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Compression, Clustering, and Pattern
Discovery in Very High-Dimensional
Discrete-Attribute Data Sets
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Abstract—This paper presents an efficient framework for error-bounded compression of high-dimensional discrete-attribute data sets.
Such data sets, which frequently arise in a wide variety of applications, pose some of the most significant challenges in data analysis.
Subsampling and compression are two key technologies for analyzing these data sets. The proposed framework, PROXIMUS, provides
a technique for reducing large data sets into a much smaller set of representative patterns, on which traditional (expensive) analysis
algorithms can be applied with minimal loss of accuracy. We show desirable properties of PROXIMUS in terms of runtime, scalability to
large data sets, and performance in terms of capability to represent data in a compact form and discovery and interpretation of
interesting patterns. We also demonstrate sample applications of PROXIMUS in association rule mining and semantic classification of
term-document matrices. Our experimental results on real data sets show that use of the compressed data for association rule mining
provides excellent precision and recall values (above 90 percent) across a range of problem parameters while reducing the time
required for analysis drastically. We also show excellent interpretability of the patterns discovered by PROXIMUS in the context of
clustering and classification of terms and documents. In doing so, we establish PROXIMUS as a tool for both preprocessing data before
applying computationally expensive algorithms and directly extracting correlated patterns.

Index Terms—Clustering, classification, association rules, data mining, sparse, structured and very large systems, singular value

decomposition.

1 INTRODUCTION

ITH the availability of large-scale computing platforms

for high-fidelity design and simulations, and instru-
mentation for gathering scientific as well as business data,
increased emphasis is being placed on efficient techniques
for analyzing large and extremely high-dimensional data
sets. These data sets may comprise discrete attributes, such
as those from business processes, information retrieval, and
bioinformatics, as well as continuous attributes such as
those in scientific simulations, astrophysical measurements,
and engineering design. Analysis of high-dimensional data
typically takes the form of extracting correlations between
data items, discovering meaningful information in data,
clustering data items, and finding efficient representations
for clustered data, classification, and event association.
Since the volume (and dimensionality) of data is typically
large, the emphasis of new algorithms must be on efficiency
and scalability to large data sets. Analysis of continuous
attribute data generally takes the form of eigenvalue/
singular value problems (PCA /rank reduction), clustering,
least squares problems, etc. Analysis of discrete data sets,
however, generally leads to NP-complete/hard problems,
especially when physically interpretable results in discrete
spaces are desired. Consequently, the focus here is on
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effective heuristics for reducing the problem size. Two
possible approaches to this problem are probabilistic
subsampling and data reduction. This paper focuses on
algorithms and heuristics for error-bounded compression of
very large high-dimensional discrete-attribute data sets.

Compression of discrete data is a particularly challen-
ging problem when compressed data is required to directly
convey the underlying patterns in the data. Conventional
techniques such as singular value decomposition (SVD),
frequency transforms such as discrete cosine transforms
(DCT) and wavelets, and others do not apply here because
the compressed data (orthogonalized vectors or frequency
coefficients) are not directly interpretable as signals in noisy
data. Techniques for clustering do not generalize easily to
extremely high dimensions (10* or more) while yielding
error-bounded cluster centroids. Unfortunately, the run-
times of all these methods are unacceptably large when
scaled to millions of records of very high dimension.

In order to overcome the computational requirements of
the problem while providing efficient analysis of data, we
propose a new technique—binary({0,1}) nonorthogonal
matrix transformation to extract dominant patterns. In this
technique, elements of singular vectors of a binary valued
matrix are constrained to binary entries with an associated
singular value of 1. Since this modification results in a
heuristic approximation to a singular vector, we refer to
these vectors as approximation vectors in the rest of this paper
to avoid confusion. In contrast, in a related technique called
Semi-Discrete Decomposition (SDD), elements of singular
vectors are in the set {—1,0,1} and the associated singular
value is continuous. We show here that our variant results
in an extremely efficient algorithm and powerful frame-
work within which large data sets can be summarized.
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PROXIMUS is a nonorthogonal matrix transform based on
recursive partitioning of a data set depending on the
distance of a relation from the dominant pattern. The
dominant pattern is computed as a binary approximation
vector of the matrix of relations. PROXIMUS computes only
the first approximation vector and, consequently, each
discovered pattern has a physical interpretation at all levels
in the hierarchy of the recursive process. For the discovery
of the dominant approximation vector, we adopt an
iterative alternating heuristic. Due to the discrete nature
of the problem, initialization of approximation vectors is
critical for convergence to desirable local optima. Taking
this fact into account, we derive effective initialization
strategies, along with algorithms for a multiresolution
representation of the data set.

PROXIMUS provides several facilities to analyze discrete
attributed data. These include:

e discovering dominant and deviant patterns in the
data in a hierarchical manner,

e clustering of data in an error-bounded and physi-
cally interpretable form,

e finding a concise representation for the data, and

e isolating signal from noise in a multiresolution
framework.

We also demonstrate the use of PROXIMUS for prepro-
cessing data for subsequent analysis using conventional
techniques. Using the apriori algorithm [1] for association
rule mining, we clearly show PROXIMUS’ ability to
accurately represent data in a very compact form. Our
experimental results show that use of the compressed data
for association rule mining provides excellent precision and
recall values (above 90 percent) across a range of support
thresholds while reducing the time required for association
rule mining by several orders of magnitude.

In the next section, we discuss the use of matrix
transforms in the context of data analysis and compression
and review existing approaches based on probabilistic
subsampling, matrix decomposition, and latent structure
analysis. In Section 3, we present the basic idea of PROXIMUS
using representative examples, formulate the problem, and
provide heuristics to solve the discrete rank-one approxima-
tion problem efficiently, and present our recursive algorithm
for hierarchical discovery of patterns. In Section 4, we
present an application of PROXIMUS in association rule
mining. We demonstrate the effectiveness of PROXIMUS on
both synthetic and experimental data in the context of a
variety of applications and illustrate its scalability to large
data sets in Section 5. Finally, in Section 6, we draw
conclusions and outline some avenues for future research.

2 BACKGROUND AND RELATED WORK

Conventional approaches to analysis of large data sets focus
on probabilistic subsampling and data compression. Data
reduction techniques based on probabilistic subsampling
have been explored by several researchers [2], [3], [4], [5],
[6]. Data compression techniques are generally based on the
idea of finding compact representations for data through
discovery of dominant patterns or signals. A natural way of
compressing data relies on matrix transforms, which have
found various applications in large-scale data analysis.
From the pattern discovery and data analysis point of view,
data reduction can also be regarded as discovery of latent
structures in the data, which is closely related to matrix

decomposition. There is also significant literature on the
analysis of latent structure in continuous domain that are
based on matrix decomposition, probability, and signal
processing. In the rest of this section, we summarize
commonly used orthogonal and nonorthogonal matrix
transformations, latent structure analysis, and their applica-
tions in data analysis and explore alternate approaches for
binary data sets.

