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Abstract 

Copy number variants (CNVs) have roles in human disease, and DNA microarrays are 

important tools for identifying them. In this paper, we frame CNV identification as an 

objective function optimization problem. We apply our method to data from hundreds of 

samples, and demonstrate its ability to detect CNVs at a high level of sensitivity without 

sacrificing specificity. Its performance compares favorably with currently available 

methods and it reveals previously unreported gains and losses. 

 

 

Background 

Identifying DNA variants that contribute to disease is a central aim in human genetics 

research. Pinpointing these causal loci requires the ability to accurately assess DNA 

sequence variation, on a genome-wide scale. In recent years, considerable progress has 

been made in identifying and cataloging single-nucleotide polymorphisms (SNPs) in 

many populations [1]. Commercial SNP microarray platforms can now genotype, with 

>99% accuracy, over one million SNPs in an individual in one assay [2, 3].  

 

The discovery of copy number variants (CNVs) as a significant source of variation has 

complicated the identification of genetic differences among humans. CNVs are defined as 

chromosomal segments, at least 1000 bases (1 kb) in length that vary in number of copies 

from human to human [4]. Since their discovery, several high-profile studies have been 

published associating copy number variation in the genome with a variety of common 
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diseases. Recent examples include Alzheimer disease [5], Crohn’s disease [6], autism [7], 

and schizophrenia [8]. The significance of the gains (copy number greater than two) and 

losses (copy number less than two) that comprise these variants is increasingly evident, 

and cataloging them and assessing their frequencies has become an important goal.  

 

SNP arrays contain hundreds of thousands of unique nucleotide probe sequences, each 

designed to hybridize to a target DNA sequence. When a DNA sample is properly 

prepared and applied to the array, specialized equipment can produce a measure of the 

intensity of hybridization between each probe and its target in the sample. The underlying 

principle is that the hybridization intensity depends upon the amount of target DNA in the 

sample, as well as the affinity between target and probe. Extensive processing and 

analysis of these raw intensity measures yield estimates of some characteristic of the 

target sequences in the sample - either target quantity [9, 10], base composition [11, 12], 

or both. In copy number inference, the objective is to identify chromosomal regions at 

which the number of copies per cell deviates from two. These include gains and losses.  

 

There is now a large body of literature describing algorithms to infer copy number from 

SNP array data. All such algorithms address one or more of the three general steps: 

normalization, raw copy extraction, and CNV calling. Normalization is performed on the 

raw array intensity data in order to be able to compare these values fairly, thereby taking 

into account differences in overall array brightness and additional sources of nuisance 

variation. Raw copy number extraction entails converting the multiple measurements for 

each genomic site into a single raw measure of copy number. The word “raw” here 
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indicates that measurements from surrounding loci are not yet taken into account, and the 

measure is permitted to be non-integer. Since gains and losses occur in discrete segments 

often encompassing several such loci, true copy number is locally constant. 

Consequently, the final CNV calling step takes advantage of this fact, smoothing or 

segmenting the raw copy numbers into discrete segments of consistent copy number.  

 

The Affymetrix SNP array was originally designed so that each SNP is interrogated by 

24-40 unique probes. Of these, half are perfectly complementary to the sequence 

harboring the SNP site (perfect match probes), while half mismatch the sequence at the 

probe’s middle nucleotide (mismatch probes). The mismatch probes were intended to 

capture background effects such as cross-hybridization. The perfect match/mismatch 

design was used for the 10,000, 100,000, and 500,000-SNP versions of the array. Most 

recently Affymetrix has introduced the SNP Array 6.0, which interrogates nearly one 

million SNPs and differs fundamentally from previous versions. First, each SNP on the 

6.0 array is interrogated only by six or eight perfect match probes – three or four 

replicates of the same probe sequence for each of the two alleles. Therefore, intensity 

data for each SNP consist of three or four repeated pairs of measurements. Second, the 

SNP probe sets are augmented with nearly one million CNV probes, which are meant to 

interrogate regions of the genome that do not harbor SNPs, but which may be 

polymorphic with regard to copy number. Each such CNV site is interrogated by only 

one probe.  
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For the Affymetrix platform, the community has largely settled upon quantile 

normalization [13] as a simple, yet effective, normalization method. The next step, raw 

copy number extraction, typically entails fitting some model to raw probe intensity data 

[14-17]. Methods devoted to the final step – making CNV calls from raw copy number 

data – are numerous, and employ various strategies. Three commonly-used strategies are 

hidden Markov models (HMMs) [17, 18], circular binary segmentation [19, 20], and 

adapted weight smoothing [21, 22]. Although these methods appear to be quite different 

from one another in terms of the computational or statistical model they incorporate, at 

the core of each is an objective function whose optimum solution yields the method’s 

copy number inference for a region. Each objective function is defined by the observed 

data (raw copy number) and is a function of inferred state (copy number call). The 

sequence of copy number calls (states) that optimizes the objective function gives the 

CNV call for each method.  

 

In this paper, we present a general framework to call CNVs from raw copy number using 

optimization, based on an objective function that is composed of several explicitly 

formulated objective criteria. These criteria are carefully designed to quantify the 

desirability of a CNV assignment with respect to various biological insights and 

experimental considerations. Our general approach is to first apply a signal processing 

method to aggressively flag candidate gains and losses. The objective function is then 

optimized on each region and flanking sequence, yielding final CNV calls and 

boundaries. Note that the optimization process also filters out many candidate regions; 

that is, complete rejection of a candidate region is quite possible, as it is part of the 
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solution space for the corresponding optimization problem. This two-step procedure has 

the advantages of drastically reducing the computational time necessary to find the set of 

solutions, while identifying precise boundaries for each putative CNV. Indeed, for N 

markers and C CNV classes, the solution space of the optimal copy number assignment 

problem is of size O(CN). Exhaustively searching for the optimal solution is quite 

infeasible unless N becomes very small. In our case, 8.1≈N  million, so we adapt a 

simulated annealing based algorithm that efficiently searches the solution space at near-

interactive rates. 

 

We note here the distinction between CNVs and copy number polymorphisms (CNPs). 

CNPs are defined to be copy number variants that are present, with identical boundaries 

(and are therefore likely identical-by-descent), in at least 1% of the human population 

[23]. Computationally, such higher-frequency polymorphisms present opportunities for 

detection that are not otherwise possible. A recent study [17] proposes separate methods 

to detect CNVs and CNPs, with the latter involving detecting correlations in raw copy 

numbers across samples. The current work is designed to address the problem of 

identifying rare and de novo CNVs, as it does not make use of multiple samples to 

convert raw copy number into CNV inferences.  

 

A key feature of our method is that it is highly configurable, allowing researchers to 

define their own objective functions and tune parameters to emphasize relative 

importance of different objective criteria. We demonstrate with a simple objective 

function involving a linear combination of variability, parsimony, and length, which 
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performs surprisingly well. We evaluate the performance of our method on Affymetrix 

6.0 array data from 270 HapMap individuals [1]. These samples are increasingly well 

characterized with regard to CNVs and include 60 mother-father-child trios. Therefore, 

they serve as an excellent benchmark data set. We show via systematic in silico studies 

that the proposed method compares favorably with four methods that are currently 

publicly available. Furthermore, we experimentally validate, using laboratory techniques 

on genomic DNA, several CNVs newly discovered by our method. These results 

demonstrate the proposed method’s potential to uncover human genetic variation that 

may be missed by other computational approaches.  

 

The general framework described in this paper is implemented and freely available in a 

flexible, user-friendly R package ÇOKGEN*. ÇOKGEN works from the raw binary 

.CEL files produced by the Affymetrix protocol.  It performs all of the steps in Figure 1, 

including quantile normalization, raw copy extraction, and CNV extraction (wherein the 

user may specify the desired objective function). Its graphical tools also allow the user to 

manually inspect the raw copy number data to gauge confidence in each putative 

aberration. 
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Results and Discussion 

We applied our algorithm to Affymetrix 6.0 array data from 270 HapMap individuals. 

