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Polytype control of spin qubits in silicon carbide
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Crystal defects can confine isolated electronic spins and are promising candidates for solid-

state quantum information. Alongside research focusing on nitrogen-vacancy centres in

diamond, an alternative strategy seeks to identify new spin systems with an expanded set of

technological capabilities, a materials-driven approach that could ultimately lead to ‘designer’

spins with tailored properties. Here we show that the 4H, 6H and 3C polytypes of SiC all host

coherent and optically addressable defect spin states, including states in all three with room-

temperature quantum coherence. The prevalence of this spin coherence shows that crystal

polymorphism can be a degree of freedom for engineering spin qubits. Long spin coherence

times allow us to use double electron–electron resonance to measure magnetic dipole

interactions between spin ensembles in inequivalent lattice sites of the same crystal. Together

with the distinct optical and spin transition energies of such inequivalent states, these

interactions provide a route to dipole-coupled networks of separately addressable spins.
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T
he search for coherently addressable spin states1 in
technologically important materials is a promising
direction for solid-state quantum information science.

Silicon carbide, a particularly suitable target2–4, is not a single
material but a collection of about 250 known polytypes. Each
polytype is a binary tetrahedral crystal built from the same two-
dimensional layers of silicon and carbon atoms, but different
stacking sequences give each its own crystal structure, set of
physical properties and array of applications. 4H- and 6H-SiC,
the most common hexagonal polytypes, are used for power and
opto-electronics, and as growth substrates for graphene5 and
gallium nitride6. The cubic 3C-SiC can be grown epitaxially on
silicon7 and is often used in micromechanics8. Driven by
computational2,9–11, electron paramagnetic resonance9,10,12–17

and optical studies3,12,13,18–22, research into defect-based spins
in SiC has also led to their increasing appreciation as candidate
systems for quantum control.

Our results demonstrate that despite their varying optical,
electronic and structural properties, the three most common SiC
polytypes all exhibit optically addressable spin states with long
coherence times. These spins are localized electronic states bound
to neutral divacancies9 and related defects. Increasingly complex
polytypes of SiC can host an increasing number of inequivalent
defect sites–for instance, there are n inequivalent divacancy sites
in nH-SiC.

We measure magnetic dipole–dipole interactions between
ensembles of inequivalent spins and use these interactions to

infer an estimate for the degree of optical spin polarization, 35–
60%, depending on the defect species. These high polarization
values are an important parameter for optically addressed spin
control. Moreover, as these inequivalent defect sites are separately
addressable through distinct optical and spin transition energies,
extending our results to the single-spin limit could lead to
quantum networks of dipole-coupled spins.

Results
Optically detected spin states in SiC. To generate defect
ensembles in SiC, we began with semi-insulating (SI), n-type and
undoped SiC substrates. In substrates with a low intrinsic defect
concentration, we then used carbon ion implantation followed by
an annealing process12 designed to join vacancies into complexes
(see Methods and Supplementary Note 1). The 3C-SiC samples
consist of single and polycrystalline epitaxial films grown on
silicon substrates, while the 4H- and 6H-SiC substrates are bulk
single crystals.

Our optically detected magnetic resonance (ODMR)
measurements show that all three measured polytypes host a
number of optically addressable defect spins. These ODMR
measurements rely on spin-dependent optical cycles both to
polarize spins with laser illumination and to measure those spin
states through changes in the photoluminescence (PL) intensity.
We focus on defect optical transitions with zero-phonon lines in
the 1.08–1.2 eV range12,23. These can be observed as peaks in the
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Figure 1 | Optical and spin transition spectra in the three most common SiC polytypes. (a) Optical spectrum of as-grown SI 4H-SiC, 12C-implanted SI

