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Abstract. Emerging research demonstrates the potential of protein-
protein interaction (PPI) networks in uncovering the mechanistic bases
of cancers, through identification of interacting proteins that are co-
ordinately dysregulated in tumorigenic and metastatic samples. When
used as features for classification, such coordinately dysregulated sub-
networks improve diagnosis and prognosis of cancer considerably over
single-gene markers. However, existing methods formulate coordination
between multiple genes through additive representation of their expres-
sion profiles and utilize greedy heuristics to identify dysregulated sub-
networks, which may not be well suited to the potentially combinato-
rial nature of coordinate dysregulation. Here, we propose a combinato-
rial formulation of coordinate dysregulation and decompose the resulting
objective function to cast the problem as one of identifying subnetwork
state functions that are indicative of phenotype. Based on this formula-
tion, we show that coordinate dysregulation of larger subnetworks can
be bounded using simple statistics on smaller subnetworks. We then use
these bounds to devise an efficient algorithm, Crane, that can search
the subnetwork space more effectively than simple greedy algorithms.
Comprehensive cross-classification experiments show that subnetworks
identified by Crane significantly outperform those identified by greedy
algorithms in predicting metastasis of colorectal cancer (CRC).

1 Introduction

Recent advances in high-throughput screening techniques enable studies of com-
plex phenotypes in terms of their associated molecular mechanisms. While ge-
nomic studies provide insights into genetic differences that relate to certain phe-
notypes, functional genomics (e.g., gene expression, protein expression) helps
elucidate the variation in the activity of cellular systems [1]. However, cellu-
lar systems are orchestrated through combinatorial organization of thousands
of biomolecules [2]. This complexity is reflected in the diversity of phenotypic
effects, which generally present themselves as weak signals in the expression
profiles of single molecules. For this reason, researchers increasingly focus on
identification of multiple markers that together exhibit differential expression
with respect to various phenotypes [3, 4].



Network-based approaches to identification of multiple markers. High-
throughput protein-protein interaction (PPI) data [5] provide an excellent sub-
strate for network-based identification of multiple interacting markers. Network-
based analyses of diverse phenotypes show that products of genes that are impli-
cated in similar phenotypes are clustered together into “hot spots” in PPI net-
works [6, 7]. This observation is exploited to identify novel genetic markers based
on network connectivity [8–10]. For the identification of differentially expressed
subnetworks with respect to GAL80 deletion in yeast, Ideker et al. [11] propose
a method that is based on searching for connected subgraphs with high aggre-
gate significance of individual differential expression. Variations of this method
are shown to be effective in identifying multiple genetic markers in prostate
cancer [12], melanoma [13], diabetes [14], and others [15–17].

Coordinate/synergistic dysregulation. Network-based approaches are fur-
ther elaborated to capture coordinate dysregulation of interacting proteins at a
sample-specific resolution [18]. Ulitksy et al. [19] define dysregulated pathways as
subnetworks composed of products of genes that are dysregulated in a large frac-
tion of phenotype samples. Chuang et al. [20] define subnetwork activity as the
aggregate expression of genes in the subnetwork, quantify the dysregulation of a
subnetwork in terms of the mutual information between subnetwork activity and
phenotype, and develop greedy algorithms to identify subnetworks that exhibit
significant dysregulation. Subnetworks identified by this approach are also used
as features for classification of breast cancer metastasis, providing significant im-
provement over single-gene markers [20]. Nibbe et al. [21, 22] show that this no-
tion of coordinate dysregulation is also effective in integrating protein and mRNA
expression data to identify important subnetworks in colon cancer (CRC). Anas-
tassiou [23] introduces the concept of synergy to delineate the complementarity
of multiple genes in the manifestation of phenotype. While identification of mul-
tiple genes with synergistic dysregulation is intractable [23], important insights
can still be gained through pairwise assessment of synergy [24].

