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ABSTRACT
Motivation: With rapidly increasing amount of network and
interaction data in molecular biology, the problem of effect-
ively analyzing this data is an important one. Graph theoretic
formalisms, commonly used for these analysis tasks, often
lead to computationally hard problems due to their relation with
subgraph isomorphism.
Results: This paper presents an innovative new algorithm
for detecting frequently occurring patterns and modules in
biological networks. Using an innovative graph simplifica-
tion technique, which is ideally suited to biological networks,
our algorithm renders these problems computationally tract-
able. Indeed, we show experimentally that our algorithm
can extract frequently occurring patterns in metabolic path-
ways extracted from the KEGG database within seconds.
The proposed model and algorithm are applicable to a
variety of biological networks either directly or with minor
modifications.
Availability: Implementation of the proposed algorithms in
the C programming language is available as open source at
http://www.cs.purdue.edu/homes/koyuturk/pathway/
Contact: koyuturk@cs.purdue.edu

INTRODUCTION
Increasing availability of experimental data relating to biolo-
gical sequences coupled with efficient tools, such as BLAST
and CLUSTAL, have contributed to fundamental understand-
ing of a variety of biological processes (Altschul et al., 1997;
Thompson et al., 1994). These tools help in understanding
relationships as well as differences between sequences and
associated organisms. They are used for discovering com-
mon subsequences and motifs, which can be used to derive
functional, structural and evolutionary information. Recent
developments in molecular biology have resulted in a new
generation of experimental data that entails the relationships
and interactions between biomolecules (Hartwell et al., 1999;
Oltvai and Barabási, 2002). Biomolecular interaction data,
generally referred to as biological or cellular networks, are
frequently abstracted using graph models. Although vast
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amounts of high-quality data is becoming available, effi-
cient analysis counterparts to BLAST and CLUSTAL are not
readily available for such abstractions.

It is possible to model biological networks using vari-
ous graph theoretic formalisms. Metabolic pathways, for
instance, are naturally modeled using directed hypergraphs,
with nodes representing compounds (substrates and products),
and hyperedges representing enzymes (reactions). It is pos-
sible to reduce such a model into a general directed graph
with nodes representing enzymes, and a directed edge from
an enzyme to another implying that the product of the
first enzyme is consumed by a reaction catalyzed by the
other. Depending on the biological interpretation, if we are
primarily interested in the existence of a producer–consumer
relationship, we may also omit the direction from the edges.

As is the case with sequences, two key problems on
graphs are aligning multiple graphs, and finding frequently
occurring subgraphs in a collection of graphs. Analysis of
biological networks in terms of these problems provides
understanding of several interesting concepts, such as com-
mon motifs of cellular interactions, evolutionary relationships
and differences among cellular network structures of different
organisms, organization of functional modules, relationships
and interactions between sequences, and patterns of gene
regulation.

In this paper, we address the problem of finding frequently
occurring subgraphs in a collection of metabolic pathways.
This problem is particularly challenging because it relates
to the NP-hard subgraph isomorphism problem. Therefore,
appropriate modeling of biological networks is necessary in
order to simplify the problem. We rely on a directed graph
model with unique node labelings, which simplifies the graph
mining problem significantly while being able to capture
the underlying biological information accurately. We then
devise an efficient algorithm that is based on frequent itemset
extraction to discover frequent subgraphs among these graphs.

Experimental results on metabolic pathways extracted from
the KEGG database demonstrate that our algorithm is cap-
able of discovering interesting patterns (to a user-specified
threshold on frequency) very quickly (within seconds).
Furthermore, it provides a framework for multi-level analysis
of enzymatic interactions by the adjustment of support
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(frequency) thresholds. The proposed model and algorithm
are also applicable to other biological networks either directly
or with minor modifications.

In the next section, we discuss the use of graph theor-
etic formalisms for biological networks. We then present the
proposed model for metabolic pathways and our algorithm
for analyzing these pathways. In the Discussion section, we
present and evaluate the experimental results obtained by run-
ning the proposed algorithm on KEGG metabolic pathway
database. Finally, we draw conclusions and outline avenues
for future research.

