no incoming arcs in the subgraph induced by the
term set on this transitive closure, therefore it is uniquely defined.
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modification provides a more biologically sound formulation of
average functional similarity between two molecules, since a func-
tion of one molecule may be considered to be shared by another
molecule as long as the other molecule is associated with a suffi-
ciently similar function. However, this measure also fails to satisfy
properties (ii), (iii), and (iv).

Information content: Observing that the notion of minimum
common ancestor can be extended to sets of terms, we propose
a set-similarity measure that is defined on entire sets, as oppo-
sed to a composite of pairwise similarities. Let Λ(Si, Sj) =

G

ck∈Si,cl∈Sj

λ(ck, cl) be the minimum common ancestor set of term

sets Si and Sj . Here, t denotes a generalized union operator that
preserves non-redundancy, i.e., A t B = Υ(A∪ B). We define the
similarity between two term sets as the information content of the
set of minimum common ancestors, i.e.,

ρI(Si, Sj) = I(Λ(Si, Sj)) = − log2

„

|GΛ(Si,Sj)|

|Gr|

«

, (2)

where GΛ(Si,Sj) =
\

ck∈Λ(Si,Sj)

Gck
is the set of molecules that are

associated with all terms in the minimum common ancestor set of Si

and Sj . Note that the above definition also generalizes the concept
of information content from a single term to a set of terms.

Example. Consider the ontology in Figure 1. The root term in
this ontology is R. The annotation sets for five molecules are
also shown in the figure. Consider the similarity between the two
molecules with annotation sets S1 and S2. Since λ(c4, c4) = c4,
λ(c6, c4) = λ(c7, c4) = R, and c4 � R, we have Λ(S1, S2) =
{c4}. Consequently, ρI(S1, S2) = − log2(|Gc4 |/|GR|) =
− log2(|{S1, S2, S3, S5}|/|{S1, S2, S3, S4, S5}) = log2(5/4).
On the other hand, since Λ(S1, S3) = {c4, c6}, we have
ρI(S1, S3) = log2(5/2) > ρI(S1, S2). Observe that
ρM (S1, S2) = ρM (S1, S3), illustrating that ρI is stronger than ρM

in terms of property (ii).
THEOREM 1. ρI satisfies all properties required for a measure

of semantic similarity between two sets of terms.

PROOF. (i) Trivially, ρI(Si, Sj) = ρI(Sj , Si) for all Si, Sj .
(ii) Since ck � cn for all cn ∈ Si ∪ Sj , we have Λ(Si ∪

ck, Sj ∪ ck) = Λ(Si, Sj) t Λ(Si t Sj , {ck}) t {ck} ⊇
Λ(Si, Sj) ∪ {ck}, leading to GΛ(Si∪ck,Sj∪ck) ⊆ GΛ(Si,Sj)

and |GΛ(Si∪ck,Sj∪ck)| ≤ |GΛ(Si,Sj)|. Consequently, ρI(Si ∪
ck, Sj ∪ ck) ≥ ρI(Si, Sj).

(iii) Λ(Si, Sj ∪Sk) = Λ(Si, Sj)tΛ(Si, Sk) ⊇ Λ(Si, Sj). There-
fore, GΛ(Si,Sj∪Sk) ⊆ GΛ(Si,Sj), leading to ρI(Si, Sj∪Sk) ≥
ρI(Si, Sj).

(iv) Clearly, ck � λ(ck, cl) for any ck, cl. Now consider any
cm ∈ Λ(Si, Sj). Since cm = λ(ck, cl) for some ck ∈ Si

and cl ∈ Sj , there always exists cn ∈ Λ(Si, Si) such that
cn � ck � cm. Consequently, we must have GΛ(Si,Si) ⊆
GΛ(Si,Sj), leading to ρI(Si, Sj) ≤ ρI(Si, Si).

Note that, ρI also has the problem associated with Resnik’s mea-
sure (Section 2.2) and that this problem can be alleviated through
normalization by self-similarities, e.g.,
ρL =

2ρI(Si, Sj)

ρI(Si, Si) + ρI(Sj , Sj)
or ρJC = 1/(ρI(Si, Si) +

ρI(Sj , Sj) − 2ρI(Si, Sj) + 1).