2.1 Orthogonal and Nonorthogonal Matrix

Decompositions

Singular Value Decomposition (SVD) is an orthogonal
matrix decomposition that is used extensively in applica-
tions ranging from Principal Component Analysis (PCA) to
dimensionality reduction. SVD transforms a matrix into two
orthogonal matrices and a diagonal matrix of singular
values. Specifically, an m by n rectangular matrix A can be
decomposed into A = U VT, where U is an m x r ortho-
gonal matrix, V' is an n x r orthogonal matrix, and ¥ is an
r x r diagonal matrix of the singular values of A. Here, r
denotes the rank of matrix A. The matrix A = ulalvlT is a
rank-one approximation of A, where u; and v; denote the
first columns of matrices U and V/, respectively. This is the
best rank-one approximation to A in minimum least squares
sense. These vectors are the left and right singular vectors of
A corresponding to the largest singular value.

If we think of a matrix as a multiattributed data set with
rows corresponding to relations and columns correspond-
ing to attributes, we can say that each 3-tuple consisting of a
singular value oy, kth column in U, and kth column in V'
represents a pattern in A characterized by o;. Larger
singular values imply that the corresponding pattern is
more dominant in the data set. A common algorithm in
information retrieval, Latent Semantic Indexing (LSI) [7],
exploits this property of SVD to summarize the underlying
data represented by matrix A by truncating the SVD of A to
an appropriate number of singular values so that the
insignificant patterns corresponding to small singular
values are filtered.

Semi-Discrete Decomposition (SDD) is a variant of SVD
in which the values of the entries in matrices U and V' are
constrained to be in the set {—1,0,1} [8]. The main
advantage of SDD is its lower storage requirement, since
each element only requires 1.5 bits, thus enabling a higher
rank representation for a given amount of memory. Since
the entries of the singular vectors are constrained to be in
the set {—1,0,1}, computation of SDD becomes an integer
programming problem, which is NP-hard. Kolda and
O’Leary [8] propose an iterative alternating heuristic to
solve the problem of finding rank-one approximations to a
matrix in polynomial time. Each iteration of this heuristic
has linear time complexity. Although PROXIMUS is closely
related to SDD, it is different in the sense that it partitions
data based on approximations rather than extracting the
approximation.

Centroid Decomposition (CD) is an approximation to
SVD that is widely used in factor analysis [9]. CD represents
the underlying matrix in terms of centroid factors that can
be calculated without knowledge of the entire matrix; the
computation only depends on the correlations between the
rows of the matrix. Centroid factors are computed via the
centroid method, which is a fast iterative heuristic for
partitioning the data. CD runs in linear time in a number of
rows of the matrix but requires knowledge of correlations
between all pairs of rows. This requires quadratic time and
space in the number of rows. Thus, while adapting centroid
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method to binary data, an alternative for the correlation
matrix must be determined that takes advantage of the
discrete nature of data and is much sparser.

Principal Direction Divisive Partitioning (PDDP) is a
hierarchical clustering strategy for high-dimensional real-
valued sparse data sets [10]. PDDP partitions documents
(rows) into two parts, recursively, based on the principal
direction of the document-term matrix. The idea of recur-
sively partitioning the matrix based on the first singular
vector is also used by PROXIMUS with a heuristic modifica-
tion. However, PROXIMUS is designed specifically for binary-
attributed data and always preserves the sparse and binary
nature of the data in contrast to PDDP. This is advantageous
in terms of computational resources (PROXIMUS has no
FLOPs) and interpretability of the decomposition.

2.2 Latent Variable Analysis and Other Methods for
Data Representation

Principal Component Analysis (PCA) [11] and Factor
Analysis [12] are two common data analysis methods that
are used to explore the latent structure in data. Both of these
methods are based on orthogonal matrix decompositions
and are closely related to each other. Recently proposed
methods such as Probabilistic Latent Semantic Analysis
(PLSA) are based on probabilistic modeling of the latent
space [13]. PLSA assumes an underlying latent structure
that generates the observed data and uncovers this latent
structure using the EM Algorithm [14]. Although PROX-
IMUS is algorithmically similar to PLSA in terms of using
iterative projections, it is based on the idea of optimization-
based matrix decomposition rather than the assumption of
an underlying latent structure. In addition, the recursive
structure of PROXIMUS allows hierarchical analysis of the
underlying patterns in the data. At the same time, patterns
discovered by PROXIMUS can be regarded as latent
variables as well. Another technique, Independent Compo-
nent Analysis (ICA) [15], tries to find a representation for
the observed data such that the statistical dependency
between the components of representation is minimized.
PROXIMUS is different from latent variable-based methods
in the sense that it relates each row (document or data item)
with exactly one pattern. This allows hierarchical analysis of
the underlying cluster structure, taking advantage of the
binary nature of data.

2.3 Other Work on Summarizing Discrete-Attribute
Data Sets

Other work on summarizing discrete-attributed data sets is
largely focused on clustering very large categorical data sets.
A class of approaches is based on well-known techniques
such as vector-quantization [16] and k-means clustering [17].
The k-modes algorithm [18] extends k-means to the discrete
domain by defining new dissimilarity measures. Another
class of algorithms is based on similarity graphs and
hypergraphs. These methods represent the data as a graph
or hypergraph to be partitioned and apply partitioning
heuristics on this representation. Graph-based approaches
represent similarity between pairs of data items using
weights assigned to edges and cost functions on this
similarity graph [19], [20]. Hypergraph-based approaches
are based on the fact that discrete-attribute data sets are
naturally described by hypergraphs and directly define cost
functions on the corresponding hypergraph [21], [22].

Our approach differs from these methods in that it
discovers naturally occurring patterns with no constraint on
cluster sizes or number of clusters. Thus, it provides a
generic interface to the problem, which may be used in
diverse applications. Furthermore, the superior execution
characteristics of our approach make it particularly suited
to extremely high-dimensional attribute sets.

3 NONORTHOGONAL DECOMPOSITION OF BINARY
MATRICES

PROXIMUS is a collection of novel algorithms and data
structures that rely on a variant of SDD to determine error-
bounded approximations to binary attributed data sets.
While relying on the idea of matrix transforms, PROXIMUS
provides a framework that captures the properties of
discrete data sets more accurately and takes advantage of
their binary nature to improve both the quality and
efficiency of the analysis. We formulate the problem of
error-bounded approximation of binary matrices as follows.

Definition 3.1. Given m binary vectors ai,as,...,an in
n-dimensional space, find k n x 1 binary approximation
vectors yi, Yo, - . . , Y Such that

V1<i<m,3jst ||a—yl[s<e (1)

to minimize k, where € is a prescribed error bound.

Letting A= [alag...am]T and Y = [y1y2..‘ym}T, this
becomes a minimum-rank matrix decomposition problem
where [|[A — XYT|| < ¢ and X is an m x k binary matrix
with z; = 1if and only if y; is the approximation vector thatis
of minimum Hamming distance from row a; and satisfies (1).

