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Abstract

Emerging evidence indicates that gene products implicated in human cancers often cluster together in ‘‘hot spots’’ in
protein-protein interaction (PPI) networks. Additionally, small sub-networks within PPI networks that demonstrate
synergistic differential expression with respect to tumorigenic phenotypes were recently shown to be more accurate
classifiers of disease progression when compared to single targets identified by traditional approaches. However, many of
these studies rely exclusively on mRNA expression data, a useful but limited measure of cellular activity. Proteomic profiling
experiments provide information at the post-translational level, yet they generally screen only a limited fraction of the
proteome. Here, we demonstrate that integration of these complementary data sources with a ‘‘proteomics-first’’ approach
can enhance the discovery of candidate sub-networks in cancer that are well-suited for mechanistic validation in disease.
We propose that small changes in the mRNA expression of multiple genes in the neighborhood of a protein-hub can be
synergistically associated with significant changes in the activity of that protein and its network neighbors. Further, we
hypothesize that proteomic targets with significant fold change between phenotype and control may be used to ‘‘seed’’ a
search for small PPI sub-networks that are functionally associated with these targets. To test this hypothesis, we select
proteomic targets having significant expression changes in human colorectal cancer (CRC) from two independent 2-D gel-
based screens. Then, we use random walk based models of network crosstalk and develop novel reference models to
identify sub-networks that are statistically significant in terms of their functional association with these proteomic targets.
Subsequently, using an information-theoretic measure, we evaluate synergistic changes in the activity of identified sub-
networks based on genome-wide screens of mRNA expression in CRC. Cross-classification experiments to predict disease
class show excellent performance using only a few sub-networks, underwriting the strength of the proposed approach in
discovering relevant and reproducible sub-networks.
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Introduction

Colorectal cancer (CRC) is the second leading cause of cancer

death in adult Americans [1]. Interest in this complex disease is

represented by a very mature body of research, much of it at the

genomic level. Yet the identification and verification of proteins

that have a functional role in the patho-physiology of CRC

remains an important goal as proteins directly mediate the

functions dysregulated in the disease. Modern, high-throughput

proteomic methods provide one way of profiling the significant

changes in protein expression of tumor samples with respect to

control, using tissue biopsies obtained from patients diagnosed

with this disease [2–5].

Proteomic screening techniques are particularly useful for

furthering the understanding of the mechanisms that underlie

complex phenotypes like CRC, in that they provide information at

the post-translational level. However, due to various biological and

experimental constraints (e.g., ascertainment bias and physical

properties of proteins), proteomic methods may screen only a

limited fraction of proteins and protein isoforms present in cells

and tissues. We propose that this limitation may be mitigated

through the integration of proteomic data with genome scale data

sources, such as measurements of gene expression. In addition,

protein-protein interaction (PPI) databases, which are rapidly

growing in terms of both the quality and quantity of their

annotations, provide another source of genome scale data

integration [6]. Such integrative approaches can potentially lead

to functional inference at the systems level, through identification

of pathways and molecular sub-networks that are implicated in

CRC.

In support of this approach, a recent review by Ideker and

Sharan [7] summarizes studies that indicate that genes with a role

in cancer tend to cluster together on well-connected sub-networks

of protein-protein interactions. This suggests a hypothesis that

the synergistic expression of multiple cancer-related genes at

the level of mRNA can co-regulate the expression of proteins in

their immediate ‘‘network neighborhood’’. These differentially

expressed proteins may be captured by expression proteomics
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experiments, thus their network neighborhood should provide an

ideal starting place to search for sub-networks with a possible role

in the disease.

The effectiveness of network-based approaches to the identifi-

cation of multiple disease markers has been demonstrated in the

context of various diseases, including Huntington’s disease [8], the

inflammatory response [9], and human breast cancer [10].

Furthermore, it was recently shown that ‘‘differentially expressed

sub-network markers’’ were more accurate predictors of metastasis

in breast cancer (compared to single gene markers) [11]. However,

existing approaches are generally limited to mRNA expression

data in terms of quantification of molecular expression, which

captures post-transcriptional activity only to a limited extent

[12,13]. Consequently, inclusion of protein expression data in the

search for sub-network markers has the potential to improve the

effectiveness of systems biology approaches [14]. However, it

remains largely unknown how a network-based approach may be

enhanced when starting with proteomic data.

In this paper, we propose a novel computational approach that

takes into account certain topological features of the interactome,

namely connectivity and proximity, for searching the neighbor-

hoods of proteomic targets to find significant sub-networks

implicated in CRC. In doing so, we partly overcome (i) the bias

inherent in proteomic profiling experiments, particularly those

that are gel-based, which are typically limited to capturing changes

only in relatively abundant proteins and (ii) the noise, missing data,

and ascertainment bias in PPI data. This is accomplished by

assessing the functional association between proteins based on the

quantification of the statistical significance of network crosstalk

through information-flow based modeling of the PPI network and

development of a reference model that takes into account the

network connectivity of proteomic targets. We hypothesize that

identification of candidate sub-networks with a significant

association to proteomic targets can reveal proteins that are not

detected to be differentially expressed at the level of the proteome,

but whose activity in the network may play a key role in

maintaining the phenotype. Consequently, the proposed frame-

work provides a means for expanding proteome expression data to

infer a role for proteins that exhibit significant crosstalk to the

proteomic targets. The flow of the proposed computational

framework is illustrated in Figure 1.

A key objective of this study is to systematically elaborate a

proteomics-driven approach as a sound method for inferring small

sub-networks implicated in complex phenotypes, and ultimately

make these methods practically available to a wider community of

researchers working in this area. For this purpose, we ground our

approach on the hypothesis that the observed fold change of

the proteomic targets may be associated with the synergistic

dysregulation of their interacting partners at the level of mRNA.

From a computational perspective, our hypothesis is based on the

premise that sub-networks which exhibit significant association

with the proteomic targets should also show a significant change in

activity between control and cancer. To test this hypothesis, we

first score each protein in the network based on their crosstalk with

the proteomic targets. In order to account for noise, incomplete-

ness of data, and ascertainment bias, we also develop novel

methods for assessing the significance of these ‘‘crosstalk scores’’.