The HapMap samples are divided into African (YRI), Caucasian (CEU) and Asian 

(CHB/JPT) ethnicities. ÇOKGEN identified a total of 16128 autosomal CNVs over all 

the samples, for an average of 60 CNVs per individual. Of the 16128 CNVs, 15369 are 

identified in multiple individuals. Figure 2 graphically displays all CNVs identified by 

our method. As expected, many common CNVs are located near the centromeres and 

telomeres which are known to harbor variably repetitive elements. 

 

The distribution of the CNVs among different ethnicities in the population is presented in 

Table 1. It is well known that Asian and Caucasian populations are genetically less 

diverse than African population due to population bottlenecks. This is reflected in Figure 

3, which shows a shifted frequency distribution in the YRI CNVs relative to the CEU and 

JPT/CHB CNVs.  

Trio Discordance as a CNV Detection Assessment Tool 

Although CNVs can arise in a de novo manner, it is believed that at least 99% of all 

CNVs in an individual’s genome are inherited [23]. The 60 mother-father-child trios in 

the HapMap data set therefore provide an opportunity to assess the accuracy of CNV 

detection algorithms by measuring the rate of Mendelian concordance. A CNV in a trio 

child is said to be Mendelian concordant if it appears in at least one of the parents. Unless 

the CNV is de novo, any discordance is either the result of a false positive call in the 

child or a false negative call in one of the parents (in rare cases, discordance could also 

result from a parent harboring a duplication and a deletion at the same locus but on 
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different chromosomal homologs). Discordance rate, while useful, is imperfect as an 

assessment measure. In particular, it is possible for a CNV identification algorithm to 

have artificially low discordance rates by calling each CNV in a large number of samples. 

Even if the samples in which a gain or loss is called are randomly selected, frequently 

called CNVs will have a lower discordance rate, simply by chance. Therefore, while 

comparing the performance of algorithms according to trio discordance rate, we also 

account for the number of frequently called CNVs, as discussed in the next subsection. 

 

In the current study, to decide whether two CNVs (of the same type – loss or gain), c1 and 

c2,  from two different samples  correspond to the same event, we use the concept of 

minimum reciprocal overlap. We first define o(c1,c2) as the number of markers existing in 

both c1 and c2 and l(c) as the number of markers in a CNV c. Minimum reciprocal 

overlap (MRO(c1, c2)) of c1 and c2 is defined as: 
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This measure provides a standard way of determining the similarity in the chromosomal 

location of two CNVs, regardless of the scale of the events. For our discordance and 

sensitivity analysis, we use the MRO measure with a threshold of 0.5 to decide whether 

two CNVs identified in two different individuals correspond to the same event. That is, at 

least half of  c1 must be overlapping with c2 and vice versa for c1 and c2 to be considered 

as the same CNV in different samples.  
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Performance of ÇOKGEN in Comparison to Existing Software 

We compared the performance of our algorithm with that of four other software 

packages. The DNA-Chip Analyzer (dChip) [24] is a Windows software package for 

Affymetrix platform and high-level analysis of gene expression microarrays and SNP 

microarrays [14, 25]. Birdseye [17] is a rare CNV identification tool based on HMMs, 

and is part of the Birdsuite platform [17]. QuantiSNP [26] is an analytical tool for the 

analysis of copy number variation using whole genome SNP genotyping data. It is 

originally developed for Illumina arrays ,but version 1.1 of this software supports 

Affymetrix 6.0 data files with additional data conversion steps. PennCNV [27] is the last 

software tool that we use for CNV detection for our comparative analyses. Although it is 

also designed to handle signal intensity data from Illumina arrays, it currently supports  

Affymetrix. 

 

Comprehensive experimental results show that ÇOKGEN outperforms all of these four 

CNV identification tools in terms of general trio discordance. Overall, ÇOKGEN has a 

30.8% discordance rate whereas Birdseye, dChip, QuantiSNP and PennCNV demonstrate 

discordance rates of 42.6%, 94%, 74% and 32.9% respectively on the same array data. It 

is important to note that dChip was originally optimized for detecting somatic copy 

number aberrations in cancer cells from earlier versions of the Affymetrix platform, and 

QuantiSNP is designed for data obtained from Illumina platform. Therefore, Birdseye, 

PennCNV, and ÇOKGEN’s superior performance compared to dChip and QuantiSNP on 

Affymetrix 6.0 data is not surprising. For this reason, we restrict our assessment to 

ÇOKGEN, Birdseye and PennCNV in the remainder of this section. 



� ��

 

As discussed in the previous section, the expected discordance rate of any algorithm 

approaches zero as it calls the CNV in more samples. At the extreme, if the algorithm 

identifies a CNV in all samples, the discordance rate will be zero. Therefore, a more 

precise assessment of accuracy can be achieved by stratifying discordance rate by call 

frequency. For this purpose, in Figure 4, we first examine how the discordance rate 

behaves across call frequency strata for ÇOKGEN, PennCNV, and Birdseye. As a 

reference, we also display the expected discordance of randomly called CNVs in this 

figure. As expected, the performance of all algorithms improves when more frequent 

CNVs are considered. Although the performance of PennCNV is  similar  to that of 

ÇOKGEN, our algorithm does attain a modest improvement in concordance over 

PennCNV at all strata. It is also clear in Figure 4 that ÇOKGEN outperforms Birdseye 

significantly at all strata. Furthermore, ÇOKGEN performs consistently better than 

random CNV assignment at all strata which shows its superior performance is not an 

artifact of the frequency of the CNVs it calls. 

 

Another feature of Figure 4 is Birdseye’s sharper decline in discordance rate as the 

frequency threshold increases. This is likely due to its higher average call frequency as 

compared to ÇOKGEN. Figure 5A shows the empirical density for sample frequency of 

concordant CNVs. We find that 34% of the concordant CNVs identified by Birdseye 

have frequency larger than 60, whereas only 16% of the concordant CNVs identified by 

our algorithm and 14% of the CNVs identified by PennCNV have frequency larger than 

60. Concordant CNVs with sample frequency larger than 90 make up 3% of those called 
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by our algorithm and 4% of those called by PennCNV as compared to 22% for Birdseye. 

This clearly shows that ÇOKGEN does not achieve its high concordance rate by 

overcalling a CNV in multiple samples. Figure 5B displays the density distribution of 

discordant CNVs as a function sample frequency for all algorithms. It is clear from the 

figure that most of the discordant CNVs for Birdseye are rare, whereas more frequent 

CNVs called by our algorithm turn out to be discordant. These two observations clearly 

show that ÇOKGEN’s performance depends less on the sample frequency and 

demonstrate its ability to accurately detect rare events. 

Sensitivity comparison across methods  

Trio discordance is a reasonable hybrid measure of sensitivity (recall) and specificity 

(precision), but these two measures cannot be easily decoupled based only on 

discordance rate. A recent study [28] assembled a “stringent dataset”, comprising CNVs 

identified by at least two independent algorithms. The dataset contains a total of 808 

autosomal CNV regions reported by the study to be harbored in at least one of the 270 

HapMap individuals. Another study [23] identified 1292 autosomal copy number 

polymorphism (CNP) regions in 270 HapMap samples. We use these two as “gold 

standard” data sets in which to evaluate the sensitivity of our method. We refer to  

sensitivity based on the data presented in [28] as sensitivity-Pinto and sensitivity based on 

the CNP data set presented in [23] as sensitivity-McCarroll. 