MODEL
Graph models are commonly encountered in computational
analysis of cellular interactions (Olken, 2003). In the multi-
layered organization of organisms, such interactions form
the bridge between individual molecules (e.g. genes, mRNA,
proteins and metabolites) and large-scale organization of the
cell through functional modules (Oltvai and Barabási, 2002).
Biological networks that represent cellular interactions can
be in the form of metabolic pathways, signal transduction
pathways, gene regulatory networks and protein interaction
networks. Efforts aimed at finding appropriate models for
such networks have been motivated by significant advances
in the understanding of genomics and have been the focus of
considerable research attention.

Protein interaction networks comprises groups of interact-
ing proteins that are observed experimentally. They provide
the experimental basis for the understanding of modular
organization of the cells as well as useful information for
predicting the biological function of individual proteins. Com-
mon methods of obtaining protein interaction data include
two-hybrid, experiments mass spectrometry experiments, and
structural analysis such as phage-display (Ho et al., 2002; Ito
et al., 2001). Recently, there have been several efforts to organ-
ize protein interaction networks into publicly available data-
bases such as BIND (http://www.blueprint.org/bind/) and DIP
(http://dip.doe-mbi.ucla.edu/). The experimental data may
reveal either pairwise interactions, as in two-hybrid experi-
ments, or multi-way interactions between a set of proteins, as
in mass spectrometry experiments. Pairwise interactions are
conveniently modeled by simple undirected graphs in which
nodes represent proteins and an edge between two nodes
represents the interaction between the corresponding pro-
teins. Multi-way interactions are modeled using hypergraphs,
in which edges are replaced by hyperedges that represent
interactions between more than two proteins (Olken, 2003).

Gene regulatory networks, also referred to as genetic net-
works, represent regulatory interactions between pairs of
genes and are generally inferred from gene expression data
through microarray experiments (Akutsu et al., 1998). A
simple and common mathematical model for gene regulatory
networks is a Boolean network model. In this model, nodes

correspond to genes and a directed edge from one gene to
the other represents the regulatory effect of the first gene
on the second. The edge is labeled by either a ‘+’ or ‘−’
sign to represent the direction of regulation, namely up- or
down-regulation, respectively. More sophisticated computa-
tional models that capture the degree of regulation through
weighted graphs and/or differential equations have also been
proposed.

Metabolic pathways have a relatively longer history com-
pared with other biological networks. They characterize the
process of chemical reactions that, together, perform a particu-
lar metabolic function. With the recent progress in application
of computational methods to cell biology, there have been
successful attempts at modeling, synthesizing and organiz-
ing metabolic pathways into public databases, such as KEGG
(http://www.kegg.com/) (Karp and Mavrovouniotis, 1994;
Goto et al., 1997; Krishnamurthy et al., 2003). Metabolic
pathways are chains of reactions linked to each other by
chemical compounds (metabolites) through product–substrate
relationships. A natural mathematical model for metabolic
pathways is a directed hypergraph in which each node cor-
responds to a compound, and each hyperedge corresponds
to a reaction (or equivalently, an enzyme) (Krishnamurthy
et al., 2003). The direction of a pin of a hyperedge indicates
whether the compound is a substrate or product of the reaction.
It is possible to replace this model by a more simple directed
graph if, for instance, we are only interested in relationships
between enzymes. In such a model, enzymes correspond to
nodes of the graph and a directed edge from one enzyme
to another indicates that a product of the first enzyme is a
substrate of the second. Indeed, metabolic pathways are rep-
resented in terms of various binary relations in KEGG (Goto
et al., 1997). Edges may also be labeled by the compound
that relates the two corresponding enzymes. An interesting
property of metabolic pathways is the structure of these net-
works, which reflects temporal information. Specifically, an
enzyme may show up more than once in the same pathway,
implying that this enzyme takes part in the whole process at
different time instants. The implication of this fact on graph
models is that more than one node of a graph (pathway) might
have the same label (enzyme). One might either be interested
in preserving these temporal relationships or only in general
relationships between pairs of enzymes. In the latter scen-
ario, one may merge nodes in the graph with identical labels.
We note that merging nodes with identical labels simplifies
our graph analysis problem substantially. Furthermore, it is
always possible to recover the existing temporal patterns from
the generic patterns extracted from graphs with merged nodes.

