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Abstract

The problem of constructing bounded-error summaries of
binary attributed data of very high dimensions is an impor-
tant and difficult one. These summaries enable more ex-
pensive analysis techniques to be applied efficiently with
little loss in accuracy. Recent work in this area has re-
sulted in the use of discrete linear algebraic transforms
to construct such summaries efficiently. This paper ad-
dresses the problem of constructing summaries of dis-
tributed datasets. Specifically, the problem can be stated
as follows: given a set of n discrete attributed vectors dis-
tributed across p sites, construct a summary of k << n
vectors such that each of the input vectors is within given
bounded distance from some output vector. In addition
to being algorithmically efficient (i.e., must do no more
work than corresponding serial algorithm), the distributed
formulation must have low parallelization overheads. We
present here, CONQUEST, a tool that achieves excellent
performance and scalability for summarizing distributed
datasets. In contrast to traditional parallel techniques that
distribute the kernel operations, CONQUEST uses a less
aggressive parallel formulation that relies on the princi-
ple of sampling to reduce communication overhead while
maintaining high accuracy. Specifically, each individ-
ual site computes its local patterns independently. Vari-
ous sites cooperate within dynamically orchestrated work-
groups to construct consensus patters from these local pat-
terns. Individual sites then decide to participate in the
consensus or leave the group. Experimental results on
a set of Intel Xeon servers demonstrate that this strat-
egy is capable of excellent performance in terms of com-
pression time, ratio, and accuracy with respect to post-
processing tasks. The communication overhead associ-
ated with CONQUEST is also shown to be minimal, mak-
ing it ideally suited to wide-area deployment.

keywords: distributed data mining, compressing bi-
nary attributed vectors, non-orthogonal matrix decompo-
sitions, correlations in high dimensions.

1 Introduction

The tremendous increase in recent years in organizations’
ability to acquire and store data has resulted in extremely
large, high dimensional datasets. For example, commonly
used Wal-Mart sales data is in the order of terabytes,
with each transaction typically defined over a space of
several thousand dimensions (items). This paper focuses
on efficient distributed techniques for analysis of such
discrete attributed datasets. Analysis of discrete datasets
presents significant challenges since it generally leads
to NP-hard problems. Consequently, algorithms and
heuristics for such problems rely heavily on principles of
sub-sampling and compression for reducing the volume
of data these algorithms must examine.

While serial techniques for sub-sampling and com-
pression have been developed and applied with some suc-
cess [15, 24, 32, 36], a variety of application character-
istics necessitate the development of corresponding dis-
tributed formulations. These include:

• Data volume: Datasets often reside at geographically
distributed locations. Collecting all of the data at
a single location is infeasible because of network
bandwidth and storage requirements.

• Real-time response: Certain applications in data
analysis, such as network intrusion detection, require
real time response from a number of different loca-
tions. Collecting data for analysis and disseminating
results of analysis may be too time consuming for
such applications.

• Privacy considerations: In other applications, pri-
vacy considerations might preclude collecting data
at a single site. Depending on privacy require-
ments, only aggregate patterns may be communi-
cated. CONQUEST allows precisely such privacy
policies.

CONQUEST is based on the serial program PROX-



IMUS1, which uses a variant of Semi-Discrete Matrix
Decomposition (SDD) to efficiently compress binary
datasets in an error bounded fashion. CONQUEST uses
a parallel formulation that relies on the principle of sam-
pling to reduce communication overhead while maintain-
ing high accuracy. Specifically, each individual site com-
putes its local patterns independently. Various sites co-
operate within dynamically orchestrated work-groups to
construct consensus patterns from these local patterns.
Then, individual sites may decide to participate in the con-
sensus or leave the group. We demonstrate that this strat-
egy results in excellent parallel performance.

An important optimization criterion for the serial for-
mulation, PROXIMUS, is the number of patterns extracted
for a given error bound. A smaller number of patterns is
desirable since it corresponds to better compression for
a given distortion bound. Since the serial and parallel
formulations use different algorithms, an important con-
sideration is the effect of our parallelization strategy on
the quality of the output, i.e., the number of patterns ex-
tracted. We show experimentally that in addition to ex-
cellent parallel performance, CONQUEST introduces little
overhead in terms of number of patterns detected.

The rest of the paper is organized as follows: In
Section 2, we discuss previous research related to CON-
QUEST’s serial and parallel formulations. Section 3 intro-
duces PROXIMUS briefly. In Section 4, we discuss the
challenges associated with the parallel formulation and
explain our design decisions. In Section 5, we evaluate
the performance of CONQUEST on a set of 8 Intel Xeon
servers on a range of inputs. We also discuss the appli-
cation of CONQUEST in the context of association rule
mining. Finally, in Section 6, we draw conclusions and
outline avenues for future research.

