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Abstract

Biclustering is an important problem that arises in di-
verse applications, including analysis of gene expression
and drug interaction data. The problem can be formalized
in various ways through different interpretation of data and
associated optimization functions. We focus on the problem
of finding unusually dense patterns in binary (0-1) matri-
ces. This formulation is appropriate for analyzing experi-
mental datasets that come from not only binary quantiza-
tion of gene expression data, but also more comprehensive
datasets such as gene-feature matrices that include func-
tions of coded proteins and motifs in the coding sequence.

We formalize the notion of an “unusually” dense sub-
matrix to evaluate the interestingness of a pattern in terms
of statistical significance based on the assumption of a uni-
form memoryless source. We then simplify it to assess sta-
tistical significance of discovered patterns. Using statisti-
cal significance as an objective function, we formulate the
problem as one of finding significant dense submatrices of
a large sparse matrix. Adopting a simple iterative heuris-
tic along with randomized initialization techniques, we de-
rive fast algorithms for discovering binary biclusters. We
conduct experiments on a binary gene-feature matrix and a
quantized breast tumor gene expression matrix. Our exper-
imental results show that the proposed method quickly dis-
covers all interesting patterns in these datasets.

1. Introduction

Biclustering, which has been explored extensively in
molecular biology research recently, provides a framework
for finding hidden substructures in large high-dimensional
matrices. In general, the problem can be defined as one of
finding sets of rows and columns such that the rows show
unusual similarities along the dimensions characterized by

∗ This research was supported in part by NSF Grant CCR-0208709 and
NIH Grant R01 GM068959-01.

columns and vice versa. It is possible to define these similar-
ities in terms of correlation of gene expression vectors [2],
preserving the order of expression levels [1], matching sym-
bols over a finite alphabet [4] or high density of gene expres-
sion or features [7]. In order to understand and interpret the
biological relevance of discovered patterns, these formula-
tions need to be associated with means of evaluating statis-
tical significance of biclusters.

In this paper, we address the problem of finding unusu-
ally dense submatrices in a binary matrix. Binary matrices
can arise from quantization of gene expression data [5] or
more comprehensive datasets such as gene-feature matri-
ces that include functions of coded proteins and motifs in
the coding sequence. We formalize the notion of an “unusu-
ally dense” submatrix in the next section, formulate statisti-
cal significance as an objective function for an optimzation
problem and develop fast heuristics to solve this problem
in Section 3. We present experimental results on the perfor-
mance of these formulation and algorithms in Section 4. We
conclude our discussion in Section 5.

2. Statistical Significance of Biclusters

Given binary matrix G with M rows, N columns and
K ones, we are looking for a subset of rows and columns
such that the submatrix induced by these rows and columns
is dense enough to be considered statistically significant.
Here, the rows and columns of the submatrix do not have to
be contiguous. We assume that the matrix is generated by a
memoryless source, with Pr{G(i, j) = 1} = p. This prob-
ability parameter can be estimated by the density of the ma-
trix, i.e., p = K/MN . For an arbitrary set of m rows and
n columns, assume that the number of ones in the corre-
sponding submatrix is k. Then k is binomially distributed
with parameters mn and p. Using Chernoff’s bound [6] we
find

Pr{k ≥ mnp(1 + ε)} ≤ e−mnpε2/3 (1)

for ε > 0.
Assume that we are interested in discovering all subma-

trices such that the probability of observing k ones in the



matrix is less than P ∗. Then, by (1), the observed biclus-
ters is significant if

e−mnpε2/3 ≤ P ∗, (2)

thus

mnpε2/3 ≥ − ln(P ∗) . (3)

Solving this equation and letting E = − ln(P ∗), we find
that a submatrix of m rows, n columns and k ones is signif-
icant if k ≥ mnp(1 + ε), where

ε ≥
√

3E/mnp . (4)

In other words, in order to be considered a significant bi-
cluster, the number of ones in a submatrix has to deviate
from the mean by at least

√
3Emnp. We use this result to

derive an objective function for our randomized heuristic to
find statistically significant biclusters.

In passing, we should add that finding the largest dense
submatrix requires a different approach. Let WM,N be the
size of the largest dense submatrix. By “dense” we mean
that the density of ones in this submatrix is greater than
p∗ = p(1 + ε) where ε is computed from (4). Then by
Boole’s inequality (cf. [6])

Pr{WM,N > m · n} ≤
(

M

m

)(

N

n

)

e−mnε2/3 (5)

where we used (1). We know (cf. [4]) that the largest sub-
matrix be of size m = O(M) and n = O(1) provided
M � N , which is the case in gene expression datasets.
Thus, we analyze the case when m = αM for α < 1.
We first approximate the binomial coefficient by eMH(α),
where H(α) = −α ln α− (1−α) ln(1−α) is a natural en-
tropy. We find that

Pr{WM,N > αmn} ≤ 1/
√

2πMα(1 − α)
· exp

(

MH(α) + n ln N − αMn ln(3/ε2)
)

.
(6)

We choose such α∗ that

H(α∗) = α∗Mn ln(3/ε2) (7)

leading to the conclusion that the largest dense submatrix
should have m = α∗M rows and n = O(1) columns
with high probability. This is actually verified on a real
gene-feature matrix as shown in Figure 2 of the next sec-
tion. However, when m = o(M) and n = o(N), using
the same arguments we can prove that (cf. [4]) WM,N =
Θ(log2 MN) which is significantly smaller than what we
got in the previous case. In fact, it shows that large subma-
trices are of order O(log2 MN) while the largest biclusters
are O(M).