6H-SiC and 12C-implanted n-type 3C-SiC. (b) ODMR spectrum of SI 4H-SiC as a function of B parallel to the c axis (upper) and at B¼0 (lower), showing

six pairs of spin resonance lines. PL5 and PL6 appear faintly and are highlighted with dashed lines. (c) ODMR spectrum of SI 6H-SiC as a function of

c axis B (upper) and at B¼0 (lower), with a dashed lined highlighting the higher frequency QL5 resonance. (d) ODMR spectrum of 3C-SiC as a function

of [100]-oriented B (upper) and at B¼0 (lower). The 3C-SiC spins and the c-axis-oriented defects in the hexagonal polytypes (PL1, PL2, PL6, QL1,

QL2 and QL6) have C3n symmetry. The others (PL3, PL4, PL5, QL3, QL4 and QL5) are oriented along basal planes, resulting in the lower C1h symmetry

and non-degenerate spin transitions at B¼0.
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PL spectrum when the samples are illuminated with higher
energy laser excitation (Fig. 1a). In addition to these sharp peaks,
much of the PL from these defects is emitted in broad phonon
sidebands at lower energies, which we also collect.

The ODMR spectra (Fig. 1b–d) are obtained by measuring the
fractional change in PL intensity (DIPL/IPL) under continuous
wave laser illumination as a function of both an applied out-of-
plane DC magnetic field (B) and the frequency (f) of an applied
radiofrequency (RF) magnetic field. Spin flips produce a DIPL/IPL

signature and occur when f is resonant with one of the defect’s
spin transitions, which can all be tuned by varying B. The large
number of observed ODMR lines demonstrates the versatility of
SiC as a host for optically addressable spin states.

In each polytype, wavelength-resolved ODMR measurements
associate the various ODMR features with specific PL lines (see
Koehl et al.3 and Carlos et al.13 for 4H-SiC and Supplementary
Fig. S1 for 6H- and 3C-SiC). Some of the defects in 4H-SiC (PL1-
PL4) have been identified as spin-1 neutral divacancies9. The
defects responsible for the other spin transitions observed
(compiled in Supplementary Table S1) have similar spin and
optical properties to the neutral divacancies but have not been
conclusively identified.

Spin coherence at cryogenic and room temperatures. Long-
lived spin coherence, an important prerequisite for quantum
information and sensing technologies, is a general feature of spins
in all three polytypes. Our coherence measurements are based on
standard pulsed magnetic resonance techniques including Rabi,
Ramsey, Hahn echo, Carl-Purcell-Meiboom-Gill (Fig. 2) and spin
relaxation (Supplementary Fig. S2) sequences. At 20 K, the spin
relaxation times range from 8 to 24 ms. The Hahn-echo coher-
ence times (T2) range from 10ms to 360 ms at 20 K, depending on
the substrate, with significant dependence on implantation dose
and substrate doping type. The longest T2 times we measured
were in native neutral divacancies in 4H-SiC that were generated
during crystal growth.

All three polytypes exhibit defects whose spin coherence
persists up to room temperature (Fig. 3 and Supplementary Figs
S3–S5). In as-grown 4H-SiC, one neutral divacancy line (PL3)
persists up to room temperature as well as three other ODMR
lines (PL5–PL7) of unknown origin, all with T2¼ 50±10 ms.
Polycrystalline 3C-SiC also exhibits a state with room-tempera-
ture spin coherence, although similar states with the same
zero-phonon line and ODMR transition in certain other 3C-SiC
substrates that we measured did not. In 6H-SiC, the SI and n-type
substrates have the same ODMR lines at 20 K, but their room-
temperature ODMR signatures are substantially different from
each other (Fig. 3b), with several additional ODMR lines in the
n-type substrate that do not appear at 20 K or in the SI substrate.
The presence of these coherent spin states at room temperature is
a particularly promising result for spin-based sensing24 with SiC.