Contributions of this study. Despite significant advances, existing approaches
to the identification of coordinately dysregulated subnetworks have important
limitations, including the following: (i) additive formulation of subnetwork activ-
ity can only highlight the coordinate dysregulation of interacting proteins that
are dysregulated in the same direction, overlooking the effects of inhibitory and
other complex forms of interactions; (ii) greedy algorithms may not be able to
adequately capture the coordination between multiple genes that provide weak
individual signals. In this paper, with a view to addressing these challenges,
we develop a novel algorithm, Crane, for the identification of Combinatorially
dysRegulAted subNEtworks. The contributions of the proposed computational
framework include the following:

– We formulate coordinate dysregulation combinatorially, in terms of the mu-
tual information between subnetwork state functions (specific combinations
of quantized mRNA expression levels of proteins in a subnetwork) and phe-
notype (as opposed to additive subnetwork activity ).



– We decompose combinatorial coordinate dysregulation into individual terms
associated with individual state functions, to cast the problem as one of
identifying state functions that are informative about the phenotype.

– Based on this formulation, we show that the information provided on phe-
notype by a state function can be bounded from above using statistics of
subsets of this subnetwork state. Using this bound, we develop bottom-up
enumeration algorithms that can effectively prune out the subnetwork space
to identify informative state functions efficiently.

– We use subnetworks identified by the proposed algorithms to train neural
networks for classification of phenotype, which are better suited to mod-
eling the combinatorial relationship between the expression levels of genes
in a subnetwork, as compared to classifiers that require aggregates of the
expression profiles of genes as features (e.g., SVMs).

We describe these algorithmic innovations in detail in Section 2.

Results. We implement Crane in Matlab and perform comprehensive cross-
classification experiments for prediction of metastasis in CRC. These experi-
ments show that subnetworks identified by the proposed framework significantly
outperform subnetworks identified by greedy algorithms in terms of accuracy of
classification. We also investigate the highly informative subnetworks in detail
to assess their potential in highlighting the mechanisms of metastasis in CRC.
We present these results in Section 3 and conclude our discussion in Section 4.

2 Methods

In the context of a specific phenotype, a group of genes that exhibit signifi-
cant differential expression and whose products interact with each other may
be useful in understanding the network dynamics of the phenotype. This is be-
cause, the patterns of (i) collective differential expression and (ii) connectivity
in protein-protein interaction (PPI) network are derived from independent data
sources (sample-specific mRNA expression and generic protein-protein interac-
tions, respectively). Thus, they provide corroborating evidence indicating that
the corresponding subnetwork of the PPI network may play an important role
in the manifestation of phenotype. In this paper, we refer to the collective dif-
ferential expression of a group of genes as coordinate dysregulation. We call a
group of coordinately dysregulated genes that induce a connected subnetwork
in a PPI network a coordinately dysregulated subnetwork.

Dysregulation of a gene with respect to a phenotype. For a set V of
genes and U of samples, let Ei ∈ R|U| denote the properly normalized [25] gene
expression vector for gene gi ∈ V , where Ei(j) denotes the relative expression
of gi in sample sj ∈ U . Assume that the phenotype vector C annotates each
sample as phenotype or control, such that Cj = 1 indicates that sample sj is
associated with the phenotype (e.g., taken from metastatic sample) and Cj = 0
indicates that sj is a control sample (e.g., taken from a non-metastatic tumor
sample). Then, the mutual information I(Ei;C) = H(C) −H(C|Ei) of Ei and
C is a measure of the reduction of uncertainty about phenotype C due to the
knowledge of the expression level of gene gi. Here, H(X) = −

∑

x∈X p(x) log p(x)
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Fig. 1. Additive vs. combinatorial coordinate dysregulation. Genes (g) are shown as
nodes, interactions between their products are shown as edges. Expression profiles
(E) of genes are shown by colormaps. Dark red indicates high expression (H), light
green indicates low expression (L). None of the genes can differentiate phenotype and
control samples individually. Aggregate subnetwork activity (average expression) for
each subnetwork is shown in the row below its gene expression matrix. The aggregate
activity of S1 can perfectly discriminate phenotype and control, but the aggregate
activity of S2 cannot discriminate at all. For each subnetwork S1 and S2, each column of
the gene expression matrix specifies the subnetwork state in the corresponding sample.
The states of both subnetworks can perfectly discriminate phenotype and control (for
S2, up-regulation of g7 alone or g5 and g6 together indicates phenotype; we say state

functions LLH and HHL are indicative of phenotype).

denotes the Shannon entropy of discrete random variableX with support X . The
entropy H(Ei) of the expression profile of gene gi is computed by quantizing Ei

properly. Clearly, I(Ei;C) provides a reasonable measure of the dysregulation
of gi, since it quantifies the power of the expression level of gi in distinguishing
phenotype and control samples.