Graph-theoretic modeling of biological networks provides
a framework for the solution of various problems aimed
at understanding the molecular interactions in the cell. These
problems, include clustering, shortest-path computation,
graph matching, graph alignment, subgraph homeomorphism
and graph mining (Olken, 2003). Clustering, graph alignment
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and graph mining provide a suitable framework for identi-
fication of functional modules, which can be defined as a
substructure of a biological network that is separable from
other modules in terms of functionality. One approach to the
identification of functional modules is graph clustering, or the
discovery of dense subgraphs based on the assumption that
a group of functionally related entities are likely to interact
densely with each other while being somewhat separated from
the rest of the network (Rives and Galitski, 2003). Another
approach is multiple alignment of graphs or mining frequent
subgraphs in order to discover common substructures in the
network. The basis for this is that functional modules can
be expected to repeat among several pathways and/or organ-
isms (Tohsato et al., 2000). Graph alignment and graph mining
also provide other opportunities for analyzing biological net-
works. The main focus of our study is on mining biological
networks for frequent connected subgraphs.

APPROACH
Graph mining is a powerful tool for finding motifs and com-
monly occurring patterns in datasets that contain interactions.
With the progression of molecular biology from sequences
to biological networks, motif and pattern discovery become
interesting and useful for such networks as for sequences. In
this study, we devise algorithms for mining pathway substruc-
tures that are observed frequently over different organisms
and/or metabolic pathways. While our focus here is on meta-
bolic pathways, the models and algorithms can be applied
either directly or with slight modifications to other biological
networks as well.

Related work on graph mining
Graph mining is a particularly challenging problem as it
relates to the NP-hard subgraph isomorphism problem. This
problem has attracted considerable interest recently since
graph models appear in many scientific, commercial and
technological applications. Existing graph mining algorithms
are generally based on frequent itemset mining, which is a
well-studied problem in the data mining literature.

The definition and complexity of the graph mining prob-
lem varies significantly depending on the target application.
For instance, a class of algorithms define the problem as one
of finding isomorphic substructures (independent of labeling)
in a collection of graphs, or equivalently, in a single large
graph. This approach is well suited to applications focused
on the structure of relationships between entities. However,
it leads to a challenging computational problem since the
hard subgraph isomorphism problem needs to be solved at
every step of these algorithms. Consequently, research on
this variation of the problem is mainly focused on efficient
node and edge ordering schemes and related optimization
techniques that help to simplify the subgraph isomorphism
problem (Kuramochi and Karypis, 2001; Han and Yan, 2002).

An alternate framework for graph mining defines the prob-
lem as one of finding frequent patterns that have both the
entities (node labels) and relationships between entities (graph
structure) in common. This definition results in an easier prob-
lem and also suits the application of graph mining to biological
networks, since we are mainly interested in common relation-
ships between biomolecules. One of the existing algorithms,
Subdue, solves this problem with repeated enumerations,
which can be computationally expensive for large-scale prob-
lems (Cook and Holder, 2000). Inokuchi et al. (2001) extend
the a-priori algorithm for frequent itemset mining to this prob-
lem on an adjacency matrix model. This model also tends to
be expensive for large sparse graphs. Our algorithm is based
on frequent itemset mining as well. However, it takes advant-
age of the sparse nature of metabolic pathways to reduce the
associated computational cost significantly.

Graph formalism for metabolic pathways
We start our discussion by formally defining a metabolic
pathway.

Definition 1. A metabolic pathway P(M , Z, R) is a col-
lection of metabolites M , enzymes Z, and reactions R, where
each reaction r ∈ R is associated with a set of enzymes
Z(r) ⊆ Z, a set of substrates S(r) ⊆ M , and a set of products
T (r) ⊆ M .