Our approach to solving this problem is based on
recursively computing discrete rank-one approximations
to the matrix to extract dominant patterns hierarchically
[23]. This simplifies the problem algorithmically while
providing a framework for interpretability and applicability
of the approximation. Relying on the fact that rows and
columns have different conceptual meanings in many
applications (e.g., rows being items and columns being
features), and one is generally interested in the underlying
patterns spread across the rows, we develop an algorithm
that is based on recursively partitioning the set of rows.

The problem of error-bounded approximation can also
be thought of as finding dense patterns in sparse matrices.
A binary rank-one approximation for a matrix is defined as
an outer product of two binary vectors that is at minimum
Hamming distance from the matrix over all outer products
of the same size. In other words, the rank-one approxima-
tion problem for matrix A with m columns and n rows is
one of finding two vectors  and y that maximize the
number of zeros in the matrix (A — 2y"), where x and y are
of dimensions m and n, respectively. The following
example illustrates this concept:

Example 1. Given a matrix A, we compute a rank-one
approximation as follows:

110 1
A=|[1 1 0= |1][1 1 0]=ay"
110 1
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Fig. 1. SVD examples that illustrate difficulty of interpreting results. In each panel, three figures show the most significant singular vectors in the item
space of a transaction matrix in decreasing order of dominance from left to right. (a) Nonoverlapping item sets and (b) overlapping item sets.

Here, vector y is the pattern vector which is the best
approximation for the objective (error) function specified. In
our case, this vector is [1 1 O]T. Vector z is the presence vector
representing the rows of A that are well approximated by the
pattern described by y. Since all rows contain the same pattern
in this rank-one matrix, x is vector of all ones. We further
clarify this discussion with a slightly nontrivial example.

Example 2. Consider now a binary matrix A, which does
not have an exact rank-one representation (i.e., the
matrix is of higher rank):

—_ o O O
OO O =
— O = =
o= OO
— == =

Consider the following rank-one approximation for A:

1 00 1 01
< 1 0 01 01
A= 0 [0 01 0 1]= 0000 0
1 00 1 01

The pattern vector here is [0 010 11" and corresponding
presence vector is [1 10 1)". This presence vector indicates
that the pattern is dominant in the first, second, and fourth
rows of A. A quick examination of the matrix confirms
this. In this way, a rank-one approximation to a matrix can
be thought of as decomposing the matrix into a pattern
vector, and a presence vector that signifies the presence of
the pattern.

Conventional singular value decompositions (SVDs) can
be viewed as summations of rank-one approximations to a
sequence of matrices. Starting with the input matrix, SVD
computes a pair of singular vectors that are associated with

the largest singular value of the matrix. The outer product
of this pair, scaled by the corresponding singular value,
provides the best rank-one approximation for the matrix in
terms of minimizing the norm of the error. Then, the
approximation is subtracted from the input matrix, to
obtain a residual matrix, which, in turn, is the part of the
matrix that cannot be represented by the first singular
matrix, and the same procedure is applied to the residual
matrix. Subsequent singular vectors are chosen to be
orthogonal to all previous singular vectors. The number of
singular vectors that are necessary to compute in order to
reach a zero residual matrix is equal to the rank of the
matrix. Indeed, the procedure can be terminated earlier to
obtain a “truncated SVD” for the matrix which provides the
best possible approximation for the given number of
singular vectors. While SVD is useful in some applications
involving discrete data sets such as LSI, the application of
SVDs to binary matrices has two drawbacks. First, the
resulting decomposition contains nonintegral vector values,
which are generally hard to interpret for binary data sets.
One such application is illustrated in Section 5.3. SDD
partially solves this problem by restricting the entries of
singular vectors to the set {—1,0,1}. However, the second
drawback is associated with the idea of orthogonal
decomposition or, more generally, extraction of singular
vectors. If the underlying data consists of nonoverlapping
(orthogonal) patterns only, SVD successfully identifies these
patterns. However, if the patterns with similar strengths
overlap, then, because of the orthogonality constraint, the
features contained in some of the previously discovered
patterns are extracted from each pattern. Fig. 1 illustrates
this fact. We construct a transaction matrix by assigning
elements ¢;; to the number of instances of item j in
transaction 7. In Fig. la, we show the three dominant
singular vectors (rank reduction to three) derived from a
synthetic transaction matrix. It is clear from this figure that
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items 1 and 3 form the most dominant cooccurring set of
items followed by items 8 and 9, followed by item 2.
However, in the case of overlapping frequent sets, as in the
example of Fig. 1b, the orthogonality constraint poses
difficulties. In this example, the first vector indicates that
items 1, 3, 5, 8, and 9 are most significant. However, in
orthogonalizing the second singular vector with respect to
the first, SVD introduces negative values into the second
vector. There is no easy interpretation of these negative
values in the context of most postprocessing techniques,
such as evaluating frequent itemsets or association rules as
illustrated in Section 4. Since SDD is based on repeatedly
finding rank-one approximations to a residual matrix which
is obtained by extracting the information that is already
contained in a previous approximation, SDD also suffers
from the same problem. A simple solution to this problem is
to cancel the effect of the first singular vector by removing
this singular vector and introducing all subsets of this
vector with appropriate weights. This can prove to be
computationally expensive. What is required here is a
nonorthogonal transform that does not introduce negative
values into the composing vectors.

Based on these observations, our modification to SDD for
binary matrices has two major components:

e pattern and presence vectors are restricted to binary
elements, and

e the matrix is partitioned based on the presence
vector after each computation of rank-one approx-
imation, and the procedure is applied recursively to
each partition. This method provides a hierarchical
representation of dominant patterns.

3.1 Discrete Rank-One Approximation of Binary

Matrices

The problem of finding the optimal discrete rank-one
approximation for a binary matrix can be stated as follows.

Definition 3.2: Rank-one approximation. Given matrix
A€ {0,1}" x{0,1}", find x € {0,1}" and y € {0,1}" to
minimize the error:

1A — 2y" |1} = {ai; € (A —2y") : |ay| =1} (2)

In other words, the error for a rank-one approximation is
the number of nonzero entries in the residual matrix. This
0-1 integer programming problem with 2" feasible points
is NP-hard [8]. Indeed, it is closely related to finding
maximum cliques in graphs. Although there is considerable
literature on the maximum clique and biclique problems
[24], [25], we do not know of any approximation algorithms
or effective heuristics in literature for this relaxed formula-
tion of the problem. However, the main purpose here is to
find a low-rank decomposition that approximates groups of
rows with local patterns rather than a globally optimal
rank-one approximation. As a locally optimal solution for
the rank-one approximation problem will be associated
with a local pattern, it is adequate to apply an efficient
heuristic to discover underlying local patterns in the matrix.
Removing the nonorthogonality constraint and applying
such an heuristic recursively, it is possible to find an
approximation for the entire matrix, while improving the
local approximation as well. For this purpose, we adopt an
alternating iterative heuristic for computation of approx-
imation vectors for binary matrices, with suitable initializa-
tion heuristics.