2 Related Work

In this section, we first explore related work on analyz-
ing binary datasets, followed by parallel formulations of
these methods. Data reduction techniques typically take
the form of probabilistic sub-sampling or data compres-
sion. Techniques based on probabilistic sub-sampling
have been extensively explored [15, 32, 36]. Use of data
compression techniques relies on extracting compact rep-
resentations for data through discovery of dominant pat-
terns. A natural way of compressing data relies on ma-
trix transforms such as truncated Singular Value Decom-
positions (SVD), Semi-Discrete Decomposition (SDD),
and Centroid Decomposition. These methods have been
widely used in information retrieval [4, 9, 22, 23]. SVD

1PROXIMUS is available over the public domain at
http://www.cs.purdue.edu/homes/koyuturk/proximus/

decomposes a matrix into two orthogonal matrices, which
contain the dominant patterns. Each pattern is represented
by a pair of singular vectors and an associated singular
value, which identifies the strength of the corresponding
pattern in the matrix. Computation of a full SVD can be
computationally expensive. SDD provides a convenient,
and often faster approximation to SVD by limiting the en-
tries of the singular vectors to the set {-1,0,1}. Centroid
Decomposition represents the underlying matrix in terms
of centroid factors that can be computed without knowl-
edge of the entire matrix with the help of a fast heuristic
named Centroid Method. The computation of a centroid
decomposition only depends on the correlations between
the rows of the matrix. The main difference between SVD
and the centroid method is that centroid method tends to
discover a single dominant pattern while the SVD tends to
discover the overall trend of the data. This may be a col-
lection of several independent patterns. Orthogonal ma-
trix decompositions have been exploited by several dis-
tributed data mining algorithms as well [18, 30].

A major problem associated with orthogonal decom-
positions for large scale binary data analysis is that the
forced orthogonality of discovered patterns degrades the
interpretability of the analysis (e.g., what is the physi-
cal interpretation of a negative number in binary data?
). A variant of these methods, Principal Direction Divi-
sive Partitioning (PDDP) [5], addresses this problem by
recursively finding rank-one approximations of the input
matrix and partitioning this matrix based on the approxi-
mation. All of these methods target the analysis of high-
dimensional data of continuous nature. PROXIMUS adapts
the idea of recursive matrix decomposition to the analysis
of large-scale binary-valued datasets.

Prior work on parallel data mining algorithms has fo-
cused on tasks such as clustering, classification, and asso-
ciation rule mining. Several projects have addressed the
parallelization of existing clustering algorithms [10, 12,
17, 29]. Among these, CLARA[20] attempts to create
multiple samples and applies the serial algorithm PMD
on each sample to achieve efficiency of analysis on rela-
tively large datasets. However, this efficiency is achieved
at the expense of a possibility (probabilistically small)
of missing clusters in the data not sampled. Several re-
searchers have developed parallel association rule min-
ing algorithms for various platforms [2, 8, 14, 27, 30,
31, 34, 37, 38]. Most of these approaches are based on
the a-priori algorithm [3] and its variants. One class of
algorithms is based on aggressive parallel formulations
that focus on partitioning the data elements (e.g., candi-
date itemsets) so that each site performs an independent
part of the task, which is well suited to massively paral-
lel platforms. Another class is based on computing fre-



quent itemsets at each site individually and then working
in parallel to join individual patterns into global associa-
tion rules. This provides a more suitable framework for
distributed systems. Work on parallel classification has
resulted in systems such as SPRINT [33], ScalParC [16],
and others [35]. These systems typically use decision tree
based classification.

In comparison to the parallel techniques mentioned
above, CONQUEST is based on a fundamentally different
serial algorithm, PROXIMUS, which provides a more flex-
ible formulation for discrete data analysis based on the
principle of data reduction. Instead of analyzing a large
dataset, PROXIMUS attempts to reduce the volume of data
that any subsequent analysis task would have to deal with.
Possible subsequent analyses include classification, clus-
tering, pattern discovery and association rule mining. As
the solution of such problems in distributed platforms on
large scale data tends to be hard and expensive, it is possi-
ble to exploit the flexibility of PROXIMUS to simplify the
problem for the underlying application. Based on this ob-
servation, CONQUEST adopts a parallel formulation that
draws upon principles of sub-sampling to yield excellent
parallel performance, while preserving the quality of the
output.

3 PROXIMUS: An Algebraic Framework for Error
Bounded Compression of Binary Datasets

PROXIMUS [24, 25] is a collection of novel algo-
rithms and data structures that rely on modified SDD to
find error-bounded approximations to binary attributed
datasets. While relying on the idea of non-orthogonal ma-
trix transforms, PROXIMUS provides a framework for cap-
turing the properties of binary datasets more accurately
while taking advantage of their binary nature to improve
both the quality and efficiency of analysis. PROXIMUS is
based on recursively computing discrete rank-one approx-
imations of a 0-1 matrix to extract dominant patterns hi-
erarchically.

A rank-one approximation to a binary matrix A with
m rows and n columns is an outer product of two binary
vectors x (presence vector) and y (pattern vector) that is at
minimum Hamming distance from A. Here x and y are of
dimensions m and n, respectively. The problem of finding
a rank-one approximation, i.e. finding binary vectors x
and y that minimize ||A−xyT ||2F = |{aij ∈ (A−xyT ) :
|aij | = 1}| is NP-hard. PROXIMUS adapts the alternating
iterative heuristic of SDD to the binary domain as a fast
and effective technique that is ideally suited to the discrete
nature of the data.