 

In terms of sensitivity-Pinto, we observe that ÇOKGEN detects 696 of 808 (≈86%) CNVs 

from the study presented in [28]. PennCNV obtains the best result by a narrow margin, 

by identifying 716 of 808 (≈88.6%) CNVs. Birdseye achieves an 84.7% success rate, 
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slightly less than that of our method. In terms of sensitivity-McCarroll, ÇOKGEN, and 

PennCNV detect 20.7% and 25.5%,  respectively. Birdseye detects 68.2%, which is the 

best sensitivity rate among  all the methods compared for this data set; however, as 

mentioned in [23], Birdeye is one of the methods used for identifying the CNPs in this 

dataset. For this reason, this result is not surprising. PennCNV is slightly more sensitive 

than our method on this dataset, though this seems to be at the cost of a modest increase 

in trio discordance rate, as shown above.   

Run Time Performance 

To analyze the run time performances of ÇOKGEN, PennCNV, and Birdseye,we 

compare ÇOKGEN with PennCNV on a Windows system, and time both ÇOKGEN and 

Birdseye on a Linux system (Birdseye is not available in a Windows version). 

Performances are measured from the time at which the CEL file is taken as an input to 

the time at which the list of CNVs is output. On a Windows system that has an Intel Core 

2 Quad CPU with a clock speed of 2.4 GHz and 4 gigabytes of memory, we observe that 

ÇOKGEN processes 22 chromosomes of a single HapMap sample in an average of 343 

seconds compared to an average of 271 seconds for PennCNV package. 

 

The Linux experiments are done on a Dual Intel Xeon 3Ghz Centos 5 x86 64 bit machine 

with 4 gigabytes of memory. Since Birdsuite is designed to be run as a pipeline of 

consecutive steps, we are unable to run only the Birdseye in isolation. Thus, we report the 

run time for the whole package rather than single steps, which may admittedly inflate the 

time that Birdseye would take to run alone. In this experiment, ÇOKGEN processes 22 
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chromosomes of a single sample in an average of 702 seconds compared to 2232 seconds 

for the whole Birdsuite software.  

 

In addition to computational efficiency, these experiments also highlight the user-

friendliness of our package. Indeed, ÇOKGEN is wholly contained in a single, simple 

(comprised of three commands) R package, making it completely platform-independent 

and available to Windows, Mac, or Linux/UNIX users. In contrast to the competing 

software, ÇOKGEN does not require the installation of additional tools such as Active 

Perl [29] or Affymetrix Power Tools [30]. 

Experimental Validation of CNVs not Previously Reported 

To gauge the ability of ÇOKGEN to uncover novel gains and losses, we compared the 

CNVs discovered by our method with those in the version 6 (November 2008) of 

Database of Genomic Variants (DGV) [31]. We used multiplex ligation-dependent probe 

amplification (MLPA) [32] to verify some of the CNVs which are not reported in the 

DGV but are identified by ÇOKGEN, as shown in Table 2. In Figure 6, we also present 

the raw copy signal graphs generated by our software and the corresponding MLPA 

profiles for the first two CNVs given in Table 2. 

The Software Package 

Our software package, ÇOKGEN, which is implemented in R, is able to output its results 

in two forms: tabular and graphical. The tabular output is a table of CNV entries with 

columns: sample ID, chromosome number, CNV start base position, CNV stop base 

position, and the CNV type. The graphical output allows the user to visualize the results 

of our CNV identification algorithm. The user can inspect the raw copy signal at any 
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specified part of the genome along with the assigned class values, color-coded (examples 

are shown in Figures 6 and 7). Another aspect of the graphical output is the visualization 

of the signals of a family together, in which each member represented by a different 

plotting symbol. This allows the user to see the CNV pattern for the whole family at the 

same locus of the genome and evaluate the algorithm’s trio concordance visually.Besides 

its configurability in terms of tuning of parameters, ÇOKGEN also provides the users 

with the ability  to specify  their own objective criteria. With this functionality, users can 

construct their own objective functions that will best suit the characteristics and needs of 

their own experimental platform and application. 

 

Conclusions 

We have presented a method to detect germline copy number variants from Affymetrix 

6.0 SNP Array data. Our approach, with its accompanying software, will be useful for 

researchers querying constitutional DNA for association of gains and losses with disease. 

Indeed, CNVs are emerging as important factors in a growing number of diseases, and 

the 6.0 array has the highest genome-wide resolution of current commercially-available 

platforms. The current work shows that the problem of detecting CNVs from raw array 

data may be recast as an optimization problem with an explicit objective function. The 

objective function chosen here is quite simple and intuitive, but its effectiveness is clear. 

Our method is wholly contained in a freely-available and flexible software package that 

efficiently processes raw probe-level .CEL files to produce lists of inferred gains and 

losses. The software allows the user to tune parameters for the desired specificity-

sensitivity balance. With detailed experimental studies on HapMap dataset, we have 
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demonstrated its sensitivity to detect both previously-reported and novel CNVs, while 

keeping a low false positive rate, as demonstrated by high Mendelian consistency in trios. 

 

The method described in this paper could also be adapted to other SNP arrays, including 

earlier versions of the Affymetrix platform, Illumina arrays, or array comparative 

genomic hybridization. Any platform that produces a measure of raw copy number at 

markers across the genome would be suitable. As SNP arrays continue to improve with 

regard to throughput and accuracy, our approach will be adaptable to handle the data as it 

becomes available. 

 

The optimization based approach is the key to our method’s flexibility. Although we have 

constructed our own default function to capture the criteria that we wish to emphasize, 

one may easily envision alternate criteria that other researchers would wish to 

incorporate. For example, since very long CNVs are quite rare in the human genome, 

researchers might wish to include a term in the objective function that takes into account 

the number of bases covered by a putative CNV region. Another possibility would be to 

incorporate allelic ratio intensity information at SNP markers, as is done in some hidden 

Markov model approaches [26,27]. We anticipate that users will design their own 

objective functions and apply them, using our software, to their own specific applications 

and data. 

 

It should be emphasized that previously established approaches may actually also be 

considered special cases of functional optimization. For example, hidden Markov models 
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(HMMs) often used in the copy number setting [14, 17, 26] entail finding “state paths” 

(marker-by-marker sequences of copy-number calls) that maximize a log-likelihood 

function. In HMM applications, however, the model parameters are often estimated 

simultaneously with the copy number states via a Viterbi algorithm [33], based on 

training samples. Precise parameter estimation relies on sufficient representation from 

each copy number state, which may be unrealistic for rare CNVs. Another popular 

approach to inferring CNVs from raw copy number data is circular binary segmentation 

(CBS) [19]. Rather than explicitly representing copy number state as a solution to an 

optimization problem, CBS aims to find change points from one copy state to another. It 

does so by maximizing functions of marker indices. The optimum values of the function 

determine the boundaries of the CNV regions. A third example is the GLAD (Gain and 

Loss Analysis of DNA) algorithm [22], which has been adapted extensively by methods 

developed to analyze tumor DNA [15, 34]. To find CNVs, GLAD explicitly models raw 

copy number as a function of position. The true underlying copy number is encoded in a 

position-dependent parameter. The CNV regions are inferred by maximizing a weighted 

likelihood function using an adaptive weights smoothing procedure [21]. Note that the 

objective functions in HMMs, binary segmentation and GLAD all make distributional 

assumptions about the raw copy number measurements. The function that we adopt in the 

current study makes no such assumptions, but could be modified to incorporate such 

assumptions. Furthermore, our CNV calling method is fully unsupervised in that it does 

not require any training samples in terms of known copy numbers. Last, rather than 

estimating and fixing parameters (thus fixing the performance of the algorithm), our 
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method presents the opportunity to tune parameters, which makes it possible to adjust the 

performance of the algorithm to obtain the best results in a semi-automatic manner. 