3.1.1 Alternating lterative Heuristic
Since the objective (error) function can be written as

2 2 21,112
1A = 2y [ = [| Al — 227 Ay + [|=]5]ly]5,
minimizing the error is equivalent to maximizing

Calw,y) = 22" Ay — ||l 3]lyl[5- 3)

If we fix y and set s= Ay, the corresponding z that
maximizes this function is given by the following equation:

£(i) = { L if 2560) > Iyl 4)

0, otherwise.

This equation follows from the idea that a nonzero
element of = can have a positive contribution to Cy(z,y) if
and only if at least half of the nonzero elements of y match
with the nonzero entries on the corresponding row of A.
Clearly, this equation leads to a linear time algorithm in
the number of nonzeros of A to compute z, as computa-
tion of s requires O(N) time and (4) can be evaluated in
O(m) time. Here, m is the number of rows and N is the
number of nonzeros (ones) in the matrix. Similarly, we can
compute vector y that maximizes Cy(z,y) for a fixed z in
linear time. This leads to an alternating iterative algorithm
based on the computation of SDD [8], namely, initialize y,
then solve for . Now, solve for y based on updated value
of z. Repeat this process until there is no improvement in
the objective function.

3.2 Recursive Decomposition of Binary Matrices
We use a rank-one approximation of the input matrix to
partition the rows into two submatrices. This is in contrast
to conventional SVD-based techniques that compute the
residual matrix and apply the transformation repeatedly.

Definition 3.3: Partitioning based on rank-one approxima-
tion. Given rank-one approximation A =~ xy", a partition of A
with respect to this approximation results in two submatrices
Ay and Ag, such that

= A17
a AO:

for 1 < i < m. Here, a; denotes the ith row of A.

if x(i) =1 (5)

otherwise

The intuition behind this approach is that rows corre-
sponding to 1s in the presence vector are the rows of a
maximally connected submatrix of A. Therefore, these rows
have more similar nonzero structures among each other
compared to the rest of the matrix. Since the rank-one
approximation for A gives no information about A,;, we
further find a rank-one approximation and partition this
matrix recursively. On the other hand, we use the
representation of the rows in A; given by the pattern vector
y and check if this representation is adequate via some
stopping criterion. If so, we decide that matrix A; is
adequately represented by matrix zy’ and stop; else, we
recursively apply the procedure for A; as for A.

The partitioning-and-approximation process continues
until the matrix cannot be further partitioned or the
resulting approximation adequately represents the entire
matrix. We use the Hamming radius of the set of rows that
are present in the approximation to measure the adequacy
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zo1(2) = 14, r(Aor,ym) <€ |
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Ao & Zo1Yo
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Aoo & ZooYoo

zoo(2) = 1V%, r(Aoo, Yoo) < €

Z00, Yoo

Fig. 2. Recursive structure of PROXIMUS. Each rectangular internal node is a rank-one approximation and two circular children of these nodes are
the matrices that result from partitioning of parent matrix based on this approximation. Leaves of the recursion tree correspond to final

decomposition.

of the representation provided by a rank-one approxima-
tion, regarding pattern vector as the centroid of this set of
rows.

Definition 3.4: Hamming radius. Given a set of binary vectors
R ={z1,xq,...,x,} and a binary vector y, the Hamming
radius of R centered around y is defined as:

r(R,y) = max h(zi,y), (6)
where h(z,y) = ||z — y|[3 is the Hamming distance between
binary vectors x and y.

We use the Hamming radius as the major stopping
criterion for the algorithm to decide whether the underlying
pattern can represent all rows of the corresponding
submatrix adequately. The recursive algorithm does not
partition submatrix A; further if the following conditions
hold for the rank-one approximation 4; ~ z;y! .

o (A1, vi) < ¢, where ¢ is the prescribed bound on the
Hamming radius of identified clusters.

e 1;(j) =1Vj, ie, all the rows of A; are present in A;;.

If the above conditions hold, the pattern vector y; is
identified as a dominant pattern in matrix 4; and recorded
along with its associated presence vector in the approxima-
tion of A. The resulting approximation for A is represented
as A= XY7T, where X and Y are m x k and n x k matrices
containing the presence and pattern vectors in their rows,
respectively, and k is the number of identified patterns.

Fig. 2 illustrates the recursive structure of PROXIMUS.
Starting with matrix A, a rank-one approximation to A is
computed. The matrix A is then partitioned into A; and A,
based on the presence vector z. The rank-one approxima-
tion to A; returns a presence vector of all 1s and the
approximation is adequate so the recursion stops at that
node and y; is recorded as a dominant pattern. On the other
hand, matrix Ay is further partitioned as the approximation
Ay ~ xoyg does not cover all rows of A;. The overall

e T
decomposition is A~ XY7T, where X = [x1,z01,700] and

Y= [yh Yo, yo(ﬂT

3.3 Initialization of Iterative Process

While finding a rank-one approximation, initialization is
crucial not only for the rate of convergence but also the
quality of the solutions since a wrong choice can result in
poor local minima. In order to have a feasible solution, the
initial pattern vector should have magnitude greater than
zero, i.e., at least one of the entries in the initial pattern
vector should be equal to one. It is important that the
initialization of the pattern vector must not require more
than ©(NN) operations, since it will otherwise dominate the
runtime of the overall algorithm. Possible procedures for
finding an initial pattern vector include:

e Partition. Select a separator column and identify the
rows that have a nonzero at that column. Initialize
the pattern vector to the centroid of these rows. The
idea is to partition the rows of the matrix along one
dimension expecting that such a partition will
include rows that contain a particular pattern.

e Greedy Graph Growing. Based on the idea of
iterative improvement heuristics in graph partition-
ing [26], this scheme starts with a randomly selected
row in one part and grows the part by including
rows that share a nonzero with that part until a
balanced partition is obtained. The initial pattern
vector is set to the centroid of rows in this part.

e Random-row. Observing that a balanced partition of
rows is not necessary due to the nature of the
problem, we select one row randomly and initialize
the pattern vector to that row with the expectation
that it shares some nonzeros with the rows that share
the same pattern with itself.

All of the above initialization schemes require O(N)
time. Our observations indicate that the Random-row
scheme tends to initialize the pattern vector close to a
desired local minimum, ie., the resulting rank-one
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T) : {beer, snacks}
T; : {beer, snacks, bread}
T3 : {milk, bread}
T, : {milk, bread, butter}
T5 : {milk, butter}
Tt : {bread, butter}

(@)

beer snacks bread milk butter
7 1 1 0 0 0
T, 1 1 1 0 0
T= 13 0 0 1 1 0
T, 0 0 1 1 |
5 0 0 0 1 1
s 0 0 1 0 1

(b)

Fig. 3. (a) A sample transaction set of six transactions on five items and (b) its corresponding transaction matrix.

approximation includes a specific pattern that represents
a small set of rows adequately. On the other hand, Greedy
Graph Growing provides hierarchical extraction of pat-
terns, the resulting rank-one approximation generally
contains a combination of patterns, which can be further
decomposed in the recursive course of the algorithm. The
Partition scheme lies somewhere between the first two
schemes as the balance of the partition depends on the
selection of the dimension. In our implementation of this
scheme, we select the dimension that yields the most
balanced partition in order to increase the probability of
partitioning along a significant dimension.