3. Randomized Heuristics

Following the results of the previous section, a subma-
trix of m rows, n columns and k ones is a statistically sig-
nificant bicluster if

C(m, n, k) = k − mnp −
√

3Emnp ≥ 0 (8)

Observing that a larger value of C(m, n, k) implies a more
interesting bicluster, we consider C(m, n, k) as an objective
function and search for submatrices for which this function
has a local maximum. For this purpose, we adopt an itera-
tive heuristic based on alternating projections between row
and column spaces.

Given a set of m rows, consider the problem of choos-
ing a set of columns to maximize C(m, n, k). Define x
to be an M -dimensional binary vector where x(i) = 1
if and only if the ith row of G is in the submatrix. De-
fine N -dimensional binary vector y similarly for the col-
umn space. Then, clearly the submatrix induced by x and y
has k = xT Gy ones. The following lemma provides a solu-
tion for y that maximizes C(|x|, |y|, xT Gy) for a fixed x.

Lemma 1 Given vector x , let s = GT y. Let Π
be a permutation of numbers from 1 to N such that
s(Πi) ≥ s(Πj) for i < j. Then, the vector y that maxi-
mizes C(|x|, |y|, xT Gy) = xT Gy − p|x||y| −

√

3Ep|x||y|
is given by

y(Πi) =

{

1 if s(Πi) ≥ p|x| +
√

3Ep|x|(
√

i −
√

i − 1)
0 otherwise

(9)
for 1 ≤ i ≤ N .

The above lemma can be proven by simple algebra observ-
ing that if y(i) = 1 and s(i) < s(j), then we must have
y(j) = 1 for C(|x|, |y|, xT Gy) to be maximal and the con-
tribution of each column to this objective function is the dif-
ference between the number of ones of this column in the
rows characterized by x and the quantity on the right-hand-
side of Equation (9). This lemma also applies to the solu-
tion of x for a fixed y.

Observing that the algorithm provided by Lemma 1 only
requires a sparse matrix-vector multiplication which can
be performed in O(K) time, we derive an iterative al-
gorithm [3] for finding a maximally significant bicluster,
which is shown in Figure 1.

Different runs of FINDBICLUSTER will converge to dif-
ferent local maxima since the initialization is random. This
provides us with two possible methods of using this algo-
rithm for finding all interesting biclusters.

1. Run FINDBICLUSTER several times to obtain a set of
biclusters. Prune out the redundant ones among these,
in terms of significance and overlaps between subma-
trices. Rank and return the remaining biclusters based
on their significance.



FINDBICLUSTER(G, E)
. G : Binary matrix
. E : Desired level of significance (− ln(P ∗))
1 initialize y to a random binary vector
2 repeat
3 solve for x to maximize C(|x|, |y|, xT Gy)
4 solve for y to maximize C(|x|, |y|, xT Gy)
5 until no improvement on C(|x|, |y|, xT Gy) is possible
6 return submatrix induced by x and y if it is significant

Figure 1. Iterative algorithm for discover-
ing significant biclusters in binary gene ex-
pression data for a desired level of signifi-
cance(E).

2. Run FINDBICLUSTER several times to find a single
bicluster that has maximum significance. Return this
bicluster and filter out the submatrix associated with
this bicluster. Repeat this procedure until no signifi-
cant patterns can be found.

The first method has the advantage of discovering overlap-
ping biclusters, which is very desirable but difficult to estab-
lish for many biclustering algorithms. However, as the sec-
ond method filters out the most dominant pattern in the ma-
trix, it makes possible for the algorithm to converge to less
significant but still interesting biclusters.

4. Experimental Results

We first illustrate the performance of the proposed algo-
rithm on a gene-feature dataset. This dataset was part of
the KDD-Cup data mining competition in 20011. It con-
tains 862 genes from a particular organism. Each gene is
associated with a set of features like protein classes, pro-
tein complexes, phenotypes, motifs and functions. Repre-
senting genes by rows and features by columns, we obtain
a 862×456 binary matrix with 4339 ones (density:0.011),
where a one signifies the association between the corre-
sponding gene and feature (e.g., if gene i codes a protein
that belongs to protein class j, then the G(i, j) = 1). The
most dominant bicluster in this matrix is shown in Figure 2.
In this figure, blue points show ones in the input matrix and
red points show ones that are contained in the bicluster. This
bicluster is composed of 42 features and all genes, which
has a density of 0.104, with a significance of P ∗ ≤ 10−6.
This bicluster is a dominant local maximum of the objective
function in (8) and we observe that the algorithm almost al-
ways tends to converge to this solution. This indeed veri-
fies the result on the largest dense submatrix in Section 2.