 

Three other studies utilize various smoothing and edge detection algorithms: wavelet 

footprints [35], non-linear diffusion filtering [36], and kernel smoothing [37]. We also 

apply an edge detection scheme on low-pass filtered data to identify regions that 

potentially correspond to aberrations. Unlike other approaches, however, we apply edge 

detection rather aggressively to identify all candidate regions that may correspond to 

aberrations. This is because the raw copy number signal is extremely noisy due to the 

artifacts of microarray technology, as seen in Figure 7A. Furthermore, since the markers 

are distributed unevenly across the genome, the one-dimensional signal represents a non-

uniform sample of the actual copy number signal. Consequently, it is not straightforward 

to choose a smoothing and edge detection scheme that will be most appropriate for all 

experiments, samples, chromosomes, or even chromosomal segments. For example, in 

Figure 7B, the edge detection scheme identifies a single duplication as two separate 

duplications, since the markers at the middle of the region exhibit relatively low raw copy 

numbers, probably due to noise. This problem can be alleviated by smoothing the signal 

more aggressively to eliminate such artifacts; however this might result in falsely 

eliminating many aberrations that span relatively less numbers of markers. Motivated by 

these considerations, we use edge detection to identify all potential candidates and then 

use an optimization scheme with adjustable parameters to eliminate false calls among 

these candidates. 
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We also note that ÇOKGEN works on each sample individually and therefore is suited 

for rare CNV identification at the expense of losing some information to detect CNPs. 

The importance of rare CNVs is underscored by the recent deep sequencing of the entire 

genome of a single individual [38]. In that study, some 30% of the discovered CNVs had 

not been previously reported by any other study.  

  

In addition to presenting a new software tool, the current work also casts Mendelian 

concordance, as an assessment tool, in a new light. While concordance rate is valuable as 

a metric to evaluate methods for calling germline variation, it is best viewed as a function 

of overall variant call rate. As we have shown, concordance rate can be artificially 

boosted simply by calling variants at a high rate. When evaluating the performance of 

future methods on family-based data sets, researchers may compare trio discordance 

results as a function of call frequency to the null expectation that we derive in the 

Materials and Methods section. 

 

Materials and methods 

Our method takes as input the raw .CEL files, and produces a table of inferred gains and 

losses, genome-wide. The software package, ÇOKGEN, provides a configurable platform 

for CNV identification, in that it allows users to (i) adjust the parameters of our default 

formulation to tune the behavior of the method to the target application (e.g., aggressive 

vs. conservative in calling CNVs), and (ii) specify their own target objective functions. 

ÇOKGEN also produces “zoomable” plots of raw copy number at the chromosome and 

sub-chromosome level for manual inspection of identified copy numbers. An overview of 
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the methods implemented in ÇOKGEN is given in Figure 1. Details of each step are 

provided in this section.  

Intensity Extraction and Normalization of Raw Data 

The raw probe intensities for each array are encoded in the binary .CEL files output by 

the Affymetrix instrument, one file for each array. As a first step, we use the R package 

affxparser [39] to extract the intensities for each array locus from .CEL files. Next, we 

quantile normalize [13] the intensities across all arrays in the experiment. This enables 

fair comparison of intensities, taking into account systematic non-biological differences 

such as overall array brightness. 

Raw Copy Number for SNP Markers 

The genomic loci interrogated on the Affymetrix 6.0 array fall into two categories – SNP 

markers and copy number (CN) markers. The array contains 887,876 autosomal CN and 

869,224 autosomal SNP markers, for a total of 1,757,100 (we discard the X and Y 

chromosomes to avoid gender complications, as well as mitochondrial markers). The 

markers are ordered from i = 1 to ~1.8 million according to genomic coordinates. A SNP 

marker is interrogated by either six or eight probes – half for each of the A and B alleles – 

and hence produces six or eight normalized intensity measurements for each array. Since 

the vast majority of SNP markers have six probes, we present that case here. Let Ai1, Ai2, 

Ai3, Bi1, Bi2, and Bi3 denote the three A allele and three B allele measurements for a SNP 

marker i. Our aim is to produce allele-specific raw copy numbers Ai and Bi for the two 

alleles such that the distance from the origin in (A, B) Cartesian coordinates produces a 

raw measure of the copy number at the ith marker. Toward this end, we linearly rescale 
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the intensities so that 22
ii BA +  is approximately equal to 2.0, regardless of genotype, 

for markers that are already deemed to have normal copy numbers (i.e., two copies). 

   

We fit the model 
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via least-squares regression, where )( A

iZ  is the rescaled copy number for allele A at SNP 
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ie  is the error term. More 

specifically, in the absence of copy number variation, )( A
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model parameters, quantifying the relationship between B allele copy number and the six 

probe intensities. The objective here is to capture the individual responsiveness of each 

probe to varying quantities of DNA harboring the A and B alleles.   

 

Note, however, that fitting the models requires a priori knowledge of the genotypes. 

Affymetrix’s default algorithm is quite precise (over 99.5% accurate) for diploid 

genotyping. Hence, if we were able to avoid samples with duplications and deletions, we 

could use the genotypes generated by Affymetrix as observed values of A and B copy 

numbers. Obviously, we cannot assume knowledge of which samples harbor gains and 

losses. However, we can utilize basic knowledge on the distribution of copy numbers as 

evidence suggests that gain and loss events almost always appear in the small minority 
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variant in the population [23]. Therefore, if we define total probe intensity at marker i as 
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iji BAPI , we can safely assume in general that most of the middle two 

quartiles, across all samples, of PIi are from individuals with two copies of the 

chromosomal segment that contains marker i. In other words, the individuals that fall into 

these quartiles for the corresponding marker are likely to carry diploid genotypes AA, AB, 

or BB. Consequently, we fit the model based on these samples’ genotypes. 

�

Given the 12 parameter estimates for a SNP marker i, we generate raw estimates of A and 

B copy numbers for all samples by re-applying the model to each sample’s six probe 

intensities. That is, for a sample with probe intensity values Ai1, Ai2, Ai3, Bi1, Bi2, and Bi3, 

the raw A and B allele copy estimates are Ai and Bi where 
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Finally, using these estimates, we calculate the raw copy number Ri at marker i as the 

distance from the origin in the (A, B)-plane: 22
iii BAR += . 

Raw Copy Numbers for CN Markers 

Approximately half of the marker loci represented on the 6.0 array do not correspond to 

SNPs, but rather CN markers. Since these markers are each measured by only one probe, 

they must be treated separately. As above, we consider the samples within the middle two 

quartiles of (normalized) total probe intensity for the marker to be representative of 
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individuals with copy number two. Therefore, the scaling factor iβ̂  for CN marker i is the 

least-squares estimate of the parameter iβ  from the model  

iii ePI += β2 , 

fit to the middle two quartiles of the normalized probe intensities PIi. Again, ie  is the 

error term. The raw copy number for a sample with CN probe intensity PIi is then 

calculated as iii PIR β̂= . 

 

Using these two separate procedures for SNP and CNV markers yields raw copy numbers 

Ri for all markers i from 1 to ~1.8 million, ordered along the genome according to hg18 

(build 36 of the human genome) coordinates. All 270 HapMap samples are used to 

parameterize the regression model for raw copy number estimation of both SNP and 

CNV markers. Figure 7A gives an example of raw copy numbers for a 394-marker 

region. 

Algorithm for Copy Number Variant Detection 

Key to our approach is the observation that CNV identification can be formulated 

explicitly as an optimization problem without any requirement of reference models or 

training data. Based on general knowledge of the microarray technology and basic 

biological insights on copy number variation, we specify various quantitative measures 

that gauge the suitability of copy number assignments based on observed array 

intensities. We then formulate an objective function that captures the trade-off between 

these measures, so that the minima of this function represent optimal CNV assignments. 

This function is characterized by user-defined parameters, allowing the user to tune the 
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performance of algorithms based on the requirements of the specific application (e.g., 

minimizing false positives due to the cost of experimental verification vs. minimizing 

false negatives to capture existing variation comprehensively). 