Additive coordinate dysregulation. Now let G = (V , E) denote a PPI net-
work where the product of each gene gi ∈ V is represented by a node and each
edge gigj ∈ E represents an interaction between the products of gi and gj . For a
subnetwork of G with set of nodes S ⊆ V , Chuang et al. [20] define the subnet-

work activity of S as ES =
∑

gi∈S Ei/
√

|S|, i.e., the aggregate expression profile
of the genes in S. Then, the dysregulation of S is given by I(ES ;C), which is a
measure of the reduction in uncertainty on phenotype C, due to knowledge of
the aggregate expression level of all genes in S. In the following discussion, we
refer to I(ES ;C) as the additive coordinate dysregulation of S.

Combinatorial coordinate dysregulation. Additive coordinate dysregula-
tion is useful for identifying subnetworks that are composed of genes dysregu-
lated in the same direction (either up- or down-regulated). However, interactions
among genes and proteins can also be inhibitory (or more complex), and the dys-
regulation of genes in opposite directions can also be coordinated, as illustrated
in Figure 1. Combinatorial formulation of coordinate dysregulation may be able
to better capture such complex coordination patterns.

To define combinatorial coordinate dysregulation, we consider binary rep-
resentation of gene expression data. Binary representation of gene expression
is commonly utilized for several reasons, including removal of noise, algorith-



mic considerations, and tractable biological interpretation of identified patterns.
Such approaches are shown to be effective in the context various problems, rang-
ing from genetic network inference [26] to clustering [27] and classification [28].
Ulitsky et al. [19] also use binary representation of differential expression to iden-
tify dysregulated pathways with respect to a phenotype. There are also many
algorithms for effective binarization of gene expression data [29]. For our pur-
poses, let Êi denote the binarized expression profile of gene gi. We say that gene
gi has high expression in sample sj if Êi(j) = H and low expression if Êi(j) = L.
Then, the combinatorial coordinate dysregulation of subnetwork S is defined as

I(FS ;C) = H(C)−H(C|Ê1, Ê2, ..., Êm), (1)

where FS = {Ê1, Ê2, ..., Êm} ∈ {L, H}m is the random variable that represents
the combination of binary expression states of the genes in S and m = |S|.

The difference between additive and combinatorial coordinate dysregulation
is illustrated in Figure 1. Anastassiou [23] also incorporates this combinato-
rial formulation to define the synergy between a pair of genes as ψ(g1, g2) =
I(Ê1, Ê2;C)−(I(Ê1;C)+I(Ê2;C)). Generalizing this formulation to the synergy
between multiple genes, it can be shown that identification of multiple genes with
synergistic dysregulation is an intractable computational problem [23]. Here, we
define combinatorial coordinate dysregulation as a more general notion than syn-
ergistic dysregulation, in that coordinate dysregulation is defined based solely
on collective differential expression, whereas synergy explicitly looks for genes
that cannot individually distinguish phenotype and control samples.

Subnetworks that exhibit combinatorial coordinate dysregulation with re-
spect to a phenotype may shed light into the mechanistic bases of that phe-
notype. However, identification of such subnetworks is intractable, and due to
the combinatorial nature of the associated objective function (I(FS ;C)), greedy
algorithms may not suit well to this problem. This is because, as also demon-
strated by the example in Figure 1, it is not straightforward to bound the com-
binatorial coordinate dysregulation of a subnetwork in terms of the individual
dysregulation of its constituent genes or coordinate dysregulation of its smaller
subnetworks. Motivated by these considerations, we propose to decompose the
combinatorial coordinate dysregulation of a subnetwork into individual subnet-
work state functions and show that information provided by state functions of
larger subnetworks can be bounded using statistics of their smaller subnetworks.