Our goal in mining metabolic pathways is to discover
common motifs of enzyme interactions that are related to
each other. Therefore, we model metabolic pathways with
simple directed graphs that are capable capturing the interac-
tion information efficiently. Furthermore, we represent each
enzyme by a unique node, independent of the number of times
the enzyme appears in the underlying pathway. The purpose
of this restriction is that it simplifies the graph mining prob-
lem significantly while providing results that are biologically
meaningful. Moreover, this simplification does not cause any
loss of information and the model can be easily reverted to
capture more detailed information on pathways once frequent
subgraphs are discovered.

Definition 2. Given metabolic pathway P(M , Z, R), the
associated directed graph G(V , E) of P is constructed as
follows: for any enzyme zi ∈ Z, there is a node vi ∈ V . There
is an edge from vi to vj , i.e. (vi , vj ) ∈ E if and only if ∃ r1, r2 ∈
R, such that zi ∈ Z(r1), zj ∈ Z(r2), and T (r1) ∩ S (r2) �= ∅.

This means that there exists a directed edge from one
enzyme to another in the graph if and only if the second
enzyme consumes a product of the first one. Figure 1 illus-
trates the directed graph model for metabolic pathways. In
the pathway, enzymes are shown by rectangular boxes while
metabolites are shown by ovals. Nodes, each corresponding
to exactly one enzyme, are shown by ovals in the graph.
Directions of the edges can be omitted to represent only
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Fig. 1. Directed graph model for metabolic pathways: (a) a por-
tion of glycolysis reference pathway and (b) its directed graph
representation.

interactions between enzymes without affecting the mining
algorithm described in the next section.

An efficient algorithm for mining metabolic
pathways
The graph model described in the previous section simplifies
the task of mining frequent subgraphs defined as follows:

Definition 3. Given a collection of graphsG1, G2, . . . , Gn

and support threshold ε, the Maximal Frequent Subgraph
Discovery problem is one of finding all maximal connected
subgraphs that are contained in at least εn of the input graphs.

The above definition implicitly defines support, i.e. the sup-
port of a subgraph that is contained by n′ of the graphs is
n′/n. A subgraph is frequent if its support is greater than ε.
Connectivity ensures that the discovered frequent interactions
are related to each other. Formally, a graph is connected if
there is a path of subsequent edges between any two nodes in
the graph. Maximality of discovered subgraphs is enforced in
order to avoid redundancy. We say that a frequent subgraph is
maximal if it is not contained by another frequent subgraph,
i.e. its edgeset is not a subset of edges of any other frequent
subgraph.

Although graph mining is a hard problem in general, the
above framework, which is well suited to our target applic-
ation, simplifies the problem considerably. One reason for
this is that subgraph isomorphism is no longer an issue as it
is implicitly enforced by node labelings. Additionally, it is
challenging to adapt existing data mining algorithms to graph
mining since most of the existing data mining algorithms
are based on problems with a single type of data unit (e.g.
item), while graphs contain nodes and edges as different types
of data. In our model, uniqueness of nodes implies unique
labeling of edges, providing us with the opportunity of redu-
cing the problem to frequent itemset mining by specifying
edges as fundamental data units. Since frequent itemset min-
ing is extensively studied, and there exist many effective and
well-tuned algorithms, we can adapt these algorithms to graph
mining taking into account the nature of our problem.

Since a node label cannot be repeated in our directed graph
model, every edge that may exist in a graph is uniquely spe-
cified by the labels of its incident nodes. This observation leads
us to the idea of representing a connected subgraph by a set of
edges, since the uniqueness of each edge implies uniqueness
of a subgraph represented by a set of edges. We introduce the
concept of a connected edgeset for this purpose to impose con-
nectivity, since we are only interested in connected subgraphs
by our problem definition.

Definition 4. A unique edge e is a set of two node labels
vi , vj . A set of unique edges ES = {e1, e2, . . . , ek} is called
a connected edgeset if and only if all edges in the set are
connected, i.e. any subset ES′ ⊂ ES shares at least one node
with the remaining set of edges ES\ES′.