Table 1. Protein-protein interaction dataset.

C.eleg D.mela H.sapi S.cere S.pomb

Proteins 2308 5151 6718 4673 745
Interactions 3577 14529 19316 35833 1277

3 MATERIALS
In order to evaluate the suitability of PPIs and DDIs to diffe-
rent functional analyses, we obtain protein and domain interaction
data for five well-studied eukaryotic species from public databa-
ses. These datasets contain physical protein-protein interactions,
as well as structural and computationally inferred domain-domain
interactions.

3.1 Protein-Protein Interactions
We obtain protein interaction data for five species, C. elegans, D.
melanogaster, H. sapiens, S. cerevisiae, and S. pombe, from the
BioGrid database (Breitkreutz et al., 2007). The networks are cho-
sen to be largest among available networks in the database, with
the expectation that larger networks are relatively more comprehen-
sive. We filter the dataset to obtain a set of physical interactions
between proteins, i.e., genetic interactions are removed based on
experiment type (e.g., knockout experiments). The interaction data
is binary, i.e., no confidence score is associated with the interacti-
ons. The numbers of proteins and interactions in each PPI network
are shown in Table 1. Integr8 (Kersey et al., 2005) is used to map
the proteins in the interaction dataset to their Uniprot names. The
data is filtered to keep only those proteins for which pfam domain
decomposition is known using Integr8.

3.2 Domain interactions
We obtain domain interaction data from the DOMINE database
(Raghavachari et al., 2007). This dataset is composed of known,
as well as predicted domain interactions. Interactions inferred from
PDB entries of protein complexes are collected from iPfam and
3did. Predicted interactions are obtained through computational
methods, which infer domain interactions from protein interaction
networks or co-evolution of conserved sites (for details, see Ragha-
vachari et al. (2007)). Based on the source and quality of the data,
we partition this dataset into five classes:
• Struct: Only known domain interactions (structure based)
• HC+NA : High Confidence (HC) and Structure based (NA)

interactions
• HC+MC : High Confidence (HC) and Medium Confidence

(MC) interactions
• Comp-2: Interactions predicted by at least two computational

approaches
• Comp-1: Interactions predicted by at least one computational

approach
The numbers of domains and interactions in each class are shown

in Table 2. Note that domain-domain interactions here are binary,
i.e., there is no confidence score associated with these interactions.

3.3 Gene Ontology & Annotations
Gene Ontology Annotation (GOA) (Camon et al., 2006) is used
to obtain annotation information for Uniprot proteins. The map-
ping of Pfam-A domains to their Gene Ontology functions is
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Table 2. Domain-domain interaction dataset.

Struct HC + NA HC + MC Comp-2 Comp-1

Domains 2948 2978 1699 930 2933
Interactions 4349 5875 3957 1745 17781

obtained from pfam2go (http://www.geneontology.org/
external2go/pfam2go). We use only the Biological Process
and Molecular Function sub-ontologies of GO for evaluation, since
the coverage for the Cellular Component sub-ontology is relatively
low.

4 RESULTS
We first compare different semantic similarity measures on com-
prehensive PPI and DDI data. Then, using our proposed semantic
similarity measure, we investigate the differences between PPI
and DDI networks in terms of the relationship between network
proximity and functional similarity.

4.1 Comparison of Semantic Similarity Measures
For each network, we compute the distance between all pairs of
molecules (proteins or domains) in the network. Then, we group
molecule pairs according to their distance and compute the ave-
rage semantic similarity for each group. Since the distribution and
range of semantic similarity scores varies across different measures,
we normalize semantic similarity scores to obtain a mean simila-
rity score of zero and standard deviation of one in each network.
In other words, for each similarity measure ρx, the similarity score
between two molecules Pi, Pj ∈ P is computed as ρ̂x(Pi, Pj) =
ρx(Pi, Pj) − µx(P)

σx(P)
, where P denotes the set of molecules in the

network. Note also that this normalization is useful in comparing
PPI and DDI networks as well, since the distribution of available
annotations across proteins and domains can be significantly dif-
ferent. In general, since domain annotations are generally derived
from protein annotations, domain annotations are relatively scarce
and more general (higher in the GO hierarchy) compared to protein
annotations.