Then, for each proteomic target, we identify a candidate sub-

network that is composed of its interacting partners with significant

crosstalk scores. Subsequently, using an information theoretic

measure, we evaluate the synergistic differential expression of these

candidate sub-networks between control and disease, based on

changes in mRNA expression obtained from microarray experi-

ments performed on tissue biopsies collected from a cohort of

patients with CRC. Finally, using the sub-networks that exhibit

significant synergistic dysregulation as features, we develop

classifiers to predict disease class across different data sets.

The proposed computational approach for assessing functional

association between proteomic targets and other proteins uses a

random-walk based algorithm. Recently, Kohler et al. [15] and

Chen et al. [16] used similar network algorithms to prioritize

candidate disease genes implicated by linkage analysis in a variety

of human diseases. Vanunu and Sharan [17] developed a global,

propagation-based method that exploits information on known

causal disease genes and PPI confidence scores. Their method

more accurately recovered known disease gene relationships

compared to several other extant methods. In contrast to these

applications and rather than using raw scores obtained by such

information flow based algorithms, we develop reference models to

assess the statistical significance of these scores, with a view to

identifying proteins that are significantly associated with proteomic

targets. Furthermore, our biological hypothesis, which drives our

approach, is that targets (proteomic or genomic) significant for the

CRC phenotype may reside in or near cancer hotspots in the

network, and thus present an ideal starting place to search for

high-value sub-networks associated with the disease. Therefore,

our computational approach does not rely on canonical disease-

related genes or proteins; rather, it is a global, unbiased search that

tries to identify network interactions statistically significant with

respect to all targets in an experimentally-derived set.

Our previous work in this area [5] was limited in scope due to

the lack of access to the topology of the commercial PPI we

employed. This prevented us from assessing the importance of

topology for sub-network generation, which is the primary focus of

our computational approach in this study. Likewise, our network

scoring and statistical hypothesis testing were all greatly limited in

the previous work due to incomplete access to an unpublished

microarray data. For the same reason we were practically

prevented from iteratively adjusting network search parameters

Author Summary

Intensive research on cancer has led to an understanding
of many individual genes that may be important for the
initiation and progression of tumors. However, since
cancer is a progressive disease that results from accumu-
lation of multiple mutations likely acting in concert,
individual markers can only provide limited insights into
cellular mechanisms that underlie tumorigenesis. For this
reason, recent studies focus on identification of ‘‘sub-
network markers’’, that is, functionally associated genes
that exhibit coordinate changes in molecular expression
during cancer progression. However, expression of genes
is most frequently interrogated at the mRNA level, which
captures functional activity of genes only to a limited
extent. Screening of protein expression, on the other hand,
provides information on the abundance of functional gene
products, but its scale is often limited compared to
screening of mRNA expression. In this article, we develop a
proteomics-driven computational method that searches
for sub-network markers in human colorectal cancer,
based on a seed of differentially expressed proteins
identified by proteomic screening. Our results show that
significant changes in the expression of these proteins is
likely to be associated with coordinate changes in the
expression of the genes whose products are functionally
associated with these proteins. This analysis leads to novel
insights in the synergistic processes that underlie tumor-
igenesis.

Functional Sub-Networks in Human Colorectal Cancer
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in the commercial software that would have generated a large list

of candidate sub-networks for scoring.

Here we describe a new network search method for finding

high-value candidate sub-networks associated with CRC. To

overcome the limitations of the previous study and to permit

independent evaluation of our methods, we utilize a public PPI

(HPRD) and public microarrays (Gene Expression Omnibus) to

evaluate performance using two independent sets of proteomic

targets obtained by 2D-PAGE that are also publically available.

We compare this result to that obtained using a set of CRC driver

gene mutants as seeds for the network search. The basis for this

test is the hypothesis that if mutated gene products map to cancer

hotspots on the network, they would be similarly useful as seeds for

our network search algorithm. To reveal the practical utility of our

integrative approach, and to extend it beyond merely a theoretical

computational framework, we validate by western blot several

targets in a sub-network predicted by our method to be

dysregulated, using a cohort of tissue biopsies not used in the

original proteomic screen. Finally, we employ a cross-validation

approach to compare the disease classification performance of the

proteomic-versus genomic-derived sub-networks.

Our results show that the proposed proteomics-driven ap-

proach, as it integrates a variety of biologically relevant data, can

identify significant sub-networks implicated in a complex pheno-

type, i.e. CRC. The definition of terminology frequently used in

this paper is provided in Table 1.

Results

We searched the PPI network obtained from the Human

Protein Reference Database (HPRD) for CRC-implicated sub-

networks using two distinct sets of proteomic targets from Nibbe et

al. [5] (n = 67) and Friedman et al. [2] (n = 55). Both sets contain

significant targets of CRC obtained by a proteomic screen using

tissue biopsies (tumor and matched controls) obtained from twelve

and six patients, respectively (see Proteomic Methods for details of

the screen performed in our lab). We call these targets proteomic

seeds. The HPRD PPI network was downloaded from the HPRD

website on September 2008 and contained 35023 binary inter-

actions between 9299 proteins, as well as 1060 protein complexes

consisting of 2146 proteins. We integrated the binary interactions

and protein complexes using a matrix model (e.g., each complex is

represented as a clique between the proteins in the complex), to

obtain a PPI network composed of 42781 binary interactions

among 9442 proteins. 60 of the proteomic seeds from the data of

Nibbe et al. had at least one interaction in HPRD, while 37 of the

Figure 1. Schematic of an integrated, proteomics-first approach for the discovery of functional, candidate sub-networks in a
disease phenotype. Disease targets significant for a phenotype (e.g. cancer) are used to seed an information-flow based search of the human
interactome for candidate sub-networks subsequently classified as crosstalkers or interactors. Candidate sub-networks are then scored between test
and control (e.g. normal vs. tumor) using the mutual information of aggregate mRNA expression data as a proxy for synergistic dysregulation. High-
scoring sub-networks may be experimentally validated for their role in disease.
doi:10.1371/journal.pcbi.1000639.g001

Functional Sub-Networks in Human Colorectal Cancer
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seeds from the data of Friedman et al. had at least one interaction

in HPRD. 14 of the proteins in the two seed sets were common.