We can now establish the link between the maximal fre-
quent connected subgraph discovery problem and frequent
itemset mining problem, where graphs (pathways) correspond
to transactions and connected edgesets correspond to itemsets.
In frequent itemset mining, transactions are sets of items and
the problem is one of finding all frequent itemsets that exist
in more than a specified number of transactions. The funda-
mental approach used by frequent itemset mining algorithms
is to construct frequent itemsets from smaller to larger sets
based on the fact that any subset of a frequent itemset must
be frequent. This is also true for edgesets in our problem.
Consequently, enumerating all itemsets in a bottom-up fash-
ion provides efficient pruning of the search space, since most
large sets are eliminated without consideration.

We adapt the basic idea of frequent itemset mining to fre-
quent subgraph mining with one additional constraint. Since
we are interested in connected subgraphs, it is more efficient
to consider only connected edgesets throughout the search
process. While maintaining connectivity, it is also necessary
to avoid redundancy, in terms of considering the same set of
edges more than once in a different order. In order to handle
these two issues efficiently, we develop a depth-first enumera-
tion algorithm based on backtracking (Gouda and Zaki, 2001),

i203



M.Koyutürk et al.

Fig. 2. Depth-first enumeration algorithm for mining maximal
frequent subgraphs.

which extends each subgraph with only edges from a candidate
edgeset. We maintain connectivity by only adding edges that
are connected to the current subgraph and avoid redundancy
by keeping track of already visited edges.

Another reason for selecting depth-first enumeration is that
the major limitation in our application is memory size (as net-
work databases become large). Since enumeration algorithms
tend to require considerable memory, the time-space trade-
off in the design of algorithms may be resolved in favor of
memory for this reason. Note that this does not imply that
we compromise completely on runtime efficiency. Indeed, we
show that our algorithm computes desired results within a few
seconds for conventional databases. Note that adaptation of
breadth-first data mining algorithms such as a priori (Agrawal
and Srikant, 1994) might be faster provided that there is
sufficient memory.

The algorithm for frequent subgraph mining is shown in
Figure 2. Upon each invocation, the algorithm tries to extend
the edgeset (subgraph) by all edges in the candidate set one
by one. If the extended edgeset is frequent, then the proced-
ure is again invoked for the extended edgeset. The algorithm
stops whenever an edgeset cannot be extended further. This
edgeset is then recorded, if it is not contained by any other
recorded frequent edgeset. In the algorithm, N(ei) denotes
the neighbors of edge ei , i.e. it is the set of frequent edges that
share at least one node with ei . D, on the other hand, is the set
of edges that are already visited by the algorithm. Therefore,
while extending an edgeset, the neighbors of the newly added
edge are added to the candidate set, while keeping the already
visited edges out. The procedure is invoked as MinePathways
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Fig. 3. Sample execution of frequent subgraph mining. (a) Input
collection of graphs; (b) resulting enumeration tree of frequent
edgesets.

(MFS, {ei}, N(ei), {e1, e2, . . . ei−1}), for each edge ei that is
frequent in the collection of graphs. MFS is empty at first
invocation, and it is input to the procedure at each subsequent
invocation, by which it is extended with newly discovered
frequent subgraphs.

Example. Consider the input graph collection of Figure 3a.
This collection has five edges in all, ab, ac, bd , ce and de.
Figure 3b shows the enumeration tree for mining subgraphs
that exist in at least three of the input graphs. Procedure
MinePathways is invoked for ab, ac and de, since these are
the only frequent edges. Edges bd and ce are not considered
since they are not contained in at least three graphs. The fre-
quency of each edgeset is shown in parentheses. At the first
invocation, the algorithm starts with edgeset {ab}, whose can-
didate set is N(ab) = {ac}, and extends it with edge ac as
the edgeset {ab, ac} is frequent. Since no further extension
is possible, this edgeset is recorded as a maximal frequent
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glmS

guaA

nadE

purF

Fig. 4. Frequent sub-pathways discovered for different support
values on glutamate metabolism among 155 organisms.

subgraph. Note that extension of the edgeset with edge de is
not considered since this edge is not connected to the edgeset
under consideration, so it never gets into the candidate edge-
set. Furthermore, extension of the edgeset {ac} with edge ab is
not considered since this edge has already been visited. In the
end, the algorithm reports two maximal frequent subgraphs,
{ab, ac} and {de}. Although edgeset {ac} is also a leaf of the
tree and is frequent, it is not reported since it is contained in
another frequent edgeset.