For decomposing continuous valued matrices, it was
shown in [28] that the objective function of rank-one

approximation is equivalent to one of maximizing:

(3.1) Cc(x, y) =
(xT Ay)2

||x||22||y||
2
2

.

PROXIMUS approximates the objective function of dis-
crete rank-one approximation with this function and ap-
plies an alternating iterative heuristic based on this func-
tion2. Fixing y and letting s = Ay/||y||22, the objective

becomes one of maximizing (xT s)2

||x||2
2

. This can be done
in linear time by sorting elements of s via counting sort
and visiting elements of x in the resulting order until no
improvement in the objective function is possible. The
same algorithm can be used to solve for y for a fixed x.
Thus, we can iteratively apply this strategy by choosing
an initial y, solving for x, fixing x, solving for y, and
so on, until no improvement is possible. This heuristic
finds a locally optimal solution to the rank-one approxi-
mation problem in time linear in the number of non-zeros
in the matrix. This is because the fundamental operations
performed in the algorithm are sparse matrix-vector mul-
tiplications and counting sorts. Note that the number of
iterations is bounded by number of columns (rows) and
generally a few iterations are sufficient for convergence in
practice [26].

PROXIMUS uses the rank-one approximation of the
given matrix to partition the rows into two sub-matrices
A1 and A0 containing rows that correspond to the ones
and zeros of the presence vector x, respectively. There-
fore, the rows in A1 have a greater degree of similarity
with respect to their non-zero structure among themselves
(characterized by the pattern vector y) compared to the
rest of the matrix. Since the rank-one approximation of
A yields no information about A0, we further compute a
rank-one approximation for A0 and partition this matrix
recursively. On the other hand, we use the representa-
tion of the rows in A1 given by the pattern vector y to
determine whether this representation is adequate as de-
termined by some stopping criterion. If so, we decide that
matrix A1 is adequately represented by matrix xyT and
stop; else, we recursively apply the procedure for A1 as
for A0.

The partitioning-and-approximation process contin-
ues until the matrix cannot be further partitioned or the

2Minimizing the error is equivalent to maximizing the (discrete)
function Cd(x, y) = 2xT Ay−||x||2

2
||y||2

2
, which also allows a linear-

time alternating iterative heuristic. The algorithm that is based on this
discrete objective function is implemented in PROXIMUS as well. We
base our discussion on the continuous approximation throughout this
paper as the parallel implementation is based on this approximation,
but the discussion on algorithms and possible parallelization schemes
also applies to the discrete function. The differences between the two
objective functions are discussed in [26].
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Figure 1: Recursive structure of PROXIMUS. Leaves of
the recursion tree correspond to final decomposition.

resulting approximation adequately represents the entire
matrix. PROXIMUS uses a metric called normalized Ham-
ming radius to measure the adequacy of the representa-
tion, which is defined as the maximum normalized Ham-
ming distance of all rows of the matrix that are present in
the approximation to the pattern vector. The normalized
Hamming distance between two binary vectors is the ratio
of Hamming distance to the size of the vectors. Note that
this metric only takes values in the range [0, 1].

The recursive algorithm does not partition sub-matrix
Ai further if both of the following conditions hold for the
rank-one approximation Ai ≈ xiy

T
i .

• r̂(Ai1, yi) < ε, where ε is the prescribed bound
on the normalized Hamming radius of identified
clusters.

• xi(j) = 1 ∀j, i.e., all the rows of Ai are present in
Ai1.

If both of the above conditions hold, the pattern vector
yi is identified as a dominant pattern in matrix A. The
resulting approximation for A is represented as Ã =
XY T where X and Y are m × k and n × k matrices
containing the presence and pattern vectors in their rows
respectively and k is the number of identified patterns.

Figure 1 illustrates the recursive structure of PROX-
IMUS. Starting with matrix A, a rank-one approximation
to A is computed. The matrix A is then partitioned into
A1 and A0 based on the presence vector x1. The rank-
one approximation to A1 returns a presence vector of all
1’s and the approximation is adequate so the recursion

1. Loop until no improvement on Cc(x, y) is possible
2. s← Ay/||y||22
3. Solve for x to maximize (xT s)2

||x||2
2

4. s← AT x/||x||22
5. Solve for y to maximize (yT s)2

||y||2
2

6. End loop

Figure 2: Outline of the alternating iterative heuristic for
rank-one approximation.

stops at that node and y2 is recorded as a dominant pat-
tern. On the other hand, matrix A0 is further partitioned
as the approximation A0 ≈ x3y

T
3 does not cover all rows

of A0. The overall decomposition is A ≈ XY T where
X = [x2, x4, x5] and Y = [y2, y4, y5].

4 CONQUEST: A Tool for Constructing Summaries
of Distributed Binary Datasets

We first identify the kernel operations in the serial algo-
rithm, PROXIMUS, and explore various parallel formula-
tions.