For every protein in HPRD, our procedure assigns a score

based on the protein’s proximity and connectivity to all the seeds

(see Materials and Methods). If the score is not significant

(p,0.001) but the protein directly interacts with one or more of

the seeds, we call it an interactor, whereas a crosstalker is any protein

whose score is significant. Note that a crosstalker is generally (but

not necessarily always) an interactor since a significant crosstalk

score for a protein indicates that it is in the network neighborhood

of one or more of the seeds, however, there are many interactors

that do not qualify as crosstalkers. Overall, this procedure revealed

233 crosstalkers for Nibbe seeds, and 210 crosstalkers for Fried-

man seeds.

Subsequently, for each proteomic seed in each set, a candidate

sub-network consisting of its interactors, termed the interactor

sub-network, was obtained, resulting in a total of 55 interactor sub-

networks (46 for Nibbe seeds exclusively, 23 for Friedman seeds

exclusively, and 14 additional sub-networks for both). Similarly,

for each seed in both sets, a crosstalker sub-network was obtained.

Thus, for every seed there are two corresponding sub-networks, an

interactor sub-network and a crosstalker sub-network. The

proteins in an interactor sub-network are merely characterized

by their direct interactions with the corresponding proteomic seed.

By contrast, proteins in a crosstalker sub-network are character-

ized by their degree of functional association with all proteomic

seeds.

Relationship of Expression between Crosstalkers and
Individual Proteins in HPRD at the Level of mRNA

We evaluated the individual differential gene expression of each

crosstalker identified using the Nibbe and Friedman proteomic

seeds using two microarray datasets obtained from GEO

(GSE10950 & GSE8671). GSE8671 represents 64 experiments

using mRNA isolated from tissue biopsies obtained from 32

patients (matched tumor and adjacent normal mucosa) performed

on an Affymetrix GeneChip (Human U133 Plus 2.0). Similarly,

GSE10950 represents 48 experiments on matched tissue biopsies

(24 patients) performed on an Illumina array (Human ref-8, v2.0).

The cumulative distribution of individual differential expression

scores for proteomic seeds, (and a seed of CRC driver genes

discussed later), as well as all proteins in the network computed as

described in the Materials and Methods section, is shown in Figure 2

Table 1. Definition of terminology used frequently in this paper.

Term Definition

Proteomic seed A protein that is significantly differentially expressed between tumor and control, as identified by
proteomic screening.

Proteomic seed set A set of proteomic seeds that are identified together in one proteomic screening cohort.

Network crosstalk The degree of network proximity and connectivity between (groups) of proteins, modeled as the
amount of ‘‘information flow’’ between these proteins in a PPI network.

Crosstalker A protein that exhibits statistically significant network crosstalk with proteins in a particular
proteomic seed set.

Interactor sub-network A sub-network of the PPI network induced by the interacting partners of a particular proteomic seed.

Crosstalker sub-network A sub-network of the PPI network induced by the interacting partners of a particular proteomic seed,
which are also identified as crosstalkers with respect to the corresponding proteomic seed set.

Synergy or Synergistic dysregulation Coordinate mRNA-level differential expression of a group of genes in the phenotype.

doi:10.1371/journal.pcbi.1000639.t001

Figure 2. Crosstalkers are not significant at level of individual
mRNA expression. Cumulative distribution of differential expression
for crosstalkers identified using two proteomic seeds (Nibbe et al.,
Friedman et al.), a seed of CRC driver genes (Sjöblom et al.), and all
proteins in the HPRD PPI network, as quantified by mutual information
with phenotype, using GSE8671 and GSE10950.
doi:10.1371/journal.pcbi.1000639.g002

Functional Sub-Networks in Human Colorectal Cancer
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(please see the Materials and Methods section for details on how

differential expression is quantified). As seen in the figure, we found

no significant difference in the distribution of individual differential

expression of the crosstalkers, as compared to the distribution of

differential expression of all proteins in the HPRD network. This

observation indicates that at the level of individual genes, significant

network crosstalk with proteomic seeds in CRC is not associated

with transcriptomic dysregulation in CRC.

Synergistic Regulation of Sub-Networks Induced by
Proteomic Seeds

For the purpose of discussion we will refer to a sub-network by the

proteomic seed that induced the sub-network (e.g. TCP1). For each

version of each sub-network we computed the mutual information

(MI) of each sub-network between control and tumor using the

mRNA expression data from microarrays GSE10950 and

GSE8671 (see Computational Methods), and we used this score to

estimate the significance of the various networks in differentiating

the phenotype (Figure 1). The comparison of mutual information

for the two versions of each sub-network associated with the Nibbe

seed is shown in Figure 3. We plotted the results only for those

(crosstalker) sub-networks where the mutual information exceeded

0.35 (approximately 1s from random mean). The purpose of this

analysis is to understand how the synergy of each crosstalker sub-

network compares to that of its corresponding interactor sub-

network. The MI and significance scores for all sub-networks can be

found in Supplemental Table S1.

Of the 46 candidate sub-networks associated with Nibbe

proteomic seeds, 10 unique interactor sub-networks (green

squares) exhibited significant MI scores. For five of these sub-

networks (CCT2, TCP1, SYNCRIP, HNRPF and HNRPH1) the

crosstalker version of the sub-networks was found to have

enhanced MI on one or the other microarray datasets. Two

crosstalker sub-networks (red diamonds), CCT2 and TCP1, show

improvement over their corresponding interactor sub-network on

both arrays. Notably, on GSE10950, the mutual information score

of the TPI1 crosstalker sub-network is significant, while the

corresponding interactor sub-network failed to show significance.

Figure 4 shows the corresponding plots for the Friedman

proteomic seeds. Here, seven unique interactor sub-networks have

significant MI scores; two of them (ANXA3 and PSMA6) were

common to both sets of microarray data. For the Friedman seeds,

the crosstalkers for candidate sub-network TUBA1B showed

dramatically increased mutual information compared to its

interactor network. Furthermore, four other crosstalker sub-

networks (associated with MYL9, GARS, ANXA3 and GSTP1) all

revealed much higher synergy compared to their corresponding

interactor sub-networks, two of which (MYL9, GSTP1) failed to

show significance on either array. We discuss a possible

explanation for these findings in the Discussion section.

Figures 5a and 5b show unions of crosstalker sub-networks

associated with the Friedman and Nibbe seeds, respectively, for

which the synergy was higher than the corresponding interactor

sub-network. The graphs reveal that many proteomic seeds reside

within or near dense sub-networks of crosstalkers.