 

Formally, the objective of CNV identification is to find a mapping S: {1,..., N} → C, 

where {1,..., N} denotes the ordered set of markers for the whole genome and C = {C+, 

C0, C−} is the set of  the gain, normal and loss classes, denoted respectively  as C+, C0 and 

C−. Thus, our objective is to assign a class value from C to each marker on genome based 

on the Ri values such that the class assignment of consecutive markers and their raw copy 

number estimates are as consistent as possible.  

 

We next introduce the objective criteria that are included in the default objective function 

implemented in ÇOKGEN and the motivation behind these criteria. Researchers may wish 

to design an objective function of their choice, and indeed our software takes the 

objective function as an argument precisely to accommodate this. We describe the 

function as applied to a chromosome with M markers since each chromosome is 

processed separately. 

 

Variability in raw copy numbers within each copy class should be minimized. The Ri 

for markers in each gain or loss region should be separable from normal regions. 

Therefore, CNV identification lends itself to a clustering-like problem – one of 

partitioning the Ri’s into three classes so as to minimize the internal variability of each 

class. For a given CNV assignment S, we define the set of markers assigned to class c on 
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a chromosome with M markers as })(:},...,1{{)( ciSMic =∈=Π and  
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denotes the mean raw copy number for class c. Then, the total intra-class variability 

induced by this assignment is given by 
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Consequently, a desirable S is expected to minimize )(Sσ  (subject to other constraints). 

Note that this formulation does not make any assumption about the expected raw copy 

numbers of the markers and therefore is robust to any systematic bias that might be 

encountered in measurement and normalization of Ri.  

 

Parsimony principle: Observed variability should be explained via minimum 

number of anomalies. In general, there are relatively few regions of gain or loss in an 

individual's genome, relative to normal regions. Therefore, the CNV calls should be as 

contiguous as possible. Motivated by this observation, we formulate the parsimony 

principle as a criterion that seeks to minimize the total number of copy number state 

changes induced by a CNV assignment on the chromosome. Formally, for given CNV 

assignment S, we define total cut as the number of pairs of adjacent markers that are 

assigned different copy numbers,� ∑−
=

+≠=
1

1

))1()(()(
M

k

kSkSISχ . Here I(.) denotes the 

indicator function (i.e., it is equal to 1 if the statement being evaluated is true, and 0 

otherwise).  
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Filtering out noise by eliminating smaller regions. Longer CNVs indicate higher 

confidence as it can be statistically argued that shorter sequences of markers with deviant 

raw copy numbers are more likely to be observed due to noise. Thus, we explicitly 

consider CNV length as an additional objective criterion. To do so, we first define a CNV 

region, r, as a maximal set of contiguous markers all assigned to the same copy number 

state in {C+, C−}, and )(Sς  denotes the set of all CNV regions. Furthermore, we denote 

the number of markers in the CNV region r by l(r). We then define ∑
∈

=
)(

)(

1
)(

Sr
rl

e
S

ς

λ  as 

an objective criterion that penalizes shorter CNVs (e denotes the natural logarithmic 

base). 

 

Filtering out noise by eliminating possible false positives. Candidate CNVs with a 

median raw copy number much larger or much smaller than two indicate higher 

confidence since a CNV region with median raw copy number close to two is less likely 

to be valid. For this reason, we require that the median raw copy number of a called loss 

be below a certain threshold ( Tloss) and the median for a called gain be above a certain 

threshold ( Tgain). We define )(S+ς  and )(S−ς  as the set of all CNV gain and loss 

regions, induced by assignment S, respectively. Furthermore, median(r) denotes the 

median raw copy number value of the markers in the region r.  We now incorporate 

∑∑
−+ ∈∈

>+<=
)(

loss
)(

gain ))(median())(median()(
SrSr

TrITrIS
ζζ

δ  into the objective function to 

minimize the effects of the noisy signal. Here, Tgain and Tloss are user-defined parameters 

which basically define the upper and lower limits for the raw copy number of markers in 

the set )( 0CΠ  (i.e., the set of markers assigned to the normal class). As Tgain is increased 
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and Tloss is decreased, candidate regions are penalized more harshly. In our experiments, 

we use 2.25 and 1.75 for Tgain and Tloss respectively, since these values provide reasonable 

performance.  

 

Putting the pieces together: A single objective function for CNV identification. We 

use a linear combination of the criteria above as an objective function. Namely, we define 

the optimal copy number assignment as the mapping  

S*: {1,…, N} → C = {C+, C0, C−} such that the function 

)()()()()( SkSkSkSkSf δλχσ δλχσ +++=  

is minimized at S = S*. Here the tunable coefficients δλχσ kkkk ,,,  adjust the relative 

importance of the objective criteria with respect to each other. In our experiments, for λk  

and δk , we choose large values such as 105 and 106, respectively, to prohibitively 

eliminate  candidate regions that are likely to be false positive during the course of the 

algorithm  (as opposed to filtering them out in a post-processing phase). 

 

The parameters σk  and χk  are used to adjust the apparent trade-off between the 

“parsimony” and the “variability” components of the objective function. Variability 

favors the genetic diversity on the genome by permitting many CNVs. On the other hand, 

according to the parsimony criterion, the variability in the raw copy estimates of markers 

should be explained via as few CNVs as possible, hence minimizing the number of 

evolutionary events that have had to occur. Without loss of generality, we require that 

1=+ χσ kk  to highlight the trade-off between these two criteria. To systematically 
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evaluate the effect of these two parameters on performance and determine the best σk  

and χk  values based on our benchmarking data, we conduct a series of computational 

experiments. The results of these experiments are presented in Figure 8. Here, sensitivity 

is a measure of the performance of the algorithm in capturing previously reported CNVs. 

As seen in the figure, sensitivity-Pinto rapidly improves as more weight is assigned to 

variability and nears saturation around 35.0=σk  and 65.0=χk . On the other hand, 

sensitivity-McCarroll keeps improving until it settles around 6.0=σk  and 4.0=χk . In 

contrast, discordance rapidly declines as we increase the contribution of variability to the 

objective function, achieves a minimum around 35.0=σk  and 65.0=χk , and grows 

until it settles around 0.8 for 8.0=σk  and 2.0=χk . As σk  is increased, ÇOKGEN starts 

behaving less conservatively, which results in a larger number of identified CNVs and 

improved sensitivity. On the other hand, increased number of CNVs comes with the 

expense of increased rate of false positives and this manifests itself as a decline in the 

discordance rate from a certain value of σk (in our case, 35.0=σk ). Based on these 

observations, we set 35.0=σk   and 65.0=χk  as our defaults. 

Two Phase CNV Identification 

Since the solution space of the optimal copy number assignment problem is exponential, 

we require a good initial solution and a heuristic algorithm which iteratively improves the 

solution. For this purpose, we use a two-phase algorithm: (i) we first determine a set of 

candidate gain and deletion regions via a filtering and aggressive edge detection 

procedure which we consider as an initial CNV assignment, S(0); (ii) we employ an 
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iterative improvement based algorithm to adjust the boundaries of duplications and 

deletions accurately, and eliminate false positives.  

 

In order to identify the boundaries CNV regions, it is necessary to smooth the raw copy 

number signal since it is highly noisy. We use a simple discrete low-pass filter with filter 

kernel [1/3; 1/3; 1/3], i.e., the first filtered copy number estimate is given by 
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R . Consequently, introducing an 

adjustable repetition parameter W, we obtain )(* W

ii RR =  as a smooth version of the copy 

number intensity for a user defined value of W. Here, larger W provides smoother signals, 

thereby eliminating false positives, at the cost of missing true CNVs that span a smaller 

number of markers. For the ÇOKGEN’s default value, we chose W = 20, for which we 

obtain reasonable results. Figure 7B demonstrates how the raw copy numbers Ri in Figure 

7A is converted into a smooth signal *
iR  using the low pass filter. 