4.1 Kernel Operations in PROXIMUS. At the core of
PROXIMUS is the matrix decomposition that recursively
partitions the original matrix into a series of matrix pairs
A1 and A0. If we view the recursive process as a tree, the
main task at each node of the recursion tree is an alternat-
ing iterative process that maximizes the objective func-

tion, Cc(x, y) = (xT Ay)2

||x||2
2
||y||2

2

. The steps involved in this
process are shown in Figure 2. The operations on lines 2
and 4 are dominated by two sparse-matrix vector multipli-
cations, Ay and AT x. Parallel sparse-matrix vector prod-
ucts have been the subject of extensive research for many
years. The challenge in optimizing this operation is to find
a load balanced partitioning of the sparse matrix that min-
imizes the amount of communication among processors.
Existing methods [7, 13, 19, 21] view the sparse matrix as
a graph and reduce the load balancing problem to a prob-
lem of partitioning the graph into p roughly equal parts,
where p is the number of processors. However, graph par-
titioning based load balancing techniques are unlikely to
succeed in our context for the following reasons:

1. The datasets of interest often contain a few dominant
patterns along with a number of weak patterns. As
a result, the matrices that appear in intermediate
steps often differ significantly in size. This situation
is illustrated in Figure 4. The matrix is initially
distributed evenly among the two processors. If



1. sort s = [sj1 , sj2 , . . . , sjm
] in descending order

2. xi ← 0 for 1 ≤ i ≤ m
3. Cc(x, y)← 0 , sum← 0
4. for i← 1 to m do
5. sum← sum + sji

6. if sum2/(||x||22 + 1) ≥ Cc(x, y)
7. then xji

← 1
8. Cc(x, y)← sum2/||x||22
9. else break
10. end if
11. end for

Figure 3: Algorithm for computing the presence vector
for a fixed pattern vector.

we simply assign the task of decomposing a child
matrix to one particular processor, we could have
unbalanced distribution of tasks among processors
as seen at the second level and the third level of the
recursion tree. In order to maintain consistent load
balance among processors, the balancing heuristic
must be applied at every level of the recursion tree
and large amount of data must be transferred as a
result. The communication cost incurred in load
balancing is likely to dominate the overall cost of
the computation and therefore significantly reduce
scalability.

2. Computing good partitions implies finding good
clusters within the dataset. While this works for
more expensive post-processing on the graph (such
as repeated mat-vecs for solving linear systems),
they are not suitable for inexpensive operations such
as those involved in CONQUEST (no FLOPS at all!).
The use of existing heuristics will overwhelm the
cost of executing CONQUEST without any optimiza-
tion.

The process of solving for the presence vector x (and
similarly pattern vector y) can be implemented in the steps
shown in Figure 3. These steps can be implemented in
parallel by sorting entries of s followed by a prefix sum
operation. As the entries of s are bounded, they can be
sorted via counting sort in linear time, serially. For its par-
allel implementation, sample sort is the method of choice
for this problem. The challenge here is the distribution
of s-vector among processors once it is sorted. If the ele-
ments of s are distributed in blocks, i.e., the first processor
has the maximum n/p elements and so on, then the pro-
cessors that have smaller entries of s might have no work,
since the loop breaks as soon as no improvement on the

P1

P2

P1
P2

Pattern 1

Pattern 3
Pattern 2

Figure 4: A parallel recursion tree that results from
straightforward assignment of tasks to processors.

Legend Rank−one approximation

P1 P2 P3 P4

Work Group

Figure 5: CONQUEST Parallel Communication Model.

objective function is possible, as seen in line 9 of the al-
gorithm. Thus, cyclic distribution of the entries of the
sorted s vector is necessary. However, in this case the vec-
tor must be redistributed after the computation of prefix
sums. This necessitates an all-to-all personalized commu-
nication with message size n/p2, which can be performed
in O(n/p) time on a network with bisection bandwidth
Θ(p) [13]. This bandwidth requirement does not scale to
large configurations. Furthermore, performing this step of
computation at all iterations of rank-one approximation in
parallel imposes considerable load on the network in ad-
dition to the overhead introduced by the parallelization of
the sorting algorithm. For these reasons, we adopt an al-
ternate parallelization strategy for CONQUEST.

4.2 CONQUEST Parallel Formulation. CON-
QUEST addresses performance bottlenecks of con-
ventional parallelization techniques by relying on the
principle of sub-sampling with limited communication to
maintain accuracy. CONQUEST uses the concept of work
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groups to aggregate processors working on data with
similar patterns. Initially all processors are associated
with a single work group. Each processor proceeds
to compute the rank-one approximation using its local
data independent of others. Processors then go through
a consolidation process, (described in detail in 4.2.1),
to refine work groups to include only those processors
that find similar patterns at the most recent step. After
regrouping, processors repeat the same steps within their
own work groups until the stopping criterion is satisfied.