Coherent spin interactions. Ultimately, many spin-based quan-
tum technologies will require not only separately addressable
spins with long coherence times but also a means of coupling
these spins together. Patterned ion implantation has generated
individual and strongly coupled nitrogen-vacancy (NV) centres in
diamond25. We have also patterned spin ensembles in SiC, using
ion implantation through poly-(methyl-methacrylate) (PMMA)
apertures (Fig. 4a; Supplementary Fig. S6). Though these are not
individual spins, this patterning demonstration shows promise
for spatially engineering SiC defects. As optical wavelengths
significantly exceed the length scale required for strong magnetic
coupling between single dipoles (o30 nm for diamond NV
centres25), scaling up a dipole-coupled spin network is a

significant challenge. Silicon carbide defects in inequivalent
lattice sites have distinct RF and optical transition energies,
giving complex polytypes of SiC with many inequivalent defect
species the possibility of hosting many separately addressable
spins in a single confocal volume (Fig. 4b).

As a step towards independently addressable dipole-coupled
spins, we measure dipole–dipole spin interactions between
inequivalent defect ensembles. The study of these interactions
also provides valuable information about the spin density and
optical polarization in these defect states. Our measurements use
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Figure 2 | Ensemble spin coherence at cryogenic temperatures. (a) Hahn-

echo measurement of spin coherence of the neutral divacancies in as-

grown SI 4H-SiC at 20 K, showing T2 times of 140±5 ms (PL1), 144±3ms

(PL2), 360±20ms (PL3) and 340±5 ms (PL4). Long Rabi pulses (150 kHz)

were used to minimize decoherence from instantaneous diffusion.

(b) Hahn-echo measurement of the 3C-SiC spins at 6 K, implanted with 12C

at doses of 1012 cm� 2 and 1013 cm� 2, with respective decoherence times

of T2¼ 24±4ms and T2¼ 12±1ms. Inset: Ramsey measurement of 3C-SiC

spin dephasing, showing T2*¼ 52±3 ns. (c) Ramsey measurement at 20 K

of QL4 in SI 6H-SiC implanted with 12C at a dose of 1012 cm� 2. RF pulses

were detuned from resonance by 10 MHz. The fit is to an exponentially

decaying sinusoid with T2*¼ 250 ns. (d) Hahn-echo measurement for

QL1–QL6 in 1012 cm� 2-implanted SI 6H-SiC at 20 K, except for QL5, whose

overlap with other ODMR lines at B¼0 inhibited zero-field measurements.

Carl–Purcell–Meiboom–Gill (CPMG) dynamical decoupling for QL4 is also

shown, with TCPMG¼ 106±2 ms. The Rabi frequencies used (2.5 MHz) are

less than the inhomogeneous linewidth, resulting in roughly half of the

spins being driven. (e) Comparison of 20 K Hahn-echo coherence times in

n-type 6H-SiC (grey) and SI 6H-SiC (coloured) for three different 12C

implantation doses and spin densities. The error bars are 95% confidence

intervals from exponential fits to the Hahn-echo data. B¼0 for all the data

in this figure.
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double electron–electron resonance26 (DEER) to flip the spin of
one spin ensemble (the ‘drive’ species), while the resulting change
in the Larmor precession rate of another ensemble (the ‘sense’
species) is measured. We focused on 6H-SiC for these
measurements, which when implanted, had higher spin
densities than in our 4H-SiC substrates, and higher DEER-
coupling strengths.

The change in precession rate (Df), a measure of the average
dipole-coupling strength, is experimentally observed as an
additional phase (Dyfree) acquired by the sense species over the

free precession segment of a Hahn-echo measurement (Fig. 5a).
These parameters are related by Dyfree¼ 2pDf ð2tpulseÞ, where
tpulse is the delay of the drive pulses relative to the center of the
Hahn-echo sequence. This pulse sequence is designed to refocus
the sense spins due to all magnetic fields except those due to drive
species spin flips. When we drive Rabi oscillations on the drive
species, we simultaneously observe DEER oscillations in Dyfree of
the sense spins (Fig. 5b).