Subnetwork state functions informative of phenotype. Let fS ∈ {H, L}m

denote an observation of the random variable FS , i.e., a specific combination of
the expression states of the genes in S. By definition of mutual information, we
can write the combinatorial coordinate dysregulation of S as

I(FS ;C) =
∑

fS∈{H,L}m

J(fS ;C) (2)

where
J(fS ;C) = p(fS)

∑

c∈{0,1}

p(c|fS) log(p(c|fS)/p(c)). (3)



Here, p(x) denotes P (X = x), that is the probability that random variable X
is equal to x (similarly, p(x|y) denotes P (X = x|Y = y)). In biological terms,
J(fS ;C) can be considered a measure of the information provided by subnetwork
state function fS on phenotype C. Therefore, we say a state function fS is
informative of phenotype if it satisfies the following conditions:

– J(fS ;C) ≥ j∗, where j∗ is an adjustable threshold.

– J(fS ;C) ≥ J(fR;C) for all fR v fS . Here, fR v fS denotes that fR is a
substate of state function fS , that is R ⊆ S and fR maps each gene in R to
an expression level that is identical to the mapping provided by fS .

Here, the first condition ensures that the information provided by the state
function is considered high enough with respect to a user-defined threshold. It
can be shown that for any S ⊆ V , 0 ≤ J(fS ;C) ≤ max{−p(c) log p(c),−(1 −
p(c)) log(1 − p(c))} = jmax(p(c)) [30], where p(c) denotes the fraction of phe-
notype samples among all available samples. Therefore, in practice, we allow
the user to specify a threshold j∗∗ in the range [0, 1] and adjust it as j∗ =
j∗∗jmax(p(c)), to make the scoring criterion interpretable and uniform across
all datasets. The second condition ensures that informative state functions are
non-redundant, that is, a state function is considered informative only if it pro-
vides more information on the phenotype than any of its substates can. This
restriction ensures that the expression of each gene in the subnetwork provides
additional information on the phenotype, capturing the synergy between multi-
ple genes to a certain extent. For a given set of phenotype and control samples
and a reference PPI network, the objective of our framework is to identify all
informative state functions.

Algorithms for the identification of informative state functions. Since
the space of state functions is very large, the problem of discovering all informa-
tive state functions is intractable. Here, we address this challenge by utilizing a
bound on the value of J to effectively prune the search space. Our approach is in-
spired by a similar result by Smyth and Goodman [31] on information-theoretic
identification of association rules in databases. In the following theorem, we show
that the information that can be provided by all superstates of a given state func-
tion can be bounded based on the statistics of that state function, without any
information about the superstate.

Theorem 1. Consider a subnetwork S ⊆ V and associated state function fS.
For any fR w fS, the following bound holds:

J(fR;C) ≤ p(fS) max
c∈{0,1}

{

p(c|fS) log
1

p(c)

}

= Jbound(fS , C). (4)

The proof of this theorem is provided in the supplementary materials [30]. Note
that this theorem does not state that the J-value of a state function is bounded
by the J-value of its smaller parts, it rather provides a bound on the J-value of
the larger state function based on simpler statistics of its smaller parts. Using
this bound, we develop an algorithm, Crane, to efficiently search for informative
state functions. Crane enumerates state functions in a bottom-up fashion, by
pruning out the search space effectively based on the following principles:



1. A state function fS is said to be a candidate state function if |S| = 1 or
J(fS ;C) ≥ J(fS\{gi};C) for all gi ∈ S.

2. A candidate state function fS is said to be extensible if Jbound(fS ;C) ≥ j∗.
This restriction enables pruning of larger state functions using statistics of
smaller state functions.

3. An extension of state function fS is obtained by adding one of the H or L

states of a gene gi ∈ V \ S such that gigj ∈ E , where gj is the most recently
added gene to fS . This ensures network connectivity of the subnetwork as-
sociated with the generated state functions.

4. For an extensible state function, all possible extensions are considered and
among those that qualify as candidate state functions, the top b state func-
tions with maximum J(.) are selected as candidate state functions. Here, b
is an adjustable parameter that determines the breadth of the search and
the case b = 1 corresponds to a greedy algorithm.

5. An extensible state function fS is not extended if |S| = d. Here, d is an
adjustable parameter that determines the depth of the search.