This process is illustrated in Figure 5. In this exam-
ple, there are four processors, each initially assigned to a
global work group. After the first round of computation,
the first three processors decide the patterns they found
are similar and form a new work group. They repeat the
same process within the new group. Processor P4 discov-
ers a pattern that is sufficiently supported only by its own
data (but is different from other processors’ patterns) and
thereafter continues on its own. After consolidation, the
recursive procedure continues and processors consolidate
within their work group after each step of computation in
the recursion tree until each of their stopping criteria is
satisfied. At this point, processors that terminate notify
the remaining members of the work group of their depar-
ture. When all processors terminate, they exchange their
patterns and each processor keeps a copy of all unique
patterns.

The idea of constructing local work groups among
processors is motivated by the observation that geograph-
ically distributed datasets often exhibit patterns that are
somewhat unique in relation to their locations. For ex-
ample, a Gap store in Minnesota in the winter is likely
to have sales patterns very different from those observed
at a store in California. This implies that the global data
exchange in conventional parallelization schemes is un-
necessary and the additional gains in terms of accuracy of
patterns discovered from conventional strategies are likely
to be limited.

4.2.1 Pattern Consolidation. After each rank-one ap-
proximation, processors in the same work group exchange
most recently discovered pattern vectors. Each processor
stores all the pattern vectors as a matrix and executes a
serial version of PROXIMUS to discover patterns within
this matrix. Processor then replace their original patterns
with a consolidated pattern that is closest to the original,
and use the new pattern for continuing the process. By
doing so, processors learn from each other by exchang-
ing the summary of the data in their local partitions and
discovering the global trend in patterns. It is noteworthy
that communication happens only among processors that
are in the same work group. Communication across work

1. P ← all-to-all broadcast y within current work group
2. run serial algorithm on P to find dominant patterns and

store them as set D = {d1, . . . , dk}.
3. if |D| = 1 then
4. continue
5. else
6. for i← 0 to |D| do
7. if y is similar to di

8. y ← di

9. create and join communication group i
10. end if
11. end for
12. end if

Figure 6: Sketch of the parallel algorithm for pattern
consolidation.

groups is not necessary since processors in different work
groups are, by definition, working on datasets that have
different underlying patterns. Additional communication
would have very little effect in terms of improving the so-
lution. Once new patterns are computed, processors form
new work groups with others sharing the same pattern and
continue computation in the same manner. This consoli-
dation process is implemented as shown in Figure 6.

We illustrate this process with a simple example that
has four processors in a work group. After the broadcast,
each processor has a pattern matrix that looks as follows:









P1 1 1 1 0 1 1 1 0
P2 1 1 1 0 1 1 1 0
P3 1 1 1 0 0 1 1 0
P4 0 0 0 1 1 1 0 1









Each row in the above pattern matrix is a pattern
vector discovered by a processor in the same work group,
and it is tagged with the corresponding processor id. After
obtaining the pattern matrix, each of the four processors
tries to find patterns in this matrix using the serial version
of the algorithm. This procedure results in the following
patterns:

[

1 1 1 0 1 1 1 0
0 0 0 1 1 1 0 1

]

The two vectors found in local analysis can be
thought of as the representatives of all the patterns in the
pattern matrix. These representative patterns provide the
basis for regrouping the processors. Processors 1, 2, and 3
have pattern vectors similar to the first representative pat-
tern, and form a new work group. They use the first rep-



resentative pattern to partition their local matrices. Pro-
cessor 4 is in a group of its own and uses the second rep-
resentative pattern, which in this case, is the same as its
original pattern, to partition its local matrix.

4.2.2 Performance Aspects of CONQUEST. In
essence, the CONQUEST parallel formulation replaces
the global rank-one approximation in the serial algorithm
with local approximation operations at each individual
processor. There are two major advantages of this
formulation:

1. Load balancing is no longer a major issue. The only
effort required is to initially balance the load among
processors. We no longer need to be concerned with
the communication patterns among the partitions of
the matrix at different processors. This is because
kernel operations of matrix-vector multiplications
and sorting operations are performed independently
at each processor.

2. Communication overhead of the scheme is minimal.
For each processor, there is at-most one all-to-all
broadcast of its pattern vector required at each recur-
sion step. The size of the data being exchanged is the
number of non-zeros in the pattern vector, which is
of the same dimension as the data matrix. For sparse
data, the size of the pattern vector tends to be very
small.

One potential drawback of this approach is that the
processors may work on local partitions of the data most
of the time. The computation of the patterns is carried
out by processors largely independently of each other and
therefore is at the risk of converging to undesirable local
optima. The problem in this case is similar to that faced
in sub-sampling.

To understand the likelihood of this event, consider
the classical sub-sampling problem. Using Chernoff
bounds, Toivonen [36] shows that the probability δ of er-
ror ε in frequency of a subset in the original dataset and
the sample is bounded by a function of the sample size,
|s|, and the error bound ε.

THEOREM 4.1. Let T be a set of transactions on set S of
items. If t ⊂ T is a sample of size

|t| ≥
1

2ε2
ln

2

δ
,

then, for any subset s ⊂ S of items, the probability that
e(s, t) > ε is at most δ, where e(s, t) = |fr(s, T ) −
fr(s, t)| is the difference between the frequencies of s in
T and t, respectively.