1 http://www.cs.wisc.edu/˜dpage/kddcup2001/
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Figure 2. A strongly dominant bicluster in a
gene-feature matrix. (a) Bicluster in the origi-
nal binary matrix, (b) binary matrix reordered
to bring rows and columns in bicluster to-
gether.(Blue: Ones in original matrix, Red:
Ones in bicluster.)

Thus, we conclude that this bicluster can be interpreted as
a global pattern that contains common features in this par-
ticular organism. These features include protein classes like
transcription factors, protein complexes like cytoskeleton,
phenotypes like sensitivity to antibiotics, functions like cell
growth, cell division and DNA synthesis and a few mo-
tifs. In Figure 2(a), the first red block corresponds to pro-
tein classes, the second corresponds to phenotypes and the
last one corresponds to functions. On the other hand, mo-
tifs are distributed sparsely across genes. Since this pattern
is strongly dominant in this dataset, it is appropriate to fil-
ter out this submatrix as suggested by the second method of
the previous section and rerun the biclustering algorithm to
discover smaller interesting patterns. Doing so, we discover
several small biclusters. As an example, one of these reveals
that the protein class of tubulins is associated with two mo-
tifs, namely PS00227 and PS00228 with P ∗ ≤ 10−3.



We also conduct experiments on a gene expres-
sion dataset that is obtained from NCBI’s GEO data
collection2. This dataset contains gene expression data col-
lected from 84 samples which are associated with several
types of human breast cancer. The data is used for char-
acterization of variation in gene expression in 65 surgi-
cal specimens of breast tumor from 42 individuals. The
dataset contains 9216 probes.

We quantize the breast tumor data to signify whether
each gene is significantly expressed or suppressed in each
sample as follows.

E(i, j) =

{

1 if G(i, j) > µj + ασj

0 otherwise
(10)

S(i, j) =

{

1 if G(i, j) < µj − ασj

0 otherwise
(11)

Here, G denotes the gene expression matrix, µj and σj de-
note the mean and standard deviation of expression level
across all genes for sample j, respectively. α is an input pa-
rameter that is used to tune the desired deviation from av-
erage. Binary matrix E contains a one for each gene that is
significantly expressed in the corresponding sample. Sim-
ilarly, binary matrix S signifies the supression of genes
across samples. The experiments that are reported in this
section are all conducted on the binary expression matrix
(E), which is computed by setting α = 2.

A dominant bicluster discovered in breast tumor data is
shown in Figure 3. For the sake of visualization, since the
number of genes in the dataset is very large, we only show
genes that are expressed in at least 3 samples as other genes
are not interesting enough to construct significant biclus-
ters. In Figure 3(a), the significant bicluster discovered on
the binary expression matrix is shown. In Figure 3(b), the
genes and samples that are contained in the bicluster are
brought together to illustrate the density of the bicluster.
The original gene expression matrix is reordered accord-
ingly in Figure3(c) to illustrate that binary quantization and
biclustering together are able to reveal a significant expres-
sion pattern in the breast tumor data. This bicluster contains
141 genes and 62 samples with a density of 0.37, while the
entire matrix has a density of 0.077 (P ∗ ≤ 10−6). The sam-
ples in the bicluster all belong to luminal-like ER+ tumors,
ERBB2+ tumors and basal-like tumors, while normal breast
cells are left out.

Another significant bicluster that illustrates how local
maxima of the objective function in (8) is able to cap-
ture interesting patterns is shown in Figure 4. This biclus-
ter contains 79 genes and 7 samples with a density of 0.56
(P ∗ ≤ 10−6) and is associated with normal breast cells.

2 http://www.ncbi.nlm.nih.gov/geo/gds/gds_
browse.cgi

Note also that all biclusters presented in this section are dis-
covered in less than a second by a simple implementation
of the algorithm in Matlab on a 3GHz Intel Pentium-IV PC.

5. Conclusion

In this paper, we analyze a particular formulation of the
biclustering problem, which is focused on finding unusu-
ally dense patterns in a binary matrix. Along with results on
the expected size of biclusters and measures to assess sta-
tistical significance of these patterns, we develop algorithms
for the discovery of dense submatrices based on this formu-
lation. We illustrate that this formulation of the bicluster-
ing problem is applicable to various instances ranging from
analysis of gene-feature data to gene expression datasets.
Our experimental results also show that the proposed algo-
rithm is able to discover interesting patterns quickly.
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Figure 3. A maximally significant bicluster
discovered in breast tumor data. (a) Biclus-
ter in the binary quantized matrix, (b) binary
matrix reordered to bring rows and columns
in bicluster together on top left corner, (c)
original gene expression matrix reordered
accordingly (Red: Expressed, Green: Sup-
pressed).
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Figure 4. A locally maximal significant bi-
cluster discovered in breast tumor data. (a)
Bicluster in the binary quantized matrix, (b)
binary matrix reordered to bring rows and
columns in bicluster together on top left cor-
ner, (c) original gene expression matrix re-
ordered accordingly (Red: Expressed, Green:
Suppressed).