Identification of Candidate CNV Regions via Edge Detection 

Based on the observation that gains and losses manifest themselves as (respectively up or 

down) concavities in raw copy number of the low-pass filtered data, an edge detection 

scheme, which we describe below, is a useful tool for the identification of initial CNV 

assignment S(0). Thus, after low-pass filtering, we apply our edge detection algorithm on 

the smoothed signal, first identifying high gradient markers that may correspond to 

transitions between regions with different copy numbers.  For this purpose, we interpolate 
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the discrete signal to obtain a real-valued function on the continuous interval 

ℜ→]M,0[:R̂ . This task is performed using the built-in splinefun function of R 

language, which performs cubic spline interpolation of given data points. Next, we 

generate two sets of high-gradient markers, denoted Dmax and Dmin, for which the function 

)(ˆ iR  attains maximum increase and maximum decrease, respectively. Specifically, we 

define 

})1('ˆ)('ˆand)1('ˆ)('ˆM,...,2{

})1('ˆ)('ˆand)1('ˆ)('ˆM,...,2{

min

max

+<−<∈=

+>−>∈=

iRiRiRiRiD

iRiRiRiRiD
 

where )(ˆ iR′ denotes the derivative of )(ˆ iR  at marker i. These markers are the 

approximate inflection points of the signal )(ˆ iR .  

 

Now let Qij denote the indices corresponding to the set of contiguous markers on the 

genome starting from marker i and ending at marker j, where i ≤ j. Given the user defined 

thresholding parameter Tgain (see above), we designate Qij as a candidate gain region (i.e., 

∀k ∈ Qij, S
(0)(k) = C+) if it satisfies the following conditions: (i) i ∈ Dmax and j ∈ Dmin; (ii) 

there exists at least one marker p, i ≤  p ≤  j, such that gain)(ˆ TpR ≥ ;  (iii) max(Qij ∩ Dmax) 

< min(Qij ∩ Dmin); and (iv) Qij is a maximal set of contiguous markers satisfying the  

conditions (i), (ii) and (iii). 

The first condition ensures that the region starts with a marker with locally maximal 

positive gradient and ends with a marker with locally maximal negative gradient in terms 

of the raw copy number values. The second condition guarantees that the region contains 

markers with copy number estimates that might indeed correspond to a gain. The third 
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condition specifies that the region does not contain any interior concavities, i.e. all 

maximum positive gradient markers in Qij appear before any maximum negative gradient 

marker in the region. Finally, condition (iv) ensures that Qij can be enlarged neither at the 

right nor the left borders. Examples of regions that violate each of the conditions are 

shown in Figure 9. The designation of Qij as a candidate loss region is done in a 

completely analogous manner.  

 

All markers m that are not included in a candidate loss or gain region are preliminarily 

designated as “normal”, i.e., S(0)(m) is set to C0. As a special case, if a candidate gain/loss 

region identified by edge detection is very close to another candidate region of its type, 

then we merge these two candidate regions into a single region, since they are likely to 

correspond to the same aberration.  

 

This procedure gives us an initial CNV identification assignment S(0). This solution is 

quite aggressive in the sense that many truly normal (copy number two) markers are 

likely to be placed in the gain or loss classes. To eliminate these false positives and 

obtain S*, we use an optimization-based algorithm to tune the boundaries of candidate 

gain and deletion regions as discussed in the next section. 

Fine Tuning of the Region Boundaries using Optimization with Simulated 

Annealing 

This phase of the algorithm begins with initial class assignments, S(0), and iteratively 

improves it with regard to the value of the objective function f by making moves in a way 

to quickly reach an optimum and avoid being trapped into undesirable local optima. For a 
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given copy number assignment S, we define a move as the extension or contraction of a 

CNV region’s boundaries by changing the copy number states assigned to a contiguous 

group of markers (either inside or outside the region) bordering the region. In short, at 

each iteration of the algorithm, a random number of contiguous markers is selected from 

the right or left boundary of a candidate region )(SQij ς∈  and the corresponding move is 

defined as the assignment of these markers to either the class of neighboring markers (if 

the selected markers belong to Qij) or to Qij’s class (if the selected markers are outside of 

Qij). The concept of a move is illustrated in Figure 10. As seen in the figure, we restrict 

possible moves to those that can enlarge or shrink a candidate aberrant region, but can 

never create a candidate region from scratch or divide a candidate region into two 

candidate regions. The size of the valid moves set that can shrink a candidate region Qij 

of size n is 2n-1. This set contains all moves that change the class value of contiguous 

markers in Qij's either left or right boundaries to the class of neighboring markers outside 

Qij. The size of the valid moves that can enlarge a candidate region Qij is limited to 2ψ 

(i.e., at most ψ markers from left and ψ from right are converted to the class of region 

Qij) where ψ is a user defined parameter which determines how aggressively a candidate 

region to be enlarged. In our experiments, we set ψ = 5 that limits the permissible 

expansion of a CNV region. We set such a threshold since we want our algorithm to 

expand the candidate region gradually. Thus, the total number of valid moves at each 

stage of our algorithm for a candidate region of size n is 2n + 9. 

 

We quantify the quality of such a potential move in terms of the difference between the 

value of the objective function before and after the move, commonly referred to as the 
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gain of a move. In the context of the optimal copy number assignment problem, the gain 

associated with move ν is defined as )()()( )1()( +−= tt SfSfvγ  where S(t+1) denotes the 

copy number assignment if the move ν were made and S(t) is the current copy number 

assignment. We use a stochastic algorithm that is based on simulated annealing [40] to 

determine the move. Simulated annealing is an iterative improvement heuristic that 

proceeds by repeated moves to improve the quality of the solution. Key to its efficiency is 

the stochastic nature of the selection of moves. At each step, the algorithm first randomly 

chooses a candidate gain or loss region, Qij, from the set )(Sς and then chooses a move v 

from the set of all moves that are validly defined on Qij. If the gain )(vγ  associated with 

the candidate move is positive, then the move is made. If the gain is not positive, the 

move is still made with a certain probability, which is proportional to the gain and 

declines as a function of time in the course of the algorithm. Therefore, simulated 

annealing starts its course with aggressive moves to jump out of undesirable local optima, 

and becomes more conservative as the algorithm proceeds, smoothly converging to a 

locally optimum solution. The procedure is repeated until either there is no valid positive 

gain move left to be done on the current solution or a user-defined number of negative 

gain moves, τ , are already done consecutively, (for our default, we use 5=τ ). The 

mapping obtained at the end of the procedure is reported as S*. 

 

We note that our algorithm allows us to consider the candidate regions in )(Sς �

independently (as opposed to the entire chromosome) because the candidate regions with 

potential aberrations are sparse, and therefore we work on local sub-problems associated 

with each candidate region separately. This results in significant improvement in 
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computational efficiency. Since the distribution of raw copy numbers in the 

neighborhood of Qij ∈ )(Sς  provides a good sampling of raw copy numbers in the entire 

chromosome, the quality of the solution to this local problem does not deviate 

significantly from the global problem. Indeed, in our experimental evaluations, we 

observe that there is no significant difference between solving the class assignment 

globally (applying the above algorithm to whole chromosome) or locally (as we describe 

above) in terms of their specificity and sensitivity in predicting copy number variations. 

Data 

For the application of our method, we used Affymetrix 6.0 array data from a total of 270 

HapMap individuals. In the data set, there are 30 mother-father-child trios from the 

Yoruba people of Ibadan, Nigeria, 45 unrelated individuals from the Tokyo, Japan, 45 

unrelated individuals from Beijing, China and thirty Caucasian trios that were collected 

in 1980 from U.S. residents with northern and western European ancestry by the Centre 

d'Etude du Polymorphisme Humain (CEPH). 