Post-Trancriptional Dysregulation of TCP1 Sub-Network
We observed that several of the sub-networks generated using

the two proteomic seed sets contained proteins in common. In

particular, certain sub-units of the TCP1 complex exhibited

marked crosstalk in the sub-network induced by CCT2 in the

Nibbe seed, and TUBA1B in the Friedman seed (Figure 4). In

addition, we had previously shown [5] that certain sub-units of this

complex (CCT3, CCT5, and CCT7) were also significant for the

late-stage CRC phenotype, as revealed by a similar network

scoring methodology but using a commercial PPI unrelated to

HPRD.

TCP1 (or TCPa) is a hetero-oligomeric complex comprised of

two stacked ring structures, each composed of eight known

subunits and plays a functional role in maintaining the CRC

phenotype. Specifically, it was shown [18] to be required for the

proper biogenesis of PLK1, a kinase that has a critical role in

cytokinesis. However, other than their role as sub-units in the

formation of the TCP complex little is known about the

independent role, if any, of these sub-units in CRC [19].

Consequently, these targets present an opportunity for follow-on

mechanistic studies. For this reason, we verified the protein

expression of TCP1, CCT3, CCT5, CCT7, and PLK1 by western

blot in a separate cohort of three patient sample pairs not used in

screening phase, and compared this to the average expression at

the level of mRNA (Figure 6). Consistent with our hypothesis, the

data indicate co-regulation at the level of mRNA and protein, but

also reveal the wide variability of expression of these targets among

individual patients. CCT3 and CCT7 were dramatically over-

expressed in two patients (507 and 534), but less so in patient 540,

which was similar to the pattern for PLK1.

Synergistic Dysregulation of Sub-Networks Induced by
CRC Driver-Gene Seeds

Although these data show that proteomic seeds are well-suited

for identifying synergistically dysregulated sub-networks, we

wished to investigate the power of genetically identified seed sets

in discovering significant sub-networks. As CRC is commonly

thought to be caused by the accumulation of somatic mutations, a

number of cancer research labs have collaborated to conduct

whole genome sequencing to identify the genes thought to be

‘‘drivers’’ in cancer, i.e. those represented by the set of genes that

appeared most frequently mutated in a robust cohort of clinical

biopsies. The results of one such study on human breast and colon

cancer were recently reported by Sjöblom et al. [20]. We

hypothesized that the gene products of the CRC driver genes

reported in this study would be located at hotspots in the

interactome. Further, if the mutations lead to dysregulation of

neighboring genes at the level of mRNA, then the seed should

reveal significant sub-networks using our method. Additionally,

since there is less bias in PCR sequencing and high genome

coverage, at least as compared to proteomic profiling, we supposed

that driver gene seeds (n = 42) might be superior both in terms of

the number and significance of the sub-networks identified.

As shown in Figure 7, when scored by GSE8671, only four

significant sub-networks were found. Strikingly, for every one of

them, only the crosstalker sub-networks were significant. Using

GSE10950, seven sub-networks of crosstalkers were significant,

including all four found on GSE8671. For all but two of the sub-

networks (P2RX7, OBSCN), the crosstalkers show substantially higher

synergistic differential expression as compared to their interactor

counterparts. Notably, APC, a tumor suppressor gene widely viewed

as the ‘‘gate-keeper’’ in CRC, was associated with a significantly

dysregulated sub-network with respect to both arrays, and of all the

genes in the driver seed it was found to be mutated in the highest

percentage (90%) of the clinical samples. This expected finding may

be viewed as a positive control for our analytical method.

In terms of the overall number of significant sub-networks

identified, however, there was no apparent improvement using the

driver gene seed set versus either proteomic seed set. Additionally,

a number of the significant crosstalk sub-networks identified by the

proteomic seeds show markedly higher synergy (MI.0.60) than all

but one (EVL) of the sub-networks found by the driver gene seed.

Functional Sub-Networks in Human Colorectal Cancer
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Classification Performance of Sub-Networks as Features
We evaluated the quality of the crosstalker versus interactor sub-

networks in terms of their ability to classify tumor versus control on

the microarrays, using an SVM-based classifier in a cross-validation

approach (see Materials and Methods). The significant sub-networks

in each group were first ranked by MI, and the features were valued

by superposing the mRNA expression values of each gene in the sub-

network. When trained on GSE10950 and validated on GSE8671,

proteomic crosstalkers outperformed the interactor sub-networks

(both proteomic and genomic) when the number of features used to

Figure 3. Synergistic dysregulation versus network size for candidate sub-networks associated with proteomic seeds obtained
from Nibbe et al. Sub-network dysregulation (i.e. mutual information of sub-network mRNA expression profile with phenotype class) versus
network size for candidate sub-networks. All interactors (green squares) and crosstalkers (red diamonds) were scored using (a) GSE10950 and (b)
GSE8671. The blue lines represent the linear interpolation of the means of the estimated null distributions computed for random candidate sub-
networks of size 2,4,8,16,32, and 64, using the respective arrays (see Materials and Methods for details). Vertical bars represent one standard deviation
from the mean.
doi:10.1371/journal.pcbi.1000639.g003

Functional Sub-Networks in Human Colorectal Cancer
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train the classifier was three or less. Beyond three features, both the

proteomic interactor and CAN (candidate CRC driver genes)

crosstalker sub-networks outperformed the proteomic crosstalkers

(Figure 8a). Performance was similar when the training and

validation sets were reversed, although the performance of

proteomic crosstalkers dropped when more than two sub-networks

were used for classification (Figure 8b). The raw classification data

are provided in Supplemental Table S1.

Discussion

We have shown that proteomic targets showing significant

expression changes for a complex phenotype, such as CRC, provide

valuable inputs for our algorithms designed to discover phenotyp-

ically significant sub-networks with connectivity and proximity to

these targets. In addition, certain crosstalker sub-networks, when

scored with respect to phenotype by the measure of mutual

information, display significant differential synergistic expression at

the level of mRNA with respect to the seed targets. When these

implicated sub-networks contain proteins with no known role in the

disease, they present new opportunities for follow-on mechanistic

experiments to verify the in silico inference of biological significance

in the disease. This point cannot be over-emphasized, because in

our view the promotion of a candidate, disease-associated sub-

network to an functional sub-network with a validated role in

disease must be accomplished by wet lab experiments.