Crane enumerates all candidate state functions that qualify according to
these principles, for given j∗, b, and d. At the end of the search process, the
candidate state functions that are not superceded by another candidate state
function (the leaves of the enumeration tree) are identified as informative state
functions, if their J-value exceeds j∗. A detailed pseudo-code for this procedure
is given in the supplementary materials [30].

Using state functions to predict metastasis in cancer. An important ap-
plication of informative state functions is that they can serve as features for
classification of phenotype. Since the genes that compose an informative state
function are by definition highly discriminative of phenotype and control when
considered together, they are expected to perform better than single-gene fea-
tures [20]. Note here that Crane discovers specific state functions that are
informative of phenotype, as opposed to subnetworks that can discriminate phe-
notype or control. However, by Equation 2, we expect that a high J(fS , C) for
a specific state function fS is associated with a potentially high I(FS , C) for
the corresponding subnetwork S. Therefore, for the application of Crane in
classification, we sort the subnetworks that are associated with discovered state
functions based on their combinatorial coordinate dysregulation I(FS , C) and
use the top K disjoint (non-overlapping in terms of their gene content) subnet-
works with maximum I(FS , C) as features for classification. In the next section,
we report results of classification experiments for different values of K.

Deriving representative features for subnetworks is a challenging task. Using
simple aggregates of individual expression levels of genes along with traditional
classifiers (e.g., regression or SVMs) might not be adequate, since such repre-
sentations may not capture the combinatorial relationship between the genes in
the subnetwork. For this reason, we use neural networks that incorporate sub-
network states (FS) directly as features. The proposed neural network model is
illustrated in Figure 2. In the example of this figure, two subnetworks are used
to build the classifier. Each input is the expression level of a gene and the inputs



Fig. 2. Neural network model used to utilize subnetworks identified by Crane for clas-
sification. Each subnetwork is represented by an input layer neuron and these neurons
are connected to a single output layer neuron.

that correspond to a particular subnetwork are connected together to an input
layer neuron. All input layer neurons, each representing a subnetwork, are con-
nected to a single output layer neuron, which produces the output. Each layer’s
weights and biases are initialized with the Nguyen-Widrow layer initialization
method (provided by Matlab’s initnw parameter). Then for a given gene ex-
pression dataset for a range of control and phenotype samples (which, in our
experiments, is identical to that used for identification of informative state func-
tions), the network is trained with Levenberg-Marquardt backpropagation (using
Matlab’s trainlm parameter), so that, given expression profiles in the training
dataset, the output of the second layer matches the associated phenotype vector
within minimal mean squared error. This learned model is then used to perform
classification tests on a different gene expression dataset for the same phenotype.
Since Neural Networks show stochastic behavior, we train 30 independent NNs
with the same training data and take a voting amongst them to determine the
final class label of a particular sample.

3 Results and Discussion

In this section, we evaluate the performance of Crane in identifying state func-
tions associated with metastasis of colorectal cancer (CRC). We first compare
the classification performance of the subnetworks associated with these state
functions against single gene markers and subnetworks identified by two greedy
algorithms that aim to maximize additive and combinatorial coordinate dysreg-
ulation. Then, we inspect the subnetworks that are useful in classification, and
discuss the insights these subnetworks can provide into metastatis of CRC.

Datasets. In our experiments, we use two CRC related microarray datasets
obtained from GEO (Gene Expression Omnibus, http://www.ncbi.nlm.nih.
gov/geo/index.cgi). These datasets, referenced by their accession number in
the GEO database, include the following relevant data:

– GSE6988 contains expression profiles of 17,104 genes across 29 vs. 20 col-
orectal tumor samples with and without liver metastasis, respectively.

– GSE3964 contains expression profiles of 5,845 genes across 28 vs. 18 colorec-
tal tumor samples with and without liver metastasis, respectively.



The human protein-protein interaction data used in our experiments is ob-
tained from the Human Protein Reference Database (HPRD), http://www.

hprd.org. This dataset contains 35023 binary interactions among 9299 proteins,
as well as 1060 protein complexes consisting of 2146 proteins. We integrate the
binary interactions and protein complexes using a matrix model (e.g., each com-
plex is represented as a clique of the proteins in the complex), to obtain a PPI
network composed of 42781 binary interactions among 9442 proteins.