3.4 Generalization of Proposed Framework

Throughout the discussion of the proposed framework, we
have considered rows of a matrix as data items and
columns as features and assumed that patterns of interest
lie in rows. While this assumption is valid in many
applications, it might be necessary to consider patterns in
other dimensions as well, in some cases. PROXIMUS is easily
extendible to such instances as follows:

e If we are interested in column patterns, PROXIMUS is
directly applicable on the transpose of the matrix.
Specifically, decomposition in each dimension (rows
or columns) also reveals some interpretable pattern
structure on the other dimension since both pattern
and presence vectors are binary. This property is
illustrated on document-term matrices in Section 5.3.

e PROXIMUS can also be modified to capture pattern
structure in both row and column spaces. This can
be done by computing a binary residual to the
matrix by extracting the rank-one approximation
from the matrix (A, = A&xy?, where & and —
denote binary AND and NOT operations) and
decomposing this residual matrix recursively as in
SDD, until the residual matrix is sparse enough to be
neglected. In this decomposition, a row or a column
may contain more than one pattern. However, this
formulation does not provide a hierarchical cluster-
ing information as PROXIMUS does.

3.5 Computational Complexity

In the alternating iterative heuristic for computing rank-one
approximations, each solution to the optimization problem
of (3) takes O(N) time. The number of iterations required to
compute a rank-one approximation is a function of the

initialization vector and strength of associated local minima.
In general, if the underlying pattern is strong, we observe
very fast convergence. In our experiments, we observe the
computation time of a rank-one approximation to be linear
in the number of nonzeros of the matrix for all instances.

If we view the recursive process as a tree with each node
being a rank-one approximation to a matrix, we can see that
the total number of nonzeros of the matrices at each level of
the recursion tree is at most equal to the number of
nonzeros in the original matrix. Thus, the overall time
complexity of the algorithm is O(h x N), where h denotes
the height of the recursion tree. If the resulting decomposi-
tion has k pattern vectors (which is equal to the number of
leaves) in the recursion tree, then h < k — 1. Therefore, we
can conclude that the time complexity of overall algorithm
is O(k x N). Note that k£ is a function of the underlying
pattern structure of the input matrix and the prescribed
bound on Hamming radius.

4 APPLICATION TO ASSOCIATION RULE MINING

In this section, we show a simple application of PROXIMUS
to accelerate association rule mining, a well-known and
extensively studied problem in data mining [1]. Given a set
of transactions and a set of items, transactions being subsets
of the entire item set, association rule mining aims to
discover association rules between itemsets that satisfy the
minimum support and confidence constraints prescribed by
the user. An association rule is an assertion of kind “{bread,
milk} = {butter}” meaning that if a transaction contains
bread and milk, then it is also likely to contain butter.
Support of a rule in a transaction set is defined as the
fraction of the transactions that contain all items in the rule.
Confidence of a rule is the ratio of the number of
transactions that contain both sides of the rule to the
number of all transactions that contain the left-hand-side of
the rule.

Given a transaction set on a set of items, we can construct
a binary transaction matrix by mapping transactions to rows
and items to columns and setting entry ¢;; of transaction
matrix 7' to 1 if item j is in transaction 7;. Figs. 3a and 3b
illustrate a sample transaction set of six transactions on the
item set {beer, snacks, bread, milk, butter} and its corre-
sponding transaction matrix, respectively. A locally optimal
rank-one approximation to 7'is z1y/ with pattern vectory; =
[00111)" and presence vector z; =[001111]". This
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Fig. 4. (a) Decomposition of transaction matrix of the transaction set in Fig. 3 and (b) the corresponding approximate transaction set.

means that the pattern {bread, milk, butter} is present in
transactions 713, Ty, 15, and Ti. Based on this pair of
approximation vectors, we can create a virtual transaction
T] = {bread, milk, butter} that represents all these transac-
tions. Partitioning 7" with respect to x; and finding a locally
optimal rank-one approximation to the resulting matrix, we
end up with pattern and presence vectors y, = [111 00 0]"
and z, = [1100 0 0]", respectively. Based on these approx-
imation vectors, we can create a second virtual transaction
T} = {beer, snacks, bread}, which represents transactions 7}
and T5. We associate weights w(1]) =4 and w(T}) =2
representing the number of transactions that each virtual
transaction represents. Finally, we end up with a transaction
set of two transactions that is an approximation to the
original transaction set. We can mine this smaller approx-
imate transaction set for association rules on behalf of the
original transaction set. This will clearly be faster than
mining the original transaction set as the cardinality of the
approximate transaction set is one third of the original set.
Figs. 4a and 4b show the decomposition of 7" into two pairs
of approximation (presence and pattern) vectors and the
resulting approximate transaction set, respectively.

In general, in order to reduce the time required for
association rule mining, we decompose the corresponding
transaction matrix of the original transaction set and create
an approximate transaction set based on the set of identified
pattern vectors. We associate a weight with each virtual
transaction that is defined as the number of nonzeros in the
corresponding presence vector, i.e., the number of transac-
tions that contain the corresponding pattern. We then mine
the approximate transaction set. Extension of the associa-
tion rule mining algorithms to the case of weighted
transactions is straightforward; we consider transaction 7
as occurring w(7}) times in the transaction set while
counting the frequencies of itemsets. Compression of
transaction sets might be particularly useful in data mining
applications where data is distributed and sites are loosely
coupled or privacy is a concern [27].

5 EXPERIMENTAL RESULTS

In this section, we illustrate the desirable properties of
PROXIMUS in terms of effectiveness in clustering and
discovering patterns, application to association rule mining,
semantic classification of terms and documents, and
runtime scalability.

5.1 Effectiveness of Analysis

In this section, we report two experiments that illustrate the
superior characteristics of PROXIMUS in approximating and
clustering binary data sets compared to other state-of-the-
art clustering and approximation techniques that work
particularly well on continuous data. We generate two
sample matrices by implanting uniform patterns into
groups of rows on a background of uniform white noise.

The first matrix that is shown in Fig. 5a contains four
overlapping patterns of uniform distribution. This matrix is
generated as follows: For the background noise, any entry
of the 80 x 52 matrix is set to 1 with probability py. If the ith
row contains the kth pattern, then the (4, j)th entry of the
matrix is set to 1 with probability p,, where

(k=1 +7)+1<j<Kk+(k+1)r

Here, | denotes the number of columns that are specific to a
single pattern, and r denotes the number of columns shared
by two neighboring patterns. While generating the matrix of
Fig. 5, pattern length parameters [ and r are set to 10 and 4,
respectively, probability parameters p; and p, are set to 0.01
and 0.8, respectively, and the number of rows that contain
the same pattern is set to 20. Note that the rows and
columns that belong to a particular pattern are shown to be
adjacent in the figures just for illustration purposes. In other
words, for any of the algorithms whose performance is
reported here, the ordering of rows of columns is not
important. Indeed, if we reorder the rows and the columns
of the matrix randomly, it is possible to recover the block-
diagonal structure of the matrix using the hierarchical
clustering of rows provided by PROXIMUS.