Figure 4. Synergistic dysregulation versus network size for candidate sub-networks associated with proteomic seeds obtained
from Friedman et al. Please see Figure. 3 for annotation.
doi:10.1371/journal.pcbi.1000639.g004

Functional Sub-Networks in Human Colorectal Cancer
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Figure 5. Significant sub-networks induced by proteomic seeds. Network graph visualization of sub-networks induced by Friedman seed,
scored using GSE10950 (a) and Nibbe seed, scored using GSE8671 (b). Proteomic seeds that induced a significant crosstalker sub-network are shown
in red, other proteomic seeds are shown in orange, crosstalkers are black and interactors are white. Visualization was performed with the Pajek
software.
doi:10.1371/journal.pcbi.1000639.g005

Functional Sub-Networks in Human Colorectal Cancer

PLoS Computational Biology | www.ploscompbiol.org 8 January 2010 | Volume 6 | Issue 1 | e1000639



As mentioned in the previous section, with respect to the

proteomic seeds, a number of the same sub-networks showed

significance (.1s from background) when scored by either

GSE10950 or GSE8671. With respect to the driver gene seed,

every sub-network that showed significance when scored by the

GSE8671 array was also found to be significant when scored by

the GSE10950 array. One explanation for why the sub-networks

with respect to a given set of proteomic seeds did not show

complete redundancy between arrays is that the microarrays

represent experiments performed on different pathologic stages of

CRC tumors, very early stage in the case of GSE8671 (adenoma)

versus a more established tumor in GSE10950 (primary). The

pathologic stage of the proteomic samples in the Nibbe seed was

homogenous late stage CRC (Duke’s D) while the Friedman seed

was a mix of mid to late stage samples (Duke’s B–D). This

highlights a potential limitation of an integrated –omics approach,

namely, it is often difficult to establish an optimal match of the

biology underlying the measures made at the level of the proteome

and transcriptome. However, in our case, if the sub-networks

become dysregulated early in the disease and have a role in

maintaining the phenotype through later stages, this limitation can

turn into an opportunity for development of hypotheses regarding

the mechanisms of the progression of CRC. In particular, the

complete overlap of crosstalk sub-networks between arrays

observed with the driver gene seed indicates the synergistic

activity of these sub-networks may be independent of pathologic

stage.

We also noted that only a relatively small fraction of the seeds

induced significant sub-networks, either interactors or crosstalkers,

and this was the case for both the proteomic and the genomic

seeds. One potential explanation for this observation is that

current human PPI networks capture only a very small fraction of

all protein relationships in the human interactome [21], and

therefore cannot be expected to reveal a significant sub-network

for every experimentally determined seed. As these networks

improve, we expect their value in uncovering interesting biology

will only grow.

The classification performance indicates that experimentally-

derived proteomic disease targets combined with our network

search algorithm can discover high-valued sub-networks for

mechanistic in vivo verification. This was consistent with our

hypothesis, and supports the claim that a proteomic seed can

identify sub-networks that provide additional pathways of interest

(e.g CCT2, TCP1). To strengthen this claim, in an independent

cohort of patient biopsies, we validated the differential expression

of several targets in the TCP-1 sub-network, predicted by our

model to be coordinately dysregulated.

The genomic seed showed excellent classification performance,

and crosstalkers were superior in most instances to their

corresponding interactor sub-networks, consistent with our compu-

tational hypotheses. When three or more features were used to train

the classifier they were also better than the proteomic crosstalkers.

However, this result is not entirely unexpected as the proteomic data

has low coverage and may lack key seeds and thus may lack

important sub-networks. However, the favorable classification

performance of the genomic-derived sub-networks may be viewed

as a positive control for this experimental approach. Alternatively, it

is unlikely that all relevant sub-networks are regulated at the level of

transcription, and this may reduce the number of significant sub-

networks discoverable by our approach. Never-the-less, the

approach can be generalized to many proteomics expression data

sets to discover novel sub-networks dysregulated in many complex

diseases.

In many classification applications, high dimensionality is an

important problem and it is often desirable to be able to choose a

small number of features that will provide reasonable perfor-

mance (to overcome ‘‘curse of dimensionality’’). In this respect,

the classification performance provided by only a few sub-

networks is indeed very promising, in that ‘‘crosstalk to proteomic

targets’’ may actually provide a shortcut to the identification of a

compact set of useful sub-network features. As our classification

experiments were carried out in a cross-classification setting, the

high accuracy of classification using up to three sub-networks

indicates that the most significant crosstalker sub-networks were

highly reproducible. Reproducibility is an important concern in

classification applications, since if the sub-network features that

are used are not reproducible across datasets, this will result in

over-fitting. In this regard, the use of proteomic data can also be

considered a tool for obtaining useful biological insights for

feature selection.

Figure 6. Validation of select targets predicted to be dysregulated in TCP1 sub-network. Immunoblot data were obtained from three (540,
534, 507) late-stage matched (N = normal/T = tumor) patient tissue biopsies not used in the original proteomic screen by Nibbe et. al. Values are in
kilodalton (kDa). GSE8671 and GSE10950 represent the ratio of the mean mRNA value (tumor/normal) from the respective microarray array. Fold
change was determined by densitometry.
doi:10.1371/journal.pcbi.1000639.g006
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Materials and Methods

Proteomic Methods
Target screen. The Nibbe et al. proteomic targets were

determined using two gel-based screens of twelve and six,

respectively, late-stage CRC tumor tissue biopsies (with matched

adjacent normals) obtained from the Case Comprehensive Cancer

Center. Briefly, the biologically significant spots between normal

and tumor were identified by image analysis of the 2D-gels. The

spots were then robotically excised, digested by trypsin, and the

peptide sequences determined by LC-MS/MS. Parent proteins

were subsequently identified by database search. Full experimental

details as well as the lists of the targets identified in both screens

can be found at Nibbe et al [5]. It merits emphasis that the targets

selected for network analysis were highly significant given the

stringent p-values used (,0.01) at the level of peptide and protein

identification. The targets in the Friedman seed were similarly

identified (see the Methods section of Friedman et al.) on a smaller

cohort of paired biopsies (n = 6) of mixed stage CRC.

Western blot. The tissue samples were thawed and

homogenized in Lameali buffer with a Polytron mixer. Protein

concentration was determined by a kit (Amersham Biosciences, 2D-

Quant). Aliquots were diluted to 5 ug/ul,and stored at 280uC.