DISCUSSION
Using the proposed algorithm, we mine several pathway
collections extracted from the KEGG metabolic pathway data-
base. KEGG currently has a fairly comprehensive database
of metabolic pathways. KEGG also has a base of reference
pathways that can be viewed as networks of enzymes, which
are constructed manually. Organism-specific pathways are
then constructed automatically with the help of identified
enzyme genes. By the end of 2003, KEGG contained pathway
maps of several metabolic processes, including carbohydrate,
energy, lipid, nucleotide and amino acid metabolism for 157
organisms.

We mine several pathways belonging to different metabol-
isms for different organisms. Sample frequent sub-pathways
discovered in pathway collections that belong to glutamate,
alanine–aspartate and pyrimidine metabolisms are shown in
Figures 4– 6, respectively. The nodes of the displayed graphs
are labeled by KEGG IDs of enzymes, which can be queried
on KEGG website for detailed information.

We are able to observe considerably large sub-pathways
that are frequent. For example, a sub-pathway of glutam-
ate metabolism that contains 4 nodes and 6 edges occurs

argG

argH

aspS

nadB

purB

purA

pyrB

Fig. 5. Frequent sub-pathways discovered for different support
values on alanine–aspartate metabolism among 157 organisms.

cmk

dut

ndk

pyrF

pyrG

tmk

thyA

Fig. 6. Frequent sub-pathways discovered for different support
values on pyrimidine metabolism among 156 organisms.

in 45 (29%) of the 155 organisms. This sub-pathway is
shown by bold nodes and edges in Figure 4. It is com-
prised of enzymes, glmS (EC 2.6.1.6, glucosamine-fructose-
6-phosphate-aminotransferase), guaA (EC 6.3.5.2, GMP
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synthase), nadE (EC 6.3.5.1, NH3-dependent NAD+ syn-
thetase) and purF (amidophosphoribosyltranferase). In this
sub-pathway, all enzymes are related through production and
consumption of L-glutamine.

Mining the pathways for different support thresholds allows
evaluation of frequent sub-pathways in a multi-level fashion.
For instance, when we reduce the required support threshold
to 19.3% (30 organisms) for glutamate metabolism, largest
of the sub-pathways that we were able to discover consists
of 5 nodes and 10 edges and is indeed a supergraph of the
previous one. This sub-pathway is shown in the figure by
solid nodes and edges. As seen in the figure, this pathway
contains enzyme glnA (EC 6.3.1.2, glutamine synthetase),
which is also related to the other enzymes by l-glutamine.
Further reducing the support threshold to 14.2% (22 organ-
isms), we were able to discover a sub-pathway of 6 nodes
and 13 edges, which is the entire graph shown in the figure.
This pathway is indeed a supergraph of the previous one, with
gltX (EC 6.1.1.17, glutamyl-tRNA synthetase) added, which
interacts bidirectionally with glnA through l-glutamate. The
self-loop for gltX implies that this enzyme takes part in two
consecutive reactions, which are part of the observed frequent
sub-pathways.

In Figure 5, largest of the frequent sub-pathways that
are discovered in alanine-aspartate metabolism for three
different levels of support threshold are shown. The bold
sub-pathway of 5 nodes and 8 edges occurs in 50 (32.1%)
of the 156 organisms, the solid one with 5 nodes and
11 edges occurs in 30 (19.2%) of the organisms and the
entire graph of 6 nodes and 16 edges occurs in 18 (11.5%)
of the organisms. Note that enzyme purB (EC 4.3.2.2,
adenylosuccinate lyase) and its interaction with purA (EC
6.3.4.4, adenylosuccinate synthetase) through adenylosuccin-
ate (N6-(1,2-dicarboxyethyl)-AMP), shown in dotted lines in
the figure, is included in the most frequent sub-pathway of
alanine–aspartate metabolism but is excluded from the larger
sub-pathways of lower frequency, which is interesting to note.