# # #
Data transactions. items patterns

(approximately)
M10K 7513 472 100
M31K 23228 714 100
L100K 76025 178 20
LM100K 76326 452 50
M100K 75070 852 100
HM100K 74696 3185 500
H100K 74733 7005 2500
M316K 237243 905 100
M1M 751357 922 100

Table 1: Description of datasets used in experiments.

Note that in the context of our problem, T is the
matrix of interest and the items in S are the columns
of T . In this respect, the part of the matrix at each
processor can be considered as a subsample t of the
original matrix. Thus, the theorem applies directly with
frequency of item sets in the theorem being viewed as
the frequency of patterns in CONQUEST. Since datasets
in practical applications are likely to be large, the error
bound and the probability of error are both quite small.
In addition, we are able to further alleviate this problem
to a satisfactory degree by periodic reconciliation among
processors to improve the accuracy of patterns that they
converge to.

5 Experimental Results

In this section, we first evaluate the parallel performance
of CONQUEST by examining its run time properties and
its accuracy in terms of discovered patterns with respect
to the serial algorithm. We then show CONQUEST’s ap-
plication as a preprocessor in association rule mining and
compare the results with those of the a-priori algorithm
applied on raw data. We examine the results in terms of
precision and recall of discovered rules.

5.1 Execution Environment. CONQUEST is imple-
mented for message-passing platforms using MPI [11].
The measurements presented here are taken on a set of
eight Intel Xeon servers.

The data matrices used in the experiments are gen-
erated using the synthetic data generator made available
by the IBM Quest Research Group [1]. We generate two
sets of data, one with varying number of transactions and
the other with varying number of patterns. In the first set,
the number of patterns is fixed to 100 (medium) and five
instances, named M10K, M31K, M100K, M316K and
M1M, containing ≈ 10K , ≈ 31K, ≈ 100K , ≈ 316K
and≈ 1M transactions are generated, respectively. In the
second set, the number of transactions is fixed to≈ 100K
(medium) and five instances, named L100K, LM100K,
M100K, HM100K and H100K, that contain 20 , 50, 100
, 500, and 2500 patterns are generated, respectively. We
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Run Time # patterns Average
# of trans. serial parallel serial parallel ham. dist.
10K 0.40 0.07 303 409 4.85
31K 0.96 0.16 275 501 4.8
100K 7.90 0.99 246 544 4.51
316K 27.62 2.35 207 463 2.59
1M 76.78 7.25 180 443 2.52

Table 2: Comparison of patterns discovered by parallel
and serial formulations for varying number of transac-
tions.

Run Time # patterns Average
# of pat. serial parallel serial parallel ham. dist.
20 5.66 0.49 192 228 1.82
50 7.05 0.64 224 395 2.41
100 7.90 0.99 246 544 4.51
500 10.6 1.40 950 2407 4.68
2500 18.13 4.94 5370 12650 6.13

Table 3: Comparison of patterns discovered by parallel
and serial formulations for varying number of underlying
patterns.

set the average number of items per transaction and the
average number of items per pattern both to 10. We also
set the average correlation between every pair of pattern
to 0.1 and the average confidence of a rule to 90%. Note
that although other choices of these parameters are ex-
plored, we are restricting our discussion to a single set-
ting for simplicity, which is chosen to be reasonable and
observed to be representative for general performance re-
sults. As might be guessed intuitionally, the number of
discovered patterns grows by increasing between-pattern
correlation, for both serial and parallel algorithms. Ta-
ble 1 shows the exact number of transactions, number of
items, and number of patterns in all datasets.

For all experiments reported in this section, we set the
bound on the normalized Hamming radius of identified
clusters to 0.01 and use the Partition initialization scheme.
For details on these parameters, please see [24].

5.2 Parallel Performance. We demonstrate that CON-
QUEST is capable of excellent speedup, while maintaining
accuracy of the patterns found by comparing the runtimes
of CONQUEST on eight machines and the serial algorithm
on an identical machine with the same parameters. Tables
2 and 3 summarize the parallel performance for varying
number of rows and number of patterns, respectively.

The average Hamming distance between the patterns
discovered by CONQUEST and the serial program is cal-
culated as follows:

H̄(Y, Y ′) =

k
P

i=1

H(yi, Y
′)

k
where H(yi, Y

′) = min
0≤j<k′

||yi XOR y′
j ||, yi ∈ Y are

the patterns discovered by CONQUEST, y′
j ∈ Y ′ are

the patterns discovered by PROXIMUS, k and k′ are the
number of rows (patterns) in Y and Y ′, respectively.
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Figure 7: Speedup of parallel formulation on eight ma-
chines over serial program with (a) increasing number of
transactions (b) increasing number of underlying patterns.

Here, H(yi, Y
′) measures the difference between pattern

y and the pattern in Y ′ that represents y best. Thus,
H̄(Y, Y ′) provides an average measurement on how well
serial patterns are represented by parallel patterns.