The rank-4 approximation provided by binary nonortho-
gonal decomposition of the matrix is shown in Fig. 5b. As
seen in the figure, PROXIMUS is able to capture the four
underlying patterns in the matrix and associate each row
with the pattern that it contains. The Frobenius norm of the
error of this approximation is 19.7, which is the square root
of the Hamming distance of 388 between the input and
approximation matrices.

The rank-4 approximation provided by the four most
significant singular vectors of SVD is shown in Fig. 5c. This
approximation is optimal in the sense of minimum least
squares, with an error of 17.2. Although this is less than the
binary approximation provided by PROXIMUS, it is not very
useful in applications involving binary data for several
reasons, as discussed before. Although we can see in the
figure that SVD approximation is able to reveal the
underlying patterns on the diagonal blocks of the matrix
once the matrix is reordered, it is not possible to capture
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Fig. 5. Approximation of a sample binary matrix that contains four overlapping uniform patterns. (a) Original matrix, (b) rank-4 approximation
provided by PROXIMUS, (c) rank-4 approximation provided by SVD, (d) rank-8 approximation obtained by quantizing SVD approximation,
(e) approximation (sum of four rank-1 matrices) obtained by quantizing most dominant singular vectors, and (f) rank-4 approximation

provided by K-means clustering.

these patterns just by analyzing the real-valued singular
vectors provided by SVD. On the other hand, binary pattern
and presence vectors of PROXIMUS reveal this structure
clearly regardless of ordering. In order to address the
interpretability problem of SVD, it is necessary to quantize
the SVD approximation. This can be done in two ways. The
first method is to quantize the rank-4 SVD approximation
matrix, obtaining the binary approximation of Fig. 5d with
an error of 19.7, which is the same as that of PROXIMUS.
However, the rank of this approximation is 8, since
quantization of individual entries does not preserve the
rank of the matrix. In order to preserve the rank of the
matrix, it is possible to quantize the dominant singular
vectors rather than the approximation matrix. This makes it
possible to represent the approximation as the sum of four
rank-one matrices, although the sum may have a larger
rank due to loss of orthogonality. However, quantization of
singular vectors is problematic since these vectors may
contain large negative values. The only way to quantize
these vectors is rounding the absolute value of each singular
vector amplified by the associated singular value relying on
the assumption that a large negative value in the singular
vector, accompanied with another negative in the corre-
sponding singular vector, may be associated with a pattern
in the matrix. However, this assumption does not always
hold since a negative value combined with a positive value
in the corresponding singular vector may be associated with
the correction of an error introduced by more dominant
singular vectors. However, binary quantization amplifies
such errors because of misinterpretation of negative values.

Indeed, the rank-4 approximation obtained by quantizing
singular vectors has an error of 45.2 that is more than
100 percent worse than that of other techniques. As seen in
Fig. 5e, this method is unable to reveal the underlying
pattern structure.

We also compare the performance of PROXIMUS with
that of K-means. We obtain an approximation through
K-means clustering by approximating each row by the
centroid of the cluster that it is assigned to. For the matrix of
Fig. 5, 4-way K-means clustering provides the same
approximation as PROXIMUS, as shown in Fig. 5f. However,
for harder instances, K-means is not able to separate
clusters with significant overlap as will be discussed in
the next example.

The approximation provided by the methods of interest
on a harder instance is shown in Fig. 6. The 134 x 64 matrix
shown in Fig. 6a consists of five groups of rows each of
which contain two patterns randomly drawn from five
uniform overlapping patterns. These patterns are generated
as described above with the same pattern length parameters
(Il =10, » = 4) and density parameters p, = 0.005 for back-
ground noise and p, = 0.8 for patterns. In this experiment,
the number of rows in each group are also chosen randomly
from a normal distribution.

As seen in Fig. 6b, PROXIMUS is able to provide a rank-6
approximation for this matrix, which reveals the underlying
pattern structure reasonably with an error of 27.3. The only
redundancy in this approximation is the division of the
second row group into two parts, which adds an additional
rank for the approximation. This is caused by the outlying
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Fig. 6. Approximation of a sample binary matrix that contains five row clusters each contain a randomly chosen pair of five overlapping uniform
patterns. (a) Original matrix, (b) rank-6 approximation provided by PROXIMUS, (c) rank-6 approximation provided by SVD, (d) rank-29 approximation
obtained by quantizing SVD approximation, (e) approximation (sum of six rank-1 matrices) obtained by quantizing most dominant singular vectors,

and (f) rank-6 approximation provided by K-means clustering.

sparsity of some columns in the fifth pattern. On the other
hand, as seen in Figs. 6¢ and 6d, although SVD provides a
rank-6 approximation with an error of 22.9 and the error of
the quantized SVD approximation is 26.2, which is better
than that of PROXIMUS, this approximation is of rank 29. If
we rather quantize the SVD approximation at the singular
vector-level as a sum of six rank-one matrices, the
approximation totally looses track of the original matrix
with an error of 68.7, which is shown in Fig. 6e.

The approximation provided by 6-way K-means cluster-
ing is shown in Fig. 6f. The error of this approximation is
34.1. Although this approximation is able to capture the
patterns in the first, second, and fifth row groups, it clusters
the significantly overlapping third and fourth row groups
together. If we try 5-way clustering taking into account that
there are five implanted row groups, K-means is still not
able to distinguish these two row groups as separate
clusters.

While the computational complexity of SVD is O(mn x
min{m,n}) in general, sparse implementations of truncated
SVD computations can run in O(kNI) time [7], where k is
the number of computed singular vectors and I is the
number of iterations in the computation of a single singular
vector. Recall that N is the number of nonzeros in the
matrix. Similarly, while a general implementation of

K-means requires O(kmnl) time, its complexity can be
improved to O(kNI) by taking advantage of the sparse and
binary nature of the input data sets. Although these
algorithms appear to have asymptotically similar time
complexity, we note three observations about their runtime
performances. First, the factor that relates to the number of
approximation vectors or clusters is not & itself in PROX-
IMUS, rather it is the height of the recursion tree, which is
sublinear in most cases. Second, while no fill-in is
introduced by PROXIMUS into any submatrix during the
computation, SVD may introduce fill-in into the residual
matrix. Finally, the number of iterations in PROXIMUS is less
than that in the other two methods and floating point
operations are completely avoided due to the discrete
nature of the algorithm.