MLPA Method 

Each MLPA probe was designed synthetically to match sequences within the region of 

interest avoiding all SNPs in the area. Control probes were used from previously 

published work [41]. Oligonucleotides were synthesized by IDT, Coralville, IA, with 5’-

phosphorylation of each downstream probe and tagged with common PCR primer 

sequences [32]. Probes were hybridized with 100 ng of DNA sample using MLPA 

reagents (part number EK1, MRC-Holland BV, Amsterdam, The Netherlands) in 

accordance with the recommended protocol. Samples were diluted 20 fold and analyzed 
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on a 3130xl Genetic Analyzer from Applied Biosystems with GeneMapper software. 

Control DNA used were male and female genomics DNA pools (Promega, Madison, 

WI). Peak heights ratios were normalized to the mean of the entire data set, with 

subsequent elimination of outlier samples from the calculation of the mean. 

Other Methods 

For analysis using dChip [24], we downloaded the version with a build date of August 

21, 2008. We used the hidden Markov model as the Inferred copy method option with 

50% of the samples trimmed. For Birdseye [17], we used version 1.5.1 of the Birdsuite 

package, which can be downloaded from [42]. The default parameters for that package 

were used. The latest version of PennCNV software which was available as of November 

18, 2008 was downloaded from [43] for analysis using PennCNV. We followed the steps 

described at [44] for PennCNV-Affy protocol and used the default parameters for 

analysis. For QuantiSNP, we downloaded version 1.1 from [45], followed the steps 

described at QuantiSNP for Affymetrix tutorial document located at [46] and used the 

default parameters. 

 

We also note that we combined copy number 0 and 1 into one category – loss – and copy 

number greater than 2 into one category – gain – for the results obtained by all packages, 

in order to compare their results with ÇOKGEN’s results fairly. 

Computation of Expected Discordance Rate 

Suppose that CNV calls are random in Φ  parent-child trios. When randomly assigning a 

CNV to n of the 3Φ  individuals, the expected discordance, denoted by ED(n), can be 

calculated as: 



� ��

∑
Φ

=

×=
),min(

1

)()|()(
n

k

kPknEDnED  

where ED(n | k) denotes the expected discordance rate when k of the n CNVs are 

assigned to children and P(k) denotes the probability of assigning the CNV to k children. 

We calculate P(k) as 
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ED(n | k) is equivalent to the probability of having a child assigned a CNV being 

discordant given that k children have the CNV. This probability can be calculated by 

dividing the number of ways to assign this CNV to parents other than the discordant 

child’s parents by the number of all possible ways to assign this CNV to parents. Thus, 

ED(n | k) is 
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Figure Legends 

Figure 1 - The overview of  the proposed CNV detection algorithm 

ÇOKGEN first extracts the intensity values from the Affymetrix .CEL files. It then 

obtains the raw copy numbers for each marker using regression with the help of the 

Affymetrix software’s SNP genotype calls. The edge detection determines the candidate 

loss/gain regions from smoothed copy number signal, which is obtained by low-pass 

filtering the raw copy numbers. We determine the final class assignments using objective 
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function optimization. The function is optimized using an iterative simulated annealing 

procedure, with initialization provided by the edge detection. 

Figure 2 - CNVs identified by ÇOKGEN 

For each marker position on every chromosome, the gain or loss frequencies in the 

HapMap samples are plotted. The frequencies for gains are shown on the positive y-axis 

with green lines; and the loss frequencies are shown on the negative y-axis with blue 

lines. 

Figure 3 - Frequency distribution of CNVs by ethnicity 

The proportion of rarer CNVs (i.e., those that have a sample frequency less than 10) in 

the YRI population is higher when compared to the other populations. 

Figure 4 - Discordance rate as a function of call frequency strata 

The figure shows how the discordance rates behave as a function of the sample frequency 

threshold. Note that discordance rate is plotted cumulatively – that is, the value on the y-

axis is the average discordance rate for CNVs with frequencies at most the corresponding 

value on the x-axis. The discordance value at the sample frequency threshold value t is 

calculated by finding the discordance rate across all CNVs with frequency at most t. 

Figure 5 - The frequency distribution of (A) concordant CNVs and (B) discordant 

CNVs for three calling algorithms 

(a) shows that ÇOKGEN’s concordant CNVs are mostly rarer and (b) shows that its 

discordant CNVs are more frequent in the population, particularly when compared to 

those of Birdseye. 
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Figure 6 - MLPA profiles and corresponding raw copy signals with class 

assignments for two CNVs not previously reported  

(a) and (b) show a representative gain and loss, respectively, with overlays of two traces 

from a multiplex ligation dependent probe amplification (MLPA).  Red tracings represent 

pooled normal control sample with blue tracings showing the HapMap sample. Peaks not 

at or adjacent to the arrows represent control regions. The arrows indicate where the gain 

or loss occurs. (c) and (d) present the raw copy signals and ÇOKGEN’s class 

assignments for the MLPA profiles in (a) and (b), respectively. Here, ÇOKGEN 

inferences are colored red = normal, green = gain, blue = loss. 

Figure 7 - Raw copy numbers for sample NA12763 in a chromosome 12 region 

(a) The raw copy numbers Ri. (b) The smooth signal Ri
*, obtained by applying the low 

pass filter to Ri. The green colored markers indicate a “gain” class value assignment, 

whereas the red markers indicate “normal” class assignment by the edge detection 

algorithm. Note that there exist two candidate gain regions in the figure. (c) Our objective 

function optimization using simulated annealing makes the final assignments to the 

markers and it merges the two candidate regions in (b) into one gain region. 

Figure 8 - The trio discordance and sensitivity as a function of σk  

The figure shows how trio discordance and sensitivity are affected as we alter the relative 

weights of variability and parsimony in the objective function. 

Figure 9 - Illustration of criteria for selection of candidate CNV regions 

In this figure, the red lines tangent to the signal curve )(ˆ iR  indicate the marker points 

that are elements of the sets Dmax and Dmin. (a) Qij violates the first condition which 
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requires that the start and end markers be elements of Dmax and Dmin respectively. (b) Qij 

violates the second condition which dictates that at least one marker must exceed the Tgain 

threshold value. (c) Qij does not satisfy the condition 3 since three markers of Dmin appear 

before two markers of Dmax in region Qij. (d) Qij violates the last condition, which 

requires that Qij is a maximal set satisfying all the conditions (i), (ii) and (iii). 

Figure 10 - Illustration of moves in the proposed iterative-improvement based 

optimization algorithm 

The CNV assignment for a hypothetical region after t iterations is shown in the initial 

figure. Suppose Qij is selected for the (t+1)st iteration. (a) All the markers in Qij is 

assigned to C0 which completely eliminates Qij as a gain region. This is a valid move. (b) 

Some markers which initially have a C0 class on the right border of Qij are assigned to the 

C+ class which merges them with Qij by a valid move. (c) Some markers which initially 

exist in Qij are assigned to the C0 class which contracts Qij. This also represents a valid 

move. (d) This is an invalid move which divides the Qij into two sub gain regions. (e) 

This is another invalid move which introduces a completely new gain region that is not 

identified in the previous solution. 
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Table 1 - The distribution of identified CNVs by ethnicity. 

 CEU  YRI  JPT  CHB  Total  

Gains  1726 2325  856 765 5672  

Losses  3500  3443  1760  1753  10456  

Total  5226  5768 2616  2518  16128 

 

Table 2 - MLPA results for some of the non-previously reported regions identified 

by ÇOKGEN 

Chr Sample Bp 

Start* 

Bp 

End* 

Length 

(bp) 

MLPA 

Probe 

Position 

Type MLPA 

5 NA11830 59753489 59816458 62969 59766589 Gain 2.4 

5 NA10846 101261596 101308054 46458 101261461 Loss 1.35 

5 NA12144 101256012 101308054 52042 101279312 Loss 1.18 

6 NA10846 99225525 99249603 24078 99237564 Loss 1.44 

6 NA12144 99225007 99245596 20589 99226748 Loss 1.3 

16 NA10839 77818007 77832838 14831 77819334 Loss 1.35 

2 NA10854 108944933 108952869 7936 108945672 Loss 1.33 

6 NA11830 97308635 97316868 8233 97311558 Loss 1.29 
 

* As inferred by ÇOKGEN. 