15 ug of total protein was separated by 1D-PAGE on homogeneous

Figure 7. Synergistic dysregulation versus network size for candidate sub-networks associated with the CRC driver gene seeds
obtained from Sjöblom et al. Please see Figure 3 for annotation.
doi:10.1371/journal.pcbi.1000639.g007
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10% gels. The protein was immediately transferred to a nitro-

cellulose membrane (40 mA for 4 hours on ice). Membranes were

blocked overnight at 4uC with 5% milk in TBS-T, washed 26with

TBS-T at room temperature, and subsequently incubated with the

primary antibody (Sigma) overnight at 4uC. The membranes were

once again washed 26at room temperature and incubated with the

secondary antibody (Cell Signaling) for two hours. The membranes

were then washed 36 with TBS-T, incubated with ECL reagent

(Pierce) and exposed from one to ten minutes (protein dependent).

Fold change was determined using the 2D-QUANT software

(Amersham Bioscience).

Computational Methods
The computational framework for integrating proteomic,

transcriptomic, and interactomic data to discover sub-networks

implicated in complex phenotypes is shown in Figure 1. As seen

in the figure, we first identify disease targets with significant

differential expression with respect to control, via proteomic

screening as described above. Once these targets, called proteomic

seeds, are identified, we map these seeds on the PPI network

obtained from HPRD to identify proteins that are functionally

associated with the proteomic seeds.

In order to develop biologically sound measures to quantify the

functional association between proteins, we develop information

flow based algorithms to compute crosstalk scores, which capture

network proximity and connectivity to proteomic seeds. We

discuss this procedure in Subsections A and B. In order to account

for experimental artifacts, incompleteness of data, and ascertain-

ment bias, we use Monte Carlo simulations to assess the

significance of the crosstalk scores computed by these algorithms.

Our statistical evaluation scheme is based on a reference model

that captures the basic characteristics of the proteomic seeds, in

terms of the number of seeds and their degree distribution. This

procedure is described in Subsection C.

Subsequently, for each proteomic seed, we construct two

‘‘candidate sub-networks’’: (i) sub-network induced by all inter-

acting partners of the seed protein, (ii) sub-network induced by the

interacting partners that have significant crosstalk scores (in our

experiments, we use a p-value cut-off of 0.001 to determine

‘‘significant crosstalkers’’). Finally, we evaluate the mutual

information score of each candidate sub-network with respect to

the phenotype of interest (in this paper, CRC), using mRNA

expression data for test and control samples. For this purpose, we

use an established information-theoretic scheme that quantifies

synergistic differential expression in terms of the mutual

information between the aggregate expression of the sub-network

and disease classes across samples. This procedure is explained in

Subsection D. In order to assess the statistical significance of

synergistic differential expression, we also use Monte Carlo

simulations based on reference models that accurately capture

the basic topological characteristics of each sub-network. This

procedure is explained in Subsection E. We then use identified

sub-networks to develop classifiers for predicting disease class in

CRC. This procedure is explained in Subsection F.

Figure 8. Cross-validation performance comparison of sub-network based classifiers. The sub-networks induced by proteomic and
genomic seeds were first ranked by mutual information with phenotype (MI). Then the normalized mRNA expression values for the genes were
aggregated to compute a feature for each sub-network with significant MI. These features were used to train an SVM-based classifier to distinguish
normal from tumor using GSE10950, and then cross-validated on GSE8671 (a), and vice-versa (b).
doi:10.1371/journal.pcbi.1000639.g008
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Relationship between Synergistic Expression, Functional
Association, and Network Topology

Systematic studies of differentially expressed genes in certain

phenotype classes show that these genes are related to each other

in molecular networks, composed of protein-protein interactions,

transcriptional regulatory interactions, and metabolic interactions

[22]. In one of the early algorithmic studies, Ideker et al. [23]

develop a method for identifying differentially expressed metabolic

sub-networks with respect to GAL80 deletion in yeast. This

method is based on searching for connected groups of enzymes

within the yeast metabolic network, such that the aggregate

differential expression of genes coding these enzymes is statistically

significant. Variations of this method prove useful in identifying

multiple gene markers implicated in a variety of diseases, including

prostate cancer [24], melanoma [25], and diabetes [26]. Building

on these results, information theoretic schemes for assessing

synergistic differential expression are also shown to be effective in

network based disease classification [11,27].

While differential network analysis is effective in identifying

multiple gene markers, most of the existing methods utilize

network information to primarily find the genes that are

connected, hence potentially related to each other. In other

words, these approaches do not take into account network

topology, connectivity patterns, or degree of connectivity between

proteins. This is because (i) much of the available network

information is noisy and incomplete [28], therefore, connectivity

patterns cannot be interpreted as well-defined wiring schemes, and

(ii) network models (particularly, high-throughput protein-protein

interactions) provide only a high-level qualitative description of the

information flow in the cell. However, several studies show that

variations in molecular expression can be interpreted in terms

of network topology (e.g, subunits of a protein complex are co-

expressed significantly over a time course [29], functional

similarity of proteins correlates with proximity in a network of

interactions [30,31].

Motivated by these considerations, we develop network-based

scoring schemes to quantify the crosstalk between proteomic seeds

and the rest of the proteins in a network of interactions. Based on

the premise that synergistic changes in transcriptional expression

may be associated with significant changes in proteomic activity,

we expect that proteins that demonstrate significant crosstalk with

proteomic seeds will be good candidates for being implicated in

the phenotype of interest. In order to assess the crosstalk between a

group of proteomic targets and any other protein in the network

accurately, we develop information flow based algorithms, as

discussed in the next section.

Network Crosstalk: Capturing Functional Association via
Connectivity and Proximity

Let G = (V,E) be a network of protein interactions, where V

consists of the proteins in the network, and an undirected edge

uvME represents an interaction between proteins uMV and vMV. For

convenience, we also define N(v) as the set of interacting partners

of protein vMV, i.e., N(v) = {uMV: uvME}. Let S#V be the set of

proteomic seeds, i.e., the proteins that are identified by proteomic

studies to exhibit significant fold change with respect to the

phenotype of interest. Our objective is to compute a score a(v) for

each protein vMV, to quantify the network crosstalk between v and

the proteins in S. Here, network crosstalk is used as an indicator of

functional association between proteins.