5.2 Performance of PRoxiMus in Association Rule
Mining

In this section, we illustrate the desirable properties of
PROXIMUS in the context of association rule mining using
the method described in Section 4. In our implementation,
we use the well-known apriori algorithm [1] as the
benchmark algorithm for association rule mining. While
improved algorithms that reduce the number of passes over
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TABLE 1
Description of Data Sets and Results of Preprocessing via PROXIMUS

# # # # Approximation Preprocessing
Dataset Transactions Items Non-zeros vectors time (s)
connect 67558 129 2904994 6703 1192
pumsb 49047 2113 3629478 4443 1264
pumsb_star 49047 2088 2475997 5416 526
TABLE 2

Time Spent and Number of Discovered Rules in Mining Original and Approximate Transaction Sets

Dataset Confidence =~ ARM time ARM Time  # Rules # Rules # Rules
(%) orig. (s) appx. (s) orig. appx. common
50 4766 447 31237901 29342663 28044087
connect 70 3988 388 25174099 23977423 22545595
90 3335 333 17297192 17885346 15588014
50 3818 317 56412765 56333542 52147969
pumsb 70 3187 269 47350093 48920776 44271385
90 2708 235 36750896 41146376 34796814
50 4152 329 53468258 50788639 48137472
pumsb._star 70 3315 284 48255192 49015788 44846212
90 2665 191 38066956 42939526 36234688

data have been developed, these improved algorithms can
also be applied to the output of PROXIMUS. We use an
efficient implementation of the apriori algorithm' [28] for
our experiments. We create a second version of the software
which is capable of mining weighted transaction sets by
slightly modifying the original software. For each data
instance, we mine the original transaction set with the
original software as well as the approximate transaction set
with the modified software and compare the results in
terms of both precision and recall rates and the runtime of
the software on these two transaction sets.

We evaluate the performance of PROXIMUS in associa-
tion rule mining on three FIMI workshop data sets.” These
data sets are described in Table 1. We decompose the
matrices corresponding to these data instances using
PROXIMUS with € = 5. The resulting number of approxima-
tion vectors and the time spent for obtaining this approx-
imation are also shown in the table. As seen in the table,
PROXIMUS approximates the transaction set using about
one-tenth of the original number of transactions for all three
instances.

The results of mining the original and approximate
transaction sets for association rules on these three instances
are shown in Table 2. We mine these transaction sets for
rules of cardinality 6 for a constant support threshold of

1. Borgelt’s implementation of the apriori algorithm is available as open
source at http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html.

2. FIMI workshop data sets are available at http://fimi.cs.helsinki.fi/
data/.

20 percent, 20 percent, and 10 percent for data sets connect,
pumsb and pumsb_star, respectively. These rule cardinal-
ities and support thresholds are selected large enough to be
interesting. While the performance of PROXIMUS for
different values of these parameters is generally conserved,
the speed-up provided by compressing transaction sets
increases with decreasing support threshold and increasing
rule size. The table shows the runtime of apriori algorithm
on both original and approximate transaction sets along
with the number of discovered rules on each transaction set,
and the number of rules that are common to these
transaction sets for varying confidence threshold. For all
three instances, the number of discovered rules is in the
order of 10M, and the time spent on mining the original
transaction sets is much larger than the time spent for
compressing these transaction sets via PROXIMUS.

The performance figures derived from these results are
shown in Fig. 7. Each figure displays speed-up, precision,
and recall values for varying confidence for all three data
sets. Speed-up is calculated as the ratio of the runtime of a
priori software on original transaction set to that on
approximate transaction set. Precision and recall corre-
spond to the percentage of the rules discovered on both
transaction sets among the ones that are discovered on the
approximate transaction set and original transaction set,
respectively.

As seen in the figure, PROXIMUS provides a speed-up of
at least 10 for all data sets for all confidence levels, which is
consistent with the rate of compression. While providing
this speed-up, PROXIMUS almost always keeps the precision
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Fig. 7. (a) Speed-up, (b) precision, and (c) recall obtained by performing association rule mining on approximate transaction set for varying

confidence threshold.

and recall values above 90 percent. As seen in Figs. 7a and
7b, precision decreases with increasing confidence, while
recall shows an opposite trend. This observation is con-
sistent with the fact that PROXIMUS “fills in” the lacking
items in all transactions that have the same pattern, while it
“filters out” the items that are too rare to be included in the
pattern. Therefore, although these rare items can come
together to form low-confidence rules, they cannot be
discovered for higher confidence thresholds even in the
original transaction set. Similarly, by filling in the items for
all transactions that belong to a particular pattern, PROX-
IMUS increases the confidence of the rules that are derived
from this pattern. The effects of several other parameters
such as bound on Hamming radius (e), initialization scheme
for rank-one approximation, rule size, and support thresh-
old are discussed in detail in [29].

It is important to note that meaningful association rules
are mined by repeatedly varying confidence and support
values until a suitable rule set is determined. This implies
that the cost of applying PROXIMUS is amortized over
several runs of the apriori algorithm. What is impressive is
the fact that, even for a single run, the cost of compression
followed by a single a priori run is less than the cost of
running a priori on the original data set for all instances in
Table 2. It is also important to note that these data sets are
all dense. PROXIMUS is specially designed for high-
dimensional sparse data sets. Its performance on sparse
data sets is even more impressive.

5.3 Semantic Classification of Terms and
Documents

In this section, we use PROXIMUS to cluster terms in a
document database to extract semantic information, which
allows fine grain classification of terms. All experiments in
this section are performed on a document database that
consists of a collection of articles from the Los Angeles
Times newspaper from the late 1980’s. The data set consists
of 26,799 terms and 3,204 documents, each of which contain
a small subset of these terms.

It is possible to analyze the LA Times data set in two
different ways. First, we can regard documents as binary
vectors in the term space and cluster/classify them based
on the intuition that similar documents should have many
terms in common. On the other hand, it is also possible to
consider terms as binary vectors in the document space
and cluster/classify them observing that terms that are

semantically similar should occur together in several
documents. PROXIMUS provides a framework that allows
analyzing both dimensions simultaneously, since each
pattern is associated with a pattern and presence vector
that characterize row and column spaces, respectively. For
example, in the former case, if we represent each
document vector as a row of a matrix, presence vectors
in the decomposition of this matrix will provide a disjoint
clustering of documents while each pattern vector will
associate the corresponding cluster with a set of terms that
characterize the cluster. Note that a term can be associated
with more than one cluster/class in this formulation. This
also allows easy semantic interpretation of discovered
clusters. Although this formulation is common and very
appropriate since distinct document clusters and over-
lapping term clusters make sense, we consider the later
formulation in this paper to illustrate an alternative view
point for the analysis of such data sets.

We represent the data set as a binary term-document
matrix by mapping terms to rows and columns to
documents, so that a nonzero entry in the matrix indicates
the existence of a word in the corresponding document.
This results in a 26,799 x 3,204 term-document matrix that
contains 109,946 nonzeros. Observe that the matrix is highly
sparse, with each term occurring in about four documents
and each document containing about 35 terms on the
average. We decompose this matrix via PROXIMUS, setting
e = 0. This provides a hierarchical clustering of terms where
each leaf cluster is a set of terms that occur exactly in same
documents. For the LA Times data set, we obtain a tree with
16,324 leaf clusters. This number is indeed too large for
effective analysis, but it is possible to tune the ¢ parameter
to obtain a minimum number of clusters with desired
quality. However, because of space limitations, we present
sample clusters that are chosen from the internal nodes of
the perfect (e =0) hierarchical clustering tree for the
purpose of illustration.