.CEL Files

Raw Probe 

Intensities

Genotype 

Calls

Intensity Extraction & Normalization

Rescaling & Raw Copy Number via Linear Regressionaawww Cawww aaw escaling & Raw Cescaling & Raescaling & Raescaling & Raw CRaww Cescaling & Raw Cescaling & Ra LLineLLiinneLinea Linear Rnear Rnear Ra Linear RLinenear Ra La Linear Rnear Ry Number vi

Raw Copy Number 

for Each Marker

Identi!cation of Candidate CNV Regions via Edge Detection

Candidate Gain/Loss 

Regions

Final Class 

Assignments 

for All Markers

Fine Tuning of Region Boundaries and 

False Positive Elimination Using Objective Function 

Optimization with Simulated Annealing

Smoothed Copy 

Number Signal

Low-pass Filtering

Figure 1



0

100

S
a

m
p

le
 F

re
q

u
e

n
c
y

Base Position (Mb)

Chr 1

0

-50

-100

-150

50

50 100 150 200 250 0 50 100 150 200 250

-100

-50

100

Base Position (Mb)
S

a
m

p
le

 F
re

q
u

e
n

c
y

Chr 2

0

50

Chr 3

0 50 100 150 200

S
a

m
p

le
 F

re
q

u
e

n
c
y

-100

-50

0

50

Base Position (Mb)

-50

0

50

100

0 50 100 150

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 4

0 50 100 150

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 5

-40

-20

40

60

0

20

-40

-20

40

60

0

20

Chr 6

-60

0 50 100 150

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 7

0 50 100 150

Base Position (Mb)

-100

-50

0

50

S
a

m
p

le
 F

re
q

u
e

n
c
y

-40

-20

20

40

0

-100

-60

-80

S
a

m
p

le
 F

re
q

u
e

n
c
y

Base Position (Mb)

0 50 100 150

Chr 8

Chr 9

Base Position (Mb)

0 20 40 60 80 100 120 140

-40

-20

0

20

S
a

m
p

le
 F

re
q

u
e

n
c
y

Base Position (Mb)

0 20 40 60 80 100 120 140

Chr 10

-40

-60

-80

S
a

m
p

le
 F

re
q

u
e

n
c
y

-20

0

20

0 20 40 60 80 100 120

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 11

-50

0

50

0 20 40 60 80 100 120

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 12

-50

0

50

20 40 60 80

40

100

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 13

-40

-60

-80

-20

0

20

20 40 60 80

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

-40

-60

-20

0

20

40

Chr 14

100 20 40 60 80 100

Base Position (Mb)

Chr 15

40

60

-40

-60

-20

0

20

S
a

m
p

le
 F

re
q

u
e

n
c
y

0 20 40 60 80

-40

-20

0

20

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 16

20 40 60 800

0

-50

-100

50

Chr 17

Base Position (Mb)

S
a

m
p

le
 F

re
q

u
e

n
c
y

0 20 40 60

Base Position (Mb)

-40

-20

0

20

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 18

S
a

m
p

le
 F

re
q

u
e

n
c
y

Base Position (Mb)

Chr 19

0 20 40 6010 30 50

-40

-20

-60

-80

0

20

S
a

m
p

le
 F

re
q

u
e

n
c
y

Chr 20

Base Position (Mb)

0 20 40 6010 30 50

0

50

100

50

-100

-150

Base Position (Mb)

20 4010 30

Chr 21

S
a

m
p

le
 F

re
q

u
e

n
c
y

0

-5

-10

-15

-20

-25

5

20 30 40 5045352515

Base Position (Mb)

Chr 22

S
a

m
p

le
 F

re
q

u
e

n
c
y

-60

-40

-20

0

20

40

60

Figure 2



0
.2
5

0
.3

0
.3
5

0
.4

0
.4
5

0
.5

uency Density

C
E
U

0

0
.0
5

0
.1

0
.1
5

0
.2

1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

81-90

CNV Frequ

S
a

m
p

le
 F

re
q

u
e

n
cy

C
E
U

Y
R
I

A
S
IA
N

F
ig

u
re

 3



0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 30 55 80 105 130 155 180

D
is

c
o

rd
a

n
c
e

 R
a

te

Sample Frequency Threshold

ÇOKGEN

Birdseye

PENNCNV

Expected by 

chance

Figure 4



0

0
.0
5

0
.1

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

81-90

91-100

101-110

111-120

121-130

131-140

141-150

151-160

161-170

171-180

Density

S
a

m
p

le
 F

re
q

u
e

n
c
y

Ç
O
K
G
E
N

P
e
n
n
C
N
V

B
ird

se
y
e

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

81-90

91-100

101-110

111-120

121-130

131-140

141-150

151-160

161-170

171-180

Density

S
a

m
p

le
 F

re
q

u
e

n
c
y

Ç
O
K
G
E
N

P
e
n
n
C
N
V

B
ird

se
y
e

A
B

F
ig

u
re

 5



59.5 59.6 59.7 59.8 59.9 60.0 60.1

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Base Position (Mb)

R
a

w
 C

o
p

y
 N

u
m

b
e

r

101.1 101.2 101.3 101.4 101.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Base Position (Mb)

R
a

w
 C

o
p

y
 N

u
m

b
e

r

0

i

                                                                    Size of Amplicon (base pair)

         LOSS

 M
e

a
n

 F
lu

o
r
e

s
c

e
n

c
e

 I
n

t
e

n
s

it
y

5000

8000

4000

3000

2000

1000

50
60

70 80 90 100 110 120 130 140 150

7000

6000

i

Size of Amplicon (base pair)

M
e

a
n

 F
lu

o
r
e

s
c

e
n

c
e

 I
n

te
n

s
it

y

GAIN

50 60 70 80 90 100 110 120 130 140 150

1600

1400

1200

1000

800

600

400

200

0

A B

C D

Figure 6



31.0 31.1 31.2 31.3 31.4 31.5 31.6

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Base Position (Mb)

R
a
w

 C
o

p
y
 N

u
m

b
e

r

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

31.0 31.1 31.2 31.3 31.4 31.5 31.6

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Base Position (Mb)

R
a
w

 C
o

p
y
 N

u
m

b
e

r

� �
�
�
�
� ����

�
�
�
�
�
�
�
�
�
�
�
����

�
�
�
�
�
�
�
������
��
��
������

�
�

�

�

�

�
�
���
�
�

�

�

�

�
�
�
�����
�
�
�
�
�
�����
�
�
���� �������� ��

�
�
�����

�
�
����
�
�
�
��
���

���
���

��� �� �� ���
�

�
�
�������� � �� � �� �����

�

�

�
�
����
��
��� ��� ���� � ��������������� �� ������ ����

��
����������

�
�
��
�� �� � � ������ ��� �

�
�
�
� ���������������

�
�
�
�
�
�
�
��
�������

�
�

�

�

�

�
�
���
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�����
�
�
�
�
�
�

�
�
�

� � ��
� ���

� �
�
�
�

�
�
�
�
�
� �� ��

�
�

��
��
���
���
��
�
�
�
�
�
�
�
���
�
�
�
������
�
�
��
���
�
�
�
�����������

�
�

�
�

�

�

�

31.0 31.1 31.2 31.3 31.4 31.5 31.6

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Base Position (Mb)

R
a
w

 C
o

p
y
 N

u
m

b
e

r

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

A B

C

Figure 7



F
ig

u
re

 8



R

i j

Q
ij

gainT

i j

R

Q
ij

gainT

i j

R

Q
ij

gainT

i j

R

Q
ij

gainT

A B

DC 

Figure 9



S
(t)

S
(t+1)

Gain Normal

Valid Move Invalid Move

A

B

C

D

E

Q
ij

Figure 10


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