Experimental design. For each of the datasets mentioned above, we discover
informative state functions (in terms of discriminating tumor samples with or
without metastasis) using Crane. While state functions that are indicative of
either metastatic or non-metastatic phenotype can have high J(.) values, we use
only those that are indicative of (i.e., knowledge of which increases the likelihood
of) metastatic phenotype for classification and further analyses, since such state
functions are directly interpretable in terms of their association with metastasis.
In the experiments reported here, we set b = 10. d is set at 3 for GSE3964

and at 6 for GSE6988. The value of j∗∗ is set to 0.15 and 0.50 for discovery of
subnetworks on GSE3964 and GSE6988 respectively. Note that these parameters
are used to balance the trade-off between computational cost of subnetwork
identification and classification accuracy. The reported values are those that
provide reasonable performance by spending a reasonable amount of time on
subnetwork identification (a few hours in Matlab for each dataset). To binarize
the gene expression datasets, we first normalize the gene expression profiles so
that each gene has an average expression of 0 and standard deviation 1. Then we
set the top α fraction of the entries in the normalized gene expression matrix to H
(high expression) and the rest to L (low expression). In the reported experiments,
we use α = 0.25 (25% of the genes are expressed on an average) as this value is
found to optimize the classification performance.

Implementation of other algorithms. We also use two greedy algorithms
to identify coordinately dysregulated subnetworks, one of which aims to maxi-
mize additive coordinate dysregulation [20], while the other aims to maximize
combinatorial coordinate dysregulation. We implement the greedy algorithms to
identify a subnetwork associated with each gene in the network by seeding the
greedy search process from that gene. The greedy algorithms grow subnetworks
by iteratively adding to the subnetwork a network neighbor of the genes that are
already in the subnetwork. At each iteration, the neighbor that maximizes the
coordinate dysregulation of the subnetwork is selected to be added. Once all sub-
networks are identified, we sort these subnetworks according to their coordinate
dysregulation (I(ES ;C) or I(FS ;C)) and use the top K disjoint subnetworks
to train and test classifiers, for different values of K. The binarization scheme
for greedy identification of combinatorially dsregulated subnetworks is identical
to that for Crane. While quantizing ES to compute I(ES ;C), as suggested
in [20], we use blog2(|U|)c + 1 bins where |U| denotes the number of samples.
Note that, in [20], the subnetworks identified by the greedy algorithm are filtered
through three statistical tests. In our experiments, these statistical tests are not
performed for the subnetworks discovered by any of the three algorithms.
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Fig. 3. Classification performance of subnetworks identified by Crane in predicting
colon cancer metastasis, as compared to those identified by greedy algorithms that
aim to maximize combinatorial or additive coordinate dysregulation, as well as single-
gene markers. Subnetworks identified by Crane and greedy combinatorial algorithm
are used to train neural networks (NNs), while those identified by the greedy additive
algorithm are used to train NNs, as well as support vector machines (SVMs). In the
graphs, horizontal axes show the number of disjoint subnetwork features (with maxi-
mum combinatorial or greedy coordinate dysregulation) used in classification, vertical
axes show F Measure achieved by the corresponding classifier.

The design of classifiers for combinatorially dsregulated subnetworks identi-
fied by the greedy algorithm is also identical to that for subnetworks identified
by Crane. For the subnetworks with additive coordinate dysregulation, we com-
pute the subnetwork activityES for each subnetwork, and use these as features to
train and test two different classifiers: (i) a support vector machine (SVM) using
Matlab’s svmtrain and svmclassify functions (this method is not applicable
to combinatorial coordinate dysregulation), (ii) feed-forward neural networks,
in which each input represents the subnetwork activity for a subnetwork and
these inputs are connected to hidden layer neurons. For the single-gene mark-
ers, we rank all genes according to the mutual information of their expression
profile with phenotype (I(Ei;C)) and use the expression level of K genes with
maximum I(Ei;C) as features for classification.