In order to develop a biologically sound measure of network

crosstalk, we rely on the following observations: (i) Functional

similarity between two proteins, as measured by semantic

similarity of Gene Ontology annotations [32], is significantly

correlated with their network proximity, as measured by the

shortest path (number of hops) between these proteins [30,31]. (ii)

Existence of multiple alternate paths between two proteins is an

indicator of their functional association, since functional multiple

paths are often conserved through evolution owing to their

contribution to robustness against perturbations, as well as

amplification of signals [33].

To incorporate both the number of hops and multiple alternate

paths into the assessment of crosstalk between proteins, we use an

information flow based algorithm based on random walks with

restarts [34]. This algorithm can be considered a generalization of

Google’s well-known page-rank algorithm [35]. Furthermore, a

special case of the proposed crosstalk score, when |S| = 1, is a

network proximity measure [34] known to be closely related to

commute distance and effective resistance [36] in graphs. Similar

graph-theoretic measures are also used to identify functional

modules in PPI networks [37], annotation of protein function [38],

and prioritization of disease genes [15–17].

We assign crosstalk scores to all proteins in the network for a

given S by simulating a random walk as follows. The random walk

starts at a randomly chosen protein in S. At each step, when the

random walk is at some protein v, it either moves to an interacting

partner of v with probability 12r, or it restarts at a protein in S

with probability r. Here, the parameter 0#r#1 is called the restart

probability (in our experiments, we use r = 0.5). For each move,

the interacting partner to be moved to is selected uniformly at

random from N(v). However, the move probabilities can also be

adjusted to reflect the confidence of each interaction, so that more

reliable interactions contribute more to the quantification of

crosstalk. In other words, one can define the probability of a move

from v to u as P(u,v) = w(u,v)/Su9MN(v) w(u9,v) if uMN(v), 0 otherwise.

Here, w(u,v) denotes the reliability of the interaction between u and

v. Similarly, for each restart, the protein to be restarted is selected

uniformly at random from S. These probabilities can also be

adjusted to reflect the significance of the fold change of each

protein in S, so that proteins with more significant fold change are

considered as more reliable seed proteins. In other words, one can

define the probability of restart at uMV as r(u) = zP(u)/Su9MS zP(u9) if

uMS and 0 otherwise. Here, zP(u) denotes the z-score of the fold

change of u with respect to the phenotype of interest, based on

proteomic screening.

Based on this random walk model, we define the crosstalk

between the proteins in S and each protein vMV as the relative

amount of time spent at v by such an infinite random walk, or

equivalently, the probability that the random walk will be at

protein v at a randomly chosen time step after the random walk

proceeds for a sufficiently long time. More precisely, let at denote a

|V|-dimensional vector, such that at(v) is equal to the probability

that the random walk will be at protein v at step t, where IatI1 = 1

(here, I.I1 denotes the 1-norm of a vector, defined as the sum of

magnitudes of its elements). Let P denote the stochastic matrix

derived from network G = (V,E), i.e., P(u,v) = 1/|N(v)| if uvME, 0

otherwise. Then, we have

atz1~ 1{rð ÞPatzrr: ð1Þ

where r denotes the restart vector with r(u) = 1/|S| for uMS, and 0

otherwise. Then, letting a0 = r, the vector containing the crosstalk

scores for each node in the network is given by a= limtR‘ at.

Observe that this formulation lends itself to an iterative algorithm

to compute crosstalk scores efficiently, where each iteration

requires O(|E|) time, since P is a sparse matrix with 2|E| non-

zero entries.
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Note that, when r = 0, a is equal to the eigenvector of P that

corresponds to its largest eigenvalue (with numerical value 1), i.e.,

a(v) is exactly equal to the page rank of v in G for all vMV.

Therefore, the crosstalk score of a protein is not only an indicator

of its connectivity and proximity to seed proteins, but it is also

influenced by the centrality of the protein in the network. In order

to account for such sources of bias, as well as the choice of

parameter r (in our experiments, we use r = 0.5), we adjust the

crosstalk scores statistically as we discuss in the next section.

Dealing with Experimental Artifacts, Ascertainment Bias,
and Incomplete Data

Due to variability in physical properties of proteins and other

experimental artifacts, it is likely that there will be significant

ascertainment bias in the selection of proteomic seeds, as well as

the availability of interaction data for each protein [39]. Indeed,

our results show that the seed proteins extracted by proteomic

screening are likely to be highly connected in the PPI network

derived from HPRD. More specifically, the 60 proteins that are

identified to have significant fold change (p,0.01) in late stages of

human colorectal cancer have 24.1 interactions in HPRD on an

average, while the average degree of a protein in the HPRD

network is 9.1. Consequently, highly connected proteins in the

network are likely to be assigned artificially high crosstalk scores

just by chance. Since available network data is often incomplete

and prone to ascertainment bias, these effects are likely to amplify

the ascertainment bias and skew the results toward well-studied

proteins. However, we are very interested in finding those proteins

that are relatively less characterized but may provide novel insights

into phenotype. Therefore, the crosstalk scores described above

need to be assigned significance scores based on reliable statistical

models.

In order to deal with such experimental and data-related

sources of bias, we use a reference model that captures the degree

distribution of seed proteins accurately. Namely, for a given seed

set S, we generate a random instance S(i) representative of S as

follows. For every protein uMS, we create a bucket B(u) of proteins

in the network, such that <uMS B(u) = V and B(u)>B(u9) = Ø for all

u, u9MS. Here, protein vMV is assigned to bucket B(u) if

|N(v)2N(u)|#|N(v)2N(u9)| for all u9MS and ties are broken

randomly. Then, we construct S(i) by choosing one protein from

each bucket uniformly at random, so that |S(i)| = |S|. Observe

that each bucket consists of proteins that have similar number of

interactions with a particular seed protein; therefore, each seed

protein is represented in S(i) by exactly one protein in terms of its

number of interactions. Consequently, the expected total degree of

the proteins in S(i) is likely to be very close to the total degree of the

proteins in S. Once a random instance S(i) is generated, we

compute the corresponding crosstalk vector a(i) by letting

r(i)(u) = 1/|S(i)| for uMS(i), and 0 otherwise.