In Figure 2(a), the behavior of different semantic similarity
measures with respect to network distance in the C. elegans PPI net-
work is shown. We consider five measures, namely ρA/δI (average
of Resnik’s term similarity measure), ρH /δI (average of maxi-
mums for Resnik’s term similarity measure), ρA/δJC (average of
self-normalized Resnik’s term similarity measure), ρI (proposed
information content based molecule similarity measure), and ρJC

(proposed information content based molecule similarity measure
with self-normalization). As evident in the figure, all semantic
similarity measures demonstrate a negative relation between net-
work distance and functional similarity. However, if average term
similarity score is used to compare molecules, an anomaly is obser-
ved in that average semantic similarity tends to increase for pairs
of proteins at larger distances (≥ 4). This behavior demonstrates
the inadequacy of average-based measures in handling random-
ness. Observe that in a network, the number of protein pairs with
given distance grows with increasing distance and goes down after
a point, which is the behavior of the curve for ρA/δI in Figure 2
in reverse direction. Consequently, the growth in average similarity
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Fig. 2. Comparison of different semantic similarity measures in terms of
their behavior with respect to network distance: (a) network distance vs.
average semantic similarity for pairs of proteins in C. elegans PPI network,
(b) distribution of semantic similarity scores for direct neighbors, indirect
neighbors, and other domain pairs in the Struct DDI network.

with respect to network distance beyond a point can be explained
by the decrease in the number of pairs with larger distance, which
is likely to be an artifact of randomness. On the other hand, all
other measures show a consistent decline in semantic similarity
with respect to network distance, with saturation at distance ≥ 5.
However, it is worth noting that the proposed information content
based measure provides the sharpest decline in semantic similarity
with increasing distance throughout, while it provides the sharpest
decline for distance ≤ 3 when it is used with self-normalization.

In Figure 2(b), a comparison of the distribution of semantic
similarity scores for the average information content (ρA/δI ) and
self-normalized information content (ρJC) measures is shown. In
this figure, domain pairs are grouped according to their distances
in the Struct DDI network, to obtain groups immediate neighbors
(distance = 1), indirect neighbors (distance = 2), and other domain
pairs (distance > 2). In the figure, the cumulative distribution of
similarity score is shown for each group, i.e., the vertical axis shows
the fraction of domain pairs with similarity larger than the value
on horizontal axis, where similarity scores are normalized to range
from 0 to 1. Observe that, ρJC provides very large (> 90%) simi-
larity score for a much larger fraction (> 60%) of neighboring
domain pairs, as compared to ρA (< 10%), while keeping frac-
tion of highly similar domain pairs with distance > 2 considerably
low (< 10%). In general, the curves for ρJC demonstrate a shar-
per decline for similarity ≤ 20% as compared to their counterparts
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Fig. 3. Comparison of the relation between network proximity and semantic
similarity with respect to molecular functions in PPI and DDI networks: (a)
raw semantic similarity, (b) normalized semantic similarity with zero mean
and unit standard deviation in each network. For distance 5,6 the similarity
values are very close to that for distance 4. For annotation, see section 3.2.

for ρA and remain well above them, particularly for neighboring
domains up to similarity > 90%, illustrating that ρJC is more suc-
cessful than ρA in reflecting the differences between (directly or
indirectly) interacting and arbitrary pairs of domains, in terms of
functional similarity.

4.2 Comparison of PPI and DDI Networks
Using the proposed semantic similarity measure with self-
normalization (ρJC), we compare the relationship between network
proximity and functional similarity, using PPI and DDI networks
described in section 3. We find that the following pairs of networks
yield similar results: HC+MC and HC+NA DDI, C. elegansand D.
melanogasterPPI, S. cerevisiaeand H. sapiensPPI. For clarity, we do
not display results for HC+NA DDI, D. melanogasterand H. sapi-
ensPPI in Figure 3. The behavior of semantic similarity with respect
to network distance is shown in Figure 3, for the molecular func-
tion sub-ontology of GO, i.e., semantic similarity here refers to the
similarity between the molecular functions of a pair of proteins or
domains. Since the same semantic similarity measure is used for
each network, the semantic similarity scores are compatible across

different networks. The behavior of these raw semantic similarity
scores for different networks is shown in Figure 3(a). Since the
annotations of proteins and domains are largely incomplete, and the
coverage of annotations may differ significantly across different net-
works, the distribution of semantic similarity scores can also vary
significantly. For this reason, we normalize similarity scores using
the procedure described in the previous section, to ensure that the
similarity scores have zero mean and unit standard deviation in each
network. The behavior of normalized similarity scores for different
networks is shown in Figure 3(b).