Figure 6 shows the multi-level analysis of frequent sub-
pathways for pyrimidine metabolism. The bold sub-pathway
of 4 nodes and 5 edges occurs in 40 (25.6%) of the 156 organ-
isms, the solid one with 5 nodes and 7 edges occurs in 34
(21.8%) of the organisms and the entire graph of 7 nodes and
11 edges occurs in 24 (15.4%) of the organisms.

Table 1 shows the results obtained from mining different
metabolic pathway collections for varying level of minimum
support. In this table, we report the number of discovered max-
imal frequent sub-pathways, number of edges in the largest
discovered sub-pathway and the running time in seconds for
the three metabolisms in discussion. Glutamate pathway col-
lection has a total of 2804 nodes and 11 339 edges over 155
organisms, alanine–aspartate pathway collection has 2681
nodes and 8481 edges over 156 organisms and pyrimidine
pathway collection consists of 3375 nodes and 7218 edges
over 156 organisms. On a Pentium IV 2.0 GHz workstation

Table 1. Time spent on mining different metabolic pathways for varying
level of minimum support

Metabolism Min.
supp. (%)

No of frequent
sub-pathways

Largest
no. of edges

Runtime
(s)

Glutamate 10.0 34 15 0.52
12.5 39 13 0.17
15.0 21 11 0.03
20.0 12 9 0.00

Pyrimidine 10.0 120 15 0.44
12.5 78 15 0.19
15.0 49 12 0.04
20.0 23 7 0.00

Alanine and aspartate 10.0 34 16 3.08
12.5 25 16 1.84
15.0 21 12 0.15
20.0 15 11 0.02

with 512 MB RAM, we were able to mine these pathway
collections in less than a second for relatively high support
values to obtain meaningful results in terms of the size of
the discovered frequent sub-pathways. For lower values of
support, many sub-pathways turn out to be frequent and the
size of the frequent pathways also grows significantly. For
this reason, it takes more time for the algorithm to return all
frequent sub-pathways. This is still extremely fast since the
number of possible sub-pathways grows exponentially with
the size of the sub-pathway. We were able to discover a sub-
pathway of 16 edges, which is considerably large, in only 3 s.
Therefore, we conclude that the proposed algorithm provides
near real-time response for practically interesting queries in
much the same way as state-of-the-art sequence matching
algorithms, such as BLAST.

The implementation of the proposed mining algorithms in
the C programming language is available as open source at
http://www.cs.purdue.edu/homes/koyuturk/pathway/. Some
sample results for multi-level analysis of frequent sub-
pathways are also provided at this website.

CONCLUSIONS
With the rapidly increasing amount of network and interac-
tion data in molecular biology, the problem of mining patterns,
motifs and modules in biological networks becomes increas-
ingly interesting. This paper provides a framework for mining
biological networks using an innovative graph simplification,
which leads to efficient graph mining algorithms. The pro-
posed model and algorithm are shown to be well-suited to
mining metabolic pathways providing interesting results and
being able to respond to queries quickly. It also provides
a framework for multi-level analysis of occurrence of sub-
pathways in metabolic pathways. Our approach can be easily
extended to other biological networks as well.
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The proposed framework can be improved further by adding
flexibility for capturing biologically meaningful information
that helps in interpretation of discovered patterns. An import-
ant improvement in this respect is the investigation of possible
probabilistic models and metrics to help the evaluation of stat-
istical significance of the discovered patterns. Finally, the
concept of a matching subgraph can be extended to one of
an ‘approximate match’. The notions of approximations and
distance would need to be formalized before such algorithms
can be devised.
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