Repeating this procedure n times, where n is sufficiently large (we

use n = 1000 in our experiments), we obtain a sampling {a(1), a(2),

…, a(n)} of the null distribution of crosstalk scores, with respect to

seed sets that are representative of S in terms of their size and degree

distribution. We then estimate the mean mS =S1#i#na
(i)/n and

standard deviation sS
2 =S1#i#n(a(i)2mS)2/(n21) of the null

distribution of crosstalk scores for S using this sample. Subsequently,

we compute adjusted crosstalk scores

zs(v)~(a(v){ms(v))=as(v) ð2Þ

for each protein vMV. These adjusted crosstalk scores represent the

statistical significance of the crosstalk between each protein and the

proteins in the seed set, accounting for the centrality of the protein

the network, as well as the degree distribution of seed proteins.

Assessing Synergistic Dysregulation of Candidate Sub-
Networks

Once all proteins in the network are scored according to their

crosstalk with proteomic seeds, we construct candidate sub-

networks as follows:

1. Interactor sub-networks: For each proteomic seed u, the

sub-network induced by its interacting partners in the network

(N(u)) is considered a candidate sub-network, based on the

hypothesis that significant changes in the expression of a

protein may be associated with synergistic changes in the

transcriptional expression of proteins in its neighborhood.

2. Crosstalker sub-networks: For each proteomic seed u, the

sub-network induced by the proteins in N(u) that have

significant adjusted crosstalk scores with respect to S is

considered a candidate sub-network, based on the hypothesis

that sub-networks composed of proteins with significant

crosstalk to the proteomic seeds (as opposed to solely

interacting with one proteomic seed) are likely to exhibit

significant synergistic differential expression.

Formally, the set of candidate sub-networks is defined as

C(S) = {N(u):uMS}<{N*(u):uMS}, where N*(u) = {vMN(u): zS(v).z*}.

Here, z* denotes the cut-off for adjusted crosstalk scores to be

considered significant. In our experiments, we use z* = 3.45, to

reflect a p-value cut-off of 0.001, under the assumption of normally

distributed crosstalk scores.

For each candidate sub-network Q in C(S), we quantify the

synergistic expression of the proteins in Q using an information-

theoretic scheme developed by Chuang et al. [11]. Namely, for

protein vMV, let e(v) denote the properly normalized m-dimensional

mRNA expression vector, provided by genome-scale transcrip-

tomic screening of m disease and control samples. Let c denote an

m-dimensional binary vector indicating the phenotype class of each

sample, such that c(i) = 1 if the ith sample is diagnosed with the

disease, 0 otherwise. Furthermore, define the aggregate expression

vector e(Q) for the sub-network induced by set of proteins Q as

e(Q)~
X

v[Q

e(v)=
ffiffiffiffiffiffiffi
jQj

p
: ð3Þ

Then, the synergistic differential expression Q(Q) of the genes

coding for proteins in Q with respect to the phenotype of interest is

given by the mutual information between e(Q) and c, i.e.,

(Q)~I e(Q),cð Þ~H e(Q)ð ÞzH(c){H e(Q),cð Þ ð4Þ

Here, e(Q) denotes a discrete-valued vector obtained by quantizing

e(Q) into k bins, H(x) denotes the entropy of a discrete-valued

vector x over a finite alphabet A, i.e., H(x) =SaMA2p(a)log(p(a)), and

p(a) = |{i:x(i) = a}|/m (in the context of our problem, A represents

the set of bins). In this paper, we use k = 6, since this value of k was

found to provide reasonable estimates for mutual information in

our experiments.

Statistical Significance of Synergistic Dysregulation
Finally, we assess the statistical significance of synergistic

differential expression for each candidate sub-network. In order

to do so, for a given QMC(S), we generate a null distribution for
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synergistic differential expression of sub-networks that reflect the

topological properties of Q. Since Q is composed of proteins that

are connected to each other via a single protein (that is, the

corresponding proteomic seed), the null distribution should also be

derived from sub-networks that consist of the same number of

proteins in Q, which are connected to each other through a single

protein in the network. Therefore, we first construct a bag D

of proteins in the network with degree at least |Q|, i.e,

D = {vMV:|N(v)|$|Q|}. Subsequently, we choose a protein v from

D uniformly at random. Finally, we choose |Q| proteins uniformly

at random from N(v) to construct a random instance Q(i)

representative of Q. Repeating this procedure n times (in our

experiments, we use n = 1000) and computing Q(Q(i)), we obtain a

null distribution of synergistic differential expression for sub-

networks similar to Q. Observe that, only the size of Q(i) depends

on Q in this procedure. For this reason, in our experiments, we do

not explicitly generate a null distribution for each QMC(S). Rather,

we generate a null distribution for sub-networks of size 2, 4, 8, 16,

32, 64. Then we interpolate the mean and standard deviation of

synergistic differential expression for these distributions, to obtain

a curve that characterizes the behavior of synergistic differential

expression with respect to sub-network size.

Sub-Network Classification
In order to assess the reproducibility of discovered subnetworks

across different data sets and evaluate the potential of the proposed

framework for feature selection in classification of CRC, we

perform cross-classification experiments. In these experiments, we

use the aggregate expression profiles (e(Q)) of crosstalker and

interactor subnetworks associated with Nibbe and CAN seeds as

features for classification. For this purpose, in each experiment, we

select the crosstalker (or interactor) subnetworks with synergistic

differential expression (Q(Q)) one standard deviation above random

mean, according to a specific mRNA expression data set (e.g.,

GSE8671). Assume that there are K such subnetworks. Then, for

each k#K, we use the k subnetworks with maximum Q(Q) to train

an SVM classifier on the same data set (GSE8671), using Matlab’s

svmtrain function. Subsequently, we use this classifier to predict

the class (tumor vs. normal) of each sample on a different data set

(e.g., GSE10950), using Matlab’s svmclassify function. We

evaluate the performance of the classifier using the harmonic

mean of precision (selectivity) and recall (sensitivity), known as the

F-measure, defined as

F~
2|precision|recall

precisionzrecall
:

Here, precision is the fraction of true positives among all samples

classified as tumor and recall is the fraction of tumor samples called

accurately by the classifier among all tumor samples.

Supporting Information

Table S1 Sub-network mutual information and classification

scores. Cross-classification data are listed for all significant

(MI. = 0.35) sub-networks induced by the respective seed.

‘‘CAN’’ refers CRC-driver gene seeds.

Found at: doi:10.1371/journal.pcbi.1000639.s001 (0.14 MB

DOC)
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