A cluster of words discovered by PROXIMUS in LA Times
data set is shown in Fig. 8. This cluster is composed of terms
becker, bonk, bori, edberg, graf, ivan, lendl, martina, mate, mecir,
melbourn, miloslav, navratilova, pam, seed, semifin, shriver,
stefan, steffi, sweden, and wiland. This cluster is clearly related
to tennis. The pattern vector that corresponds to this cluster
is shown at the top of the figure, while the vectors that
correspond to the terms in this cluster are shown in the
following rows. The LA Times data set also includes
categorical information about the documents, where each
document is associated with one of six categories. These
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Fig. 8. A cluster of words discovered by PROXIMUS in LA Times data set. Each figure is a binary vector in document space associated with a word,
signifying the existence of the word in corresponding documents. Ticks on the x-axis divide the document space into six document classes. The
pattern vector associated with this cluster is shown at the top. We associate this cluster with tennis.

categories are Entertainment, Financial, Foreign, Metro, Na-
tional, and Sports. Note that PROXIMUS does not use this
categorical information. In the figures, the x-axis is divided
into six regions, where each region corresponds to a
category. As seen in the Fig. 8, the term vectors in the
cluster discovered by PROXIMUS are generally dense in the
Sports region and this is captured by the pattern vector
provided by PROXIMUS. This pattern vector contains
10 nonzeros, all of which belong to the Sports category.
These nonzeros correspond to 10 documents, which can
clearly be classified as tennis-related documents along with
the terms in the cluster. This example illustrates that
PROXIMUS is able to provide classification of documents
and terms at an adjustable resolution, which is much finer
than the available categorical information in this example.
Note also that PROXIMUS can also be used for filtering out
noise, as in LSI, with an additional advantage of removing
the noise completely rather than reducing its magnitude as
in the case of orthogonal decompositions like SVD. On the
other hand, while SVD-based methods such as LSI can be
used for text categorization in order to improve accuracy,
PROXIMUS provides a hierarchical clustering associated
with directly interpretable pattern vectors.

Other pattern vectors detected by PROXIMUS from the
LA Times data set show the same level of accuracy as
shown in Table 3. In this table, each cluster is associated
with a dominant class, which is the document category that
holds the majority in the pattern vector. We also note our
interpretation for this cluster, based on the terms in the
cluster. Observe that these interpretations provide semantic
classification at a finer resolution than the available
categorical information, while being consistent with them.
Pattern length is the number of documents in pattern
vector. As seen in the table, it is easy to interpret these
patterns since presence vectors provide discrete sets of
terms and pattern vectors provide discrete sets of docu-
ments. In addition, the number of documents in the

corresponding pattern for each cluster provides a clue
about the dominance of the cluster in the data set. Pattern
length increases with the depth of the node in the clustering
tree as would be expected. Most clusters are associated with
at most a couple of documents, while some clusters are
more dominant in the data set. Therefore, it is possible to
rank clusters of terms to identify popular topics of the time.
It is also interesting to note that PROXIMUS captures
patterns that are on the border of actual categories. For
instance, the dining-related pattern on the fourth row of the
table contains three documents that belong to Metro and
Entertainment categories each, which definitely makes sense.

5.4 Runtime Scalability

The results displayed in Fig. 9 demonstrate the scalability of
PROXIMUS in terms of number of rows, number of
nonzeros, and number of patterns. We generate a series of
binary matrices for three settings using the IBM Quest data
generator.” The settings for these three experiments are as
follows:

1. Number of patterns and average number of non-
zeros per row are kept constant at 100 and 10,
respectively. The number of rows ranges from ~ 1K
to ~ 1M. Note that number of nonzeros grows
linearly with number of rows while number of
columns remains constant.

2. The number of rows and number of patterns are
kept constant at ~ 100K and 100, respectively, while
the average number of nonzeros per row ranges
from 5 to 400. Note that the number of nonzeros and
the number of columns grow linearly with average
row density.

3. IBM’s Quest data generator is available as open source at http://
www.almaden.ibm.com/software/quest/Resources/index.shtml.
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TABLE 3
Sample Clusters Discovered by ProxiMus on the LA Times Data Set

Dominant Pattern
Terms in cluster class Interpretation  length
commod corn crop grain mercantil soybean wheate Financial Commodities 14
alysheba anita bred breeder derbi eclips filli Sports Horse racing 7
jockei mare mccarron santo turf undef whittingham
azing birdi birdie bogei calcavecchia chrysler crenshaw Sports Golf 7
kite lanni lyle mal nabisco par pga wadkin wedge
bak beef cheese cream dessert dishe menu pasta Metro Dining 7
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Fig. 9. Runtime of PROXIMUS (secs.) with respect to (a) number of rows, (b) average number of nonzeros per row, and (c) number of patterns.

3. The number of rows and average row density are
kept constant at ~ 100K and 10, respectively, while
the number of patterns range from 5 to 1,000. Note
that the number of columns grows linearly with the
number of patterns, while the number of nonzeros
remains constant.

All experiments are repeated with different randomly
generated matrices 10 times for all values of the varying
parameter. The reported values are the average runtimes
over these 10 experiments on a Pentium-IV 2.0 GHz
workstation with 512 MB RAM. In the first case, the
number of nonzeros grows linearly with the number of
rows, while the number of patterns is constant. Therefore,
we expect the runtime to grow linearly with the number of
rows as discussed in Section 3.5. As seen in Fig. 9a, the
runtime of PROXIMUS grows linearly with the number of
rows. In the second case, we expect runtime to grow
linearly with average row density since the number of
patterns remains constant, while the number of nonzeros
grows linearly. We see this expected behavior of runtime in
Fig. 9b. Finally, in the third case, it is important to note that
the runtime depends on the number of identified vectors,
and not directly on the number of patterns in the matrix. As
we expect the number of vectors to be linear in the number

of patterns, we expect a linear behavior of runtime with a
growing number of patterns since the number of nonzeros
remains constant. Fig. 9c shows that the behavior of runtime
with respect to the number of patterns is almost linear as
expected. Note that, generally, the number of identified
vectors is slightly superlinear in terms of the number of
underlying patterns.

6 CONCLUSIONS AND ONGOING WORK

In this paper, we have presented a powerful new technique
for analysis of large high-dimensional binary valued
attribute sets. Using a range of innovative algebraic
techniques and data structures, this technique achieves
excellent performance and scalability. The application of the
method to association rule mining shows that compression
of transaction sets via PROXIMUS accelerates the association
rule mining process significantly while being able to
discover association rules that are consistent with those
discovered on the original transaction set. Another sample
application on clustering of term-document matrices illus-
trates that the binary and hierarchical nature of PROXIMUS
makes it easy to interpret and annotate the output of
decomposition to obtain semantic information. The results
reported for these applications show that use of the method
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is promising in various applications, including dominant
and deviant pattern detection, collaborative filtering,
clustering, bounded error compression, and classification.
The method can also be extended beyond binary attributed
data sets to general discrete positive valued attribute sets.
PROXIMUS is available for free download at http://
www.cs.purdue.edu/homes/koyuturk/proximus/.
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