To measure both Df and the decoherence rate of the sense spins
due to drive-spin flips (t), we vary both tpulse and the phase of the

0 10 20
−8

−6

−4

−2

0

tfree (μs)

QL3

QL2

QL2

QL7

B
 (

G
au

ss
)

5

15

25

35

1.15 1.25 1.35 1.45
−4

−2

0

Frequency (GHz)

B
 (

G
au

ss
)

5

15

25

35

1.45

–4

–2

0

Frequency (GHz)

Δ
IP

L / IP
L  × 10

3

0
–2.5

Δ
IP

L / IP
L  × 10

4

0
–4

4H-SiC (SI) 6H-SiC

PL7

PL6
PL3

PL5

QL2

QL7

QL8

QL9

QL3

0 20 40 60

−3

−2

−1

0

PL3

PL5

PL7

295 K
B = 0

295 K
B = 0

0 50 100 150
−4

−3

−2

−1

0

Pulse length (ns)

4H−SiC 6H−SiC 3C−SiC

x5

tfree (μs)

ΔI
P

L 
/ I

P
L 

× 
10

4

ΔI
P

L 
/ I

P
L 

×
 1

04

ΔI
P

L 
/ I

P
L 

×
 1

04

ΔI
P

L 
/ I

P
L 

×
 1

05

ΔI
P

L 
/ I

P
L 

× 
10

3

1.41.351.31.251.21.15 1.41.31.2

Figure 3 | Ensemble spin coherence at room temperature. (a) ODMR in as-grown SI 4H-SiC as a function of B (upper) and at B¼0 (lower). (b) ODMR as

a function of B in n-type 6H-SiC (upper) and at B¼0 (lower) for n-type (dark blue) and SI (grey) 6H-SiC, implanted at 1013 cm� 2 dose of 12C. QL7–QL9

have reduced DIPL contrast as the temperature is lowered, disappearing by 200 K. (c) Rabi driving at room temperature: PL5 in SI 4H-SiC, QL2 in SI

6H-SiC (multiplied by a factor of � 5), and the 3C-SiC spin species. (d) Hahn-echo measurements of room-temperature coherence for spin states in

as-grown SI 4H-SiC. The fitted T2 times are 50±30ms (PL3), 44±2 (PL5) and 50±15ms (PL7). (e) Hahn-echo measurement of room-temperature

coherence in n-type and SI 6H-SiC, implanted at the 1013 cm� 2 dose. The fitted T2 times are 4.7±0.6ms (purple, QL2, n-type), 5.6±1.8 ms (turquoise,

QL2, SI), 4.4±1.5ms (gray, QL3, n-type) and 4.9±0.9ms (orange, QL7, n-type). The uncertainties are 95% confidence intervals from exponential fits to

the Hahn-echo data.

50

100

kC
ounts per second

1 μm

A

C

B

A

A

B

C

C

B

A

Figure 4 | Patterned SiC spins and illustration of dipole-coupled spins. (a) Implanted spin ensembles in n-type 4H-SiC through a PMMA mask

with 50 nm holes, using 10 keV energy 12C ions at a 1013 cm� 2 dose. Additional characteristics of these implanted spins are given in Supplementary Fig. S6.

(b) Illustration of dipole-coupled spin network in 6H-SiC in which each spin has a unique orientation and optical/ODMR signature. The three spins

shown here are the (hh) divacancy (turquoise), (k1k1) divacancy (purple) and (k2k2) divacancy (red).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2854

4 NATURE COMMUNICATIONS | 4:1819 | DOI: 10.1038/ncomms2854 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


final p/2 pulse in the sense spin Hahn-echo sequence (yHahn).
The resulting data (Fig. 5c, left) are well fit by:

DEER signal¼ cos 2pDf ð2tpulseÞþ yHahn
� �

e� 2tpulse=t: ð1Þ

For the data at yHahn¼p/2, the coherent coupling term
becomes sin 2pDf ð2tpulseÞ

� �
in equation (1), providing a sensitive

measure of Df, while the data at yHahn¼ 0 and yHahn¼ p are
dominated by the decoherence term, giving a more accurate
measure of t. The globally fitted values of Df for various drive-
spin ensemble species (Fig. 5d and Supplementary Fig. S7) show
that the c-axis-oriented spins (QL1, QL2 and QL6) exhibit Df
values in the single kHz range. The lower symmetry of the basal-
oriented spins (QL3–QL5) results in eigenstates with smaller
magnetic moments, reducing Df for these species (Supplementary
Note 2).