Classification performance. We evaluate the cross-classification performance
of the subnetworks in the context of predicting metastasis of CRC. Namely, we
use subnetworks discovered on the GSE6988 dataset to train classifiers and we
test the resulting classifiers on GSE3964. Similarly, we use subnetworks discov-
ered on GSE3964 to train classifiers using the same dataset and perform testing
of these classifiers on GSE6988. The cross-classification performance of subnet-
works discovered by an algorithm is not only indicative of the power of the
algorithm in discovering subnetworks that are descriptive of phenotype, but also
the reproducibility of these subnetworks across different datasets.

The classification performance of the subnetworks identified by Crane and
greedy algorithms is compared in Figure 3. In the figure, for each 1 ≤ K ≤ 10,
the ‘F Measure’ is reported for each classifier. F measure is representative of the



overall performance of a classifier, which is calculated as the geometric mean
of precision (selectivity) and recall (sensitivity) of predictions. Here, precision is
defined as the fraction of true positives among all samples classified as phenotype
by the classifier, while recall is defined as the fraction of true positives among
all true phenotype samples. An F measure of 1.0 indicates that the classifier
provides perfect precision without sacrificing recall (or vice versa).

As seen in Figure 3, subnetworks identified by Crane significantly outper-
form the subnetworks identified by other algorithms in predicting metastasis
of colorectal cancer. In fact, in both cases, Crane has the potential to deliver
very high accuracy using very few subnetworks (maximum accuracy of 97% and
88% for classification of samples of GSE6988 and GSE3964 respectively). While
we use a simple feature selection method here for purposes of illustration, the
performance of Crane subnetworks are quite consistent, suggesting that these
performance figures can indeed be achieved by developing elegant methods for
selection of subnetwork features. These results are rather impressive, given that
the best performance that can be achived by the greedy additive algorithm is
79% and 81% for the classification of GSE3964 and GSE6988, respectively. On
the other hand, the greedy algorithm for combinatorial coordinate dysregula-
tion outperforms the greedy additive algorithm on the classification of GSE6988

and performs poorly compared to Crane. These results show that, besides the
combinatorial formulation of coordinate dysregulation, the search algorithm im-
plemented by Crane also adds to the power of identified subnetworks in dis-
criminating metastatic and non-metastatic samples.

Effect of parameters. We also investigate the effect of parameters used to
configure Crane on classification performance of identified subnetworks, by fix-
ing all but one of the parameters to the above-mentioned values and varying the
remaining parameter. The results of these experiments are given in detail in the
supplementary document[30].To summarize, we observe that classification per-
formance is quite robust against variation in α ranging from 10% to 50%, while
best performance is observed when α = 25%. As expected, classification per-
formance improves by increasing j∗∗.While increasing d improves performances
as would be expected, this improvement satirizes for d > 3 and performance
declines for larger subnetworks. This observation can be attributed to curse of
dimensionality, since the number of possible values of random variable F grows
exponentially with increasing subnetwork size. Finally, as larger b improves clas-
sification performance in general by increasing the breadth of the search, we
observe no exception to this behavior.

Table 1. Five subnetworks that are associated with the most informative state func-
tions discovered on GSE6988.

Rank
Proteins Comb. Coor. Most Significantly Enrichment

Dysregulation Enriched Process p-value

1 JAK2, STAT5A, IL7R, STAT3, IL2RA 0.80 Lymphocyte Proliferation 1 × 10−9

2 CASP1, LMNA, CTCF, APP, APBA1 0.77 Cell Adhesion 1 × 10−6

3 TRAF1, CFLAR, NFKB1, FBXW11, NFKBIB 0.56 Inflammation 1 × 10−8

4 XRCC5, VAV1, ARGHDIA, RAC2, NOS2A 0.55 Inflammation 1 × 10−4

5 CD9, KIT, BTK, WAS, NCK1 0.48 Cell Adhesion 1 × 10−4



Fig. 4. Hypothesis-driver subnetwork - interaction diagram illustrating key interactions
with gene products from a subnetwork identified by Crane as indicative of CRC metas-
tasis. Shown are the gene products in discovered subnetwork (red circles) and their
direct interactions with other proteins. Green lines represent an activating interaction,
red lines indicate an inhibitory interaction. Arrows indicate direction of interaction.
Inset is the expression pattern of subnetwork proteins at the level of mRNA.