As the number of rows in the dataset grows from 10K
to 1M, CONQUEST consistently demonstrates speedups
ranging from 6 to 12 (Figure 7). A similar behavior is
observed with respect to increasing number of patterns.
The super-linear speed-up, observed in some cases, is
attributed to the effect of sub-sampling. CONQUEST and
PROXIMUS perform different amounts of computation –
and due to sub-sampling, CONQUEST often performs less
computation than its serial counterpart. The tradeoff for
this lower computational cost is that CONQUEST returns a
larger number of pattern vectors.

Table 4 shows the parallel performance on dataset
of 1M rows and 100 patterns with increasing number of
processors. Figure 8 shows that CONQUEST discovers as
many as 1.2 to 2.5 times the number of patterns discovered
by the serial program. While this is an undesirable con-
sequence resulting from the choice made in the design of
the parallel formulation in order to avoid large communi-
cation overhead, Figure 9 shows that the average number
of bit differences (Hamming distance) between the paral-
lel patterns and the serial patterns is in fact quite small.
This indicates that while there are more patterns found,
most of these “new” patterns are quite similar to those
patterns identified by the serial algorithm. This means
that some patterns discovered by the parallel algorithm
are redundant, which is natural and would be expected in
a real-life setting as there might be similar patterns in dif-
ferent sites which are partially different. Thus, significant
intersection may not mean redundancy in some contexts.
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Figure 8: Increase in number of discovered patterns
with (a) increasing number of transactions (b) increasing
number of underlying patterns.

# proc. Runtime # patterns Avg. ham. dist.
1 76.78 180 0
2 32.55 194 0.15
4 14.46 248 0.48
6 8.68 288 0.73
8 7.25 443 2.52
10 4.80 361 1.97
12 3.90 390 2.43

Table 4: Performance of CONQUEST on M1M data with
increasing number of processors.

Although CONQUEST addresses redundancy to a certain
extent taking advantage of the formulation of the prob-
lem, i.e., each transaction is represented by exactly one
pattern and the distance between a transaction and its rep-
resentative pattern is bounded, it is necessary to provide
a quantitative definition of redundancy in order to explore
the opportunities to further reduce this overhead.

We now examine the bandwidth requirement of CON-
QUEST. As indicated in section 4.2.2 each processor is
required to perform at-most one all-to-all broadcast of its
pattern vector within its own work group at each recur-
sion step. We can measure the bandwidth required in this
process by recording the number of bytes each processor
sends and receives during the all-to-all communication.
Since processors may join different work groups, and thus
generate different amount of network traffic, we choose
the processor that generates the most traffic as a mean-
ingful measure of the bandwidth required by CONQUEST.
Figures 10 and 11 show the maximum network traffic
generated during the execution of CONQUEST on various
datasets. These results show that the heaviest traffic, gen-
erated during the execution on a dataset of 100K trans-
actions with 2500 patterns, is about 80K bytes, which is
well within the capability of typical wide area networks (it
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Figure 9: Average Hamming distance between patterns
discovered by parallel formulation on eight machines and
serial program with (a) increasing number of transactions
(b) increasing number of underlying patterns.

takes milliseconds to transfer 80KB of data over a 1Mbps
network link). Furthermore, comparing this communica-
tion time to the total parallel run time, we can safely con-
clude that the time it takes to transfer the small amount
of data generated by CONQUEST is indeed a very small
fraction of the overall run time.

5.3 Application to Association Rule Mining. In this
section, we illustrate an application of CONQUEST as
a tool for gathering large amounts of data that are dis-
tributed among various sites for applying expensive data
mining algorithms on the collection. The idea is to con-
struct a summary of distributed data and mining this sum-
mary for association rules using a conventional algorithm
sequentially. This is generally more efficient than collect-
ing all of the data at one site or running parallelized ver-
sion of the conventional algorithm since the underlying
algorithm has considerable parallelization overhead, es-
pecially for geographically distributed platforms.

Association rule mining is a well-known and exten-
sively studied problem in data mining[3]. Given a set of
transactions over a set of items, association rule mining
aims to discover rules between itemsets that satisfy the
minimum support and confidence constraints prescribed
by the user. An association rule is an assertion of the kind
“{bread, milk}⇒ {butter}”, meaning that if a transaction
contains bread and milk, it is also likely to contain butter.
The support of a rule in a set of transactions is defined as
the percentage of transactions that contain all items of the
rule over all transactions in the set. The confidence of a
rule is the conditional probability of observing the right

9
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Figure 10: The maximum network traffic generated
by CONQUEST on datasets with different number of trans-
actions, ranging from 10K to 1M.

hand side, given the left hand side.
We illustrate the use of CONQUEST for the purpose

of association rule mining with an example. Given a sam-
ple set of 6 transactions as shown in Figure 12(a), we can
construct a binary transaction matrix by mapping transac-
tions to rows and items to columns and setting entry tij of
the transaction matrix T to 1 if item j is in transaction Ti.
The resulting matrix is shown in Figure 12(b). As shown
in Figure 13(a) two rank-one approximations decompose
T into a set of orthogonal presence vectors(xi) and a set
of pattern vectors(yi), with x1 = [0 0 1 1 1 1]T and
y1 = [0 0 1 1 1] in one pair and x2 = [1 1 0 0 0 0]T and
y2 = [1 1 1 0 0] in another. We can construct a set of vir-
tual transactions, using the pattern vectors as transactions
and the number of non-zeros in presence vectors as their
weights (Figure 13(b)). We can now analyze this smaller
approximate transaction set using any existing association
rule mining technique. Note that this summary can be ob-
tained using CONQUEST if the transactions are distributed
among various sites.