We also repeated this experiment with the pulse sequence
shown in Fig. 5a modified by the addition of a depolarizing p/2
pulse, which is applied to the drive spins before the sense spins’
Hahn-echo sequence. In this case, because the p pulses applied to
the drive-spin population no longer cause a net change in
magnetization, Df vanishes (Fig. 5c, right). Additionally, when the
drive spins are depolarized, t increases slightly. When QL1 is the
sense species and QL2 is the drive species, t changes from
89±3ms (polarized QL2) to 96±3 ms (unpolarized QL2).

Discussion
The decoherence characterized by t, known as instantaneous
diffusion, arises from two effects. The first (and dominant) of
these is microscopically inhomogeneous dipole-coupling
strengths between randomly located individual spins, resulting
in a distribution of coupling strengths, whose average is Df. This
distribution causes ensemble dephasing of the sense species when
the drive species is flipped. The second effect is a macroscopically
inhomogeneous magnetization field due to the spatial structure of
the optically polarized volume of spins. The result of this effect is
a slightly longer t when the spin bath is depolarized, consistent
with the data. The analysis of these data is complicated by the
dynamics of discretely interacting spins in a polarized spin bath
(Supplementary Note 3). Nevertheless, the standard quasi-static
statistical model relating instantaneous diffusion to spin den-
sity26,27 provides a guide for analysing the DEER results.

On the basis of this model, we use t for the unpolarized spin
bath to infer that the spin densities of the three c-axis spin species
(QL1, QL2 and QL6) range from 7–11� 1015 spins cm� 3.
Because Df is proportional to the magnetic field generated by the
drive-spin ensemble, which in turn is proportional to the product
of spin density and optical polarization, we can use the measured
Df and the calculated spin density to infer the degree of optical
spin polarization. For the three c-axis spins, our DEER results
lead to a high average optical spin polarization that ranges from
35% to 60%, depending on the defect species. Because of the

−16 0 16

−6

−4

−2

0

2

4

6

tpulse tpulse

D
ou

bl
e 

re
so

na
nc

e 
si

gn
al

 (
ΔI

P
L 

/ I
P

L 
× 

10
5 )

Drive spin species

Δf
 (

kH
z)

Δ�
fr

ee

Sense
�/2 (x) � (y) �/2 (�Hahn)

π (x) π (x)
t pulse

t free/2

Drive

�Hahn = 0

�Hahn = π/2

�Hahn = π

R
abi signal (10

4 × Δ
IP

L /IP
L ) 

Δ�
fr

ee
 (

ra
d)

t pulse

0 500 1,000 1,500
0

0.1

0.2

−1

0

Drive spin pulse length (ns)
QL1 QL2 QL3 QL4 QL5 QL6

0

1

2

3

Δ�free(QL1)

Rabi signal (QL2)

−16 0 16

Figure 5 | Magnetic dipole-coupled spin ensembles in 6H-SiC. (a) Pulse scheme for DEER measurements. As p pulses flip the orientation of the drive

species spins, the sense species accumulates an extra phase (Dyfree) over a Hahn-echo sequence. (b) Varying the pulse duration of the drive spins

(QL2) generates Rabi oscillations (right axis) and an oscillation in the DEER signal (left axis) corresponding to the sense spin species (QL1) acquiring Dyfree.

The Rabi data are fitted according to an erfc-decaying sinusoid30 and Dyfree is fitted to a multiple of this function. (c) DEER signal, applying two p pulses to

the drive species and varying yHahn and tpulse. The left data set is when the drive spins are polarized, and the right data set is for unpolarized spins,

for which Df vanishes. The data at different yHahn are not artificially offset. The solid lines are global fits to Equation 1. (d). Fitted Df for the six spin

orientations, when the drive-spin species is polarized (blue) and unpolarized (grey). The sense species is QL1 for all these data, except when QL1 is driven,

in which case it is QL2. B¼64 G and tfree¼ 32ms and T¼ 20 K for all the data in Fig. 5.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2854 ARTICLE

NATURE COMMUNICATIONS | 4:1819 | DOI: 10.1038/ncomms2854 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


inhomogeneous spatial profile of the optical illumination and
collection areas in our measurements, the full optical polarization
is likely to be even higher.