As evident in the figure, immediate and indirect neighbors per-
form (more) similar molecular functions. Furthermore, the negative
correlation between network distance and functional similarity is
stronger in the Struct DDI network, as compared to all other net-
works. This network is followed by other relatively more reliable
HC+MC DDI network (and HC+NA DDI, not shown here). These
observations suggest that network proximity is likely to be more
relevant to, hence indicative of, functional coherence and modula-
rity, However, this conclusion is tempered by the observation that
the DDI networks that are based on structural information are rela-
tively more reliable than PPI networks, which may come from noisy
high-throughput screening.

The figure also shows that in PPI networks of relatively well-
studied organisms such as S. cerevisiae, and C. elegans, functional
similarity between two proteins that are further apart in the net-
work is larger, on average, than that in the DDI and other PPI
networks. This observation suggests that functional similarity bet-
ween two arbitrary proteins in model organisms is expected to be
larger than the functional similarity between two arbitrary domains
or proteins in other organisms. This may be because more func-
tional information is available for model organisms. As seen in
Figure 3(b), network-based normalization alleviates this problem.
Furthermore, after normalization, it becomes apparent that the
relationship between functional similarity and network distance is
stronger in computationally inferred DDI networks than that in
PPI networks. Since computational inference of domain-domain
interactions is generally based on protein-protein interactions, this
observation provides further evidence that supports the notion that
network proximity in DDI networks is likely to be a better indicator
of functional modularity than PPI networks.

The behavior of semantic similarity with respect to network
distance for the biological process sub-ontology of GO is shown
in Figure 4. Here, semantic similarity refers to the similarity bet-
ween the biological processes that a pair of proteins individually
take part in. The behavior of process similarity with respect to net-
work distance is generally similar to that of functional similarity,
however, there are differences worth noting. First, when the simila-
rity scores are not normalized with respect to network, the process
similarity for arbitrary pairs of proteins in model organisms appears
to be lower, on average, than that for arbitrary pairs of domains. This
is in contrast to the argument based on annotation coverage. Howe-
ver, even after normalization, PPI networks demonstrate weaker
relationship between network proximity and process similarity, as
compared to DDI networks. Yet, the gap that is observed for functio-
nal similarity closes when processes are considered, particularly for
the S. pombe PPI network, which shows similar process similarity
between neighbors compared to computationally inferred DDI net-
works. Furthermore, indirect neighbors in the S. pombe PPI network
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Fig. 4. Comparison of the relation between network proximity and semantic
similarity with respect to biological processes in PPI and DDI networks. (a)
Raw semantic similarity, (b) normalized semantic similarity with zero mean
and unit standard deviation in each network. For annotation, see section 3.2.

have highest average process similarity among all networks consi-
dered. This might be indicative of the difference between molecular
functions and biological processes in terms of their relationship to
functional similarity. In general, it is possible to speculate that mole-
cular function is a lower level property of a molecule that is directly
related to its structure, while biological processes are higher level
constructs, related to the wider neighborhood in the network. For
this reason, while our results suggest that domain-domain interacti-
ons may be more informative in terms of identification of function
and functional modularity, it may be necessary to consider DDI net-
works along with PPI networks to extract information about process
modularity.

5 CONCLUSION
We investigate metrics for quantifying functional similarity in PPIs
and DDIs. We present essential attributes of admissible metrics for
term- and set-similarity, show that existing commonly used mea-
sures are not admissible, and present an admissible metric. We
establish that the proposed metric provides highly intuitive biolo-
gical interpretations from comprehensive comparative analysis of

PPIs and DDIs. In doing so, we conclusively establish the metric,
as well as validate the role of DDIs in quantifying functional
coherence.
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