Subnetworks and state functions indicative of metastasis in CRC. Can-
cer metastasis involves the rapid proliferation and invasion of malignant cells
into the bloodstream or lymphatic system. The process is driven, in part, by the
dysregulation of proteins involved in cell adhesion and motility [32], the degra-
dation of the extracellular matrix (ECM) at the invasive front of the primary
tumor [33], and is associated with chronic inflammation [34]. An enrichment
analysis of the top five subnetworks identified on GSE6988 reveals that all of
these subnetworks are highly significant for the network processes underlying
these phenotypes (Table 1).

Further, as CRC metastasis is our classification endpoint, we wanted to eval-
uate our subnetworks in terms of their potential to propose testable hypotheses.
In particular, to highlight the power of our model approach, we choose a subnet-
work for which at least one gene was expressed in the state function indicative of
CRC metastasis. This subnetwork contains TNFSF11, MMP1, BCAN, MMP2,
TBSH1, and SPP1 and the state function LLLLLH (in respective order) indicates
metastatic phenotype with J-value 0.33. The combinatorial dysregulation of this
subnetwork is 0.72, while its additive coordinate dysregulation is 0.37, i.e., this
is a subnetwork which would likely have escaped detection by the greedy method
based on additive dysregulation (this subnetwork is not listed in Table 1 since
it is not among the top five scoring subnetworks). Using the genes in this sub-



network as a seed, we construct a small subnetwork diagram for the purpose
of more closely analyzing the post-translational interactions involving these pro-
teins. This is done using Metacore, a commercial platform that provides curated,
highly reliable interactions. From this subnetwork, we remove all genes indicated
to be not expressed in human colon by the database, and then selectively prune
it in order to clearly focus on a particular set of interactions (Figure 4). It merits
noting that although Brevican (BCAN) is in subnetwork, it is removed for being
non-expressed in the human colon, although evidence from the Gene Expression
Omnibus (see accession GDS2609) casts doubt on this, as does the microarray
we use for scoring (GSE6988).

As seen on the interaction diagram, SPP1 (Osteopontin) and TBSH1 (Throm-
bosponidin 1) interact with a number of the integrin heterodimers to increase
their activity (green line). Integrin heterodimers play a major role in mediating
cell adhesion and cell motility. SPP1, up-regulated in metastasis (see inset in
Figure 4), is a well-studied protein that triggers intracellular signaling cascades
upon binding with various integrin heterodimers, promotes cell migration when
it binds CD44, and when binding the alpha-5/beta-3 dimer in particular, pro-
motes angiogenesis, which is associated with the metastatic phenotype of many
cancers [35]. MMP proteins are involved in the breakdown of ECM, particularly
collagen which is the primary substrate at the invasive edge of colorectal tu-
mors [36]. MMP-1 has an inhibitory effect on Vitronectin (red line), hence the
loss of expression of MMP-1 may “release the brake” on Vitronectin, which in
turn may increase the activity of the alpha-v/beta-5 integrin heterodimer. Like-
wise, MMP-2 shows an inhibitory interaction with the alpha-5/beta-3 dimer,
which may counteract to some extent the activating potential of SPP1, suggest-
ing that a loss of MMP-2 may exacerbate the metastatic phenotype. Taken to-
gether, these interactions suggest a number of perturbation experiments, perhaps
by pharmacological inhibition or siRNA interference of the integrin dimmers or
MMP proteins, to evaluate the role of these interactions, individually or synergis-
tically, in maintaining the metastatic phenotype. Note also that, alpha-v/beta-5
integrin does not exhibit significant differential expression at the mRNA-level,
suggesting that the state function identified by Crane may be a signature of its
post-translational dysregulation in metastatic cells.

4 Conclusion

We present a novel framework for network based analysis of coordinate dysreg-
ulation in complex phenotypes. Experimental results on metastasis of colorectal
cancer show that the proposed framework can achieve almost perfect perfor-
mance when discovered subnetworks are used as features for classification. These
results are highly promising in that the state functions that are found to be infor-
mative of metastasis can also be useful in modeling the mechanisms of metastasis
in cancer. Detailed investigation of the state functions and the interactions be-
tween proteins that together compose state functions might therefore lead to
development of novel hypotheses, which in turn may be useful for development
of theurapetic intervention strategies for late stages of cancer.
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