We show the validity of this technique by using
existing association rule mining software to mine the
original dataset M1M (above) and the approximate set
generated by CONQUEST. The software we use is an open
source implementation [6] of the well-known a-priori
algorithm. We also create a slightly modified version
of this software which is capable of mining weighted
approximate transaction sets.

Table 5 shows the comparison of results obtained by
running the a-priori software on the original 1M trans-
action matrix and on the approximate transaction matrix
generated by running CONQUEST using 8 processors. The
a-priori software was run with 90% confidence in all in-
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Figure 11: The maximum network traffic generated
by CONQUEST on datasets with different number of pat-
terns, ranging from 20 to 2500.

min. time time rules rules rules
sup. orig. apprx. orig. apprx. match prec. recall
% sec. sec. # # # % %
2.0 28.45 0.38 63503 53280 53280 100.0 91.0
2.5 12.69 0.14 27090 20299 20299 100.0 75.0
3.0 10.99 0.14 20353 19527 19527 100.0 98.1
3.5 10.56 0.13 19617 19527 19527 100.0 99.5
4.0 9.23 0.08 12793 12793 12793 100.0 100.0
4.5 9.27 0.08 12787 12789 12787 100.0 99.98
5.0 8.98 0.06 12398 10955 10955 100.0 90.9
5.5 7.20 0.05 6740 6732 6732 100.0 99.88
6.0 7.12 0.05 6732 6732 6732 100.0 100.0

Table 5: Association rule mining performance of CON-
QUEST on M1M dataset.

stances. The figures in the table include minimum support
for the rules, total time spent mining the original matrix,
total time spent mining approximate matrix, rules discov-
ered from the original matrix, rules discovered from the
approximation matrix, rules matched in the two cases,
precision and recall. Precision is defined as the number
of matching rules over all rules that are discovered on the
approximate transaction set, measuring how precise the
results obtained on the approximate set are. Recall is de-
fined as the fraction of the rules discovered in the original
transaction set that are also discovered in the approximate
set, measuring how successful the compression is on re-
calling the rules that are present in the original data.

As we observe from our results, CONQUEST demon-
strates excellent overall accuracy. Precision values in all
cases are 100%. Recall values are almost all close to
100%; dropping below 90% in one case (75%)(Figure 14),
and immediately rising up to 98%. This phenomenon is
sometimes observed and is due to the sudden change in
the support value of a large group of data (an artifact of



T1 : {beer, snacks}
T2 : {beer, snacks, bread}
T3 : {milk, bread}
T4 : {milk, bread, butter}
T5 : {milk, butter}
T6 : {bread, butter}

(a)

beer snacks bread milk butter
T1 1 1 0 0 0
T2 1 1 1 0 0

T= T3 0 0 1 1 0
T4 0 0 1 1 1
T5 0 0 0 1 1
T6 0 0 1 0 1

(b)

Figure 12: (a) A sample transaction set of 6 transactions
on 5 items and (b) its corresponding transaction matrix.

the Quest data generator). While maintaining high accu-
racy, CONQUEST provides a speed-up of several orders
of magnitude over a-priori operating on un-preprocessed
data. Note that the time for constructing the summary for
M1M dataset is 7.25 seconds, which is well below the
time spent on mining the original transaction set for al-
most all meaningful support values.

This demonstrates that, in addition to being a useful
tool for the purpose of correlating large high-dimensioned
datasets, CONQUEST can be used as a powerful preproces-
sor for creating summaries of distributed data for conven-
tional data mining techniques without incurring the ex-
pensive overhead of transferring and centrally storing all
of the original datasets.

6 Conclusions

In this paper, we have presented CONQUEST, a novel
parallel formulation of a powerful new technique for
analysis of large high-dimensional binary attributed sets.
This parallel formulation is designed to conserve net-
work bandwidth and alleviate the problem of load balanc-
ing faced in other conventional parallelization techniques.
These properties make it ideal for mining extremely large
datasets over geographically distributed locations. We
also show that CONQUEST successfully relies on the prin-
ciple of sub-sampling and periodic consolidation among
processors to achieve excellent speed-ups while maintain-
ing high accuracy. Finally, we demonstrate the applica-
tion of CONQUEST in association rule mining as a power-
ful pre-processing tool to significantly accelerate existing
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Figure 13: (a) Decomposition of transaction matrix of
the transaction set of Figure 12 and (b) the corresponding
approximate transaction set.
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data mining software.
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