SiC spins are compelling analogues of diamond NV centres,
with complementary properties and many unique prospects. Our
demonstration that crystal polymorphism can be used to engineer
new spin centres relies on SiC being a polymorphic material, a
degree of freedom that is unavailable in diamond. In the future,
established doping and epitaxial growth processes in SiC could
lead to electronic interfaces with defect spins embedded in
transistors and optoelectronic devices. Furthermore, due to its
availability as a single-crystalline epitaxial film on silicon, the 3C
polytype provides an excellent platform for hybrid quantum
systems with photonic28 and mechanical29 degrees of freedom.
Combining this sophisticated semiconductor technology with the
versatility of coherent spin control in SiC stands to be an exciting
route for solid-state quantum information.

Methods
Generation of defects. The 4H-SiC and 6H-SiC substrates used in this work
include: a) n-type 4H-SiC, b) high-purity SI 4H-SiC, c) n-type 6H-SiC and d) SI
6H-SiC. Substrates a, b and c were purchased from Cree, Inc, while d was pur-
chased from II-VI, Inc. The SI 4H-SiC contains a significant density of neutral
divacancy spins as grown, and the data in Figs 1, 2a and 3 used that material
without modification. Defects in the other substrates were generated by an ion
implantation process consisting of 190 keV 12C ion implantations at doses of 1011,
1012 and 1013 cm� 2, with a 7-degree tilt to minimize ion channelling effects.

After ion implantation, the samples were annealed at 900 �C for 30 min in Ar, a
process designed to allow vacancies to diffuse and aggregate into pairs and vacancy
complexes12. We estimate a 5% creation efficiency of fluorescent defects, defined as
the number of created defects per implanted 12C ion at 190 keV (Supplementary
Note 1). For the n-type substrates, ion implantation with 12C can compensate the
n-type doping. Throughout the text, our labelling of substrate doping types refers
to the as-grown substrates, not to the semiconductor characteristic after
implantation.

The 3C-SiC substrates used in this work consisted of [100] oriented epitaxial
layers grown on [100] silicon substrates. The 3C-SiC substrates measured in Figs 1
and 2 were 3.85-mm-thick films and were obtained from Novasic. The substrates
measured in Fig. 3 were grown at Case Western Reserve University and consisted
of 1.5–2 mm thick polycrystalline films. Neither film was intentionally doped but
both showed n-type behaviour. All samples were implanted with 190 keV 12C at
doses of 1012 or 1013 cm� 2 with a 7-degree tilt. The samples were then annealed at
750 �C for 30 min in Ar.

The patterned defects in Fig. 4a were generated by ion implantation at a lower
energy (10 keV 12C ions at a dose of 1013 cm� 2), which makes the 170-nm-thick
PMMA a more effective ion mask. The PMMA mask used for the sample in Fig. 4b
consisted of 50-nm apertures patterned by electron beam lithography.

Optically detected magnetic resonance. For our ODMR measurements, the laser
excitation was higher energy than the defects’ zero-phonon lines, within their
absorption sidebands. For the 4H- and 6H- substrates in Figs 1–4, the laser energy
was 1.45 eV (853 nm), with 16 mW of power reaching the sample. For the 3C-SiC
data in Figs 1d and 2b, the laser energy was 1.33 eV (930 nm), and the power was
23 mW at the sample. For the double resonance data in Fig. 5, the laser energy was
1.27 eV (975 nm), with 60 mW reaching the sample. The laser excitation was gated
with acousto-optical modulators and the fluorescence was collected using one of
four detectors: a) a Thorlabs Femtowatt InGaAs photoreceiver (PDF10C), b) a
Newport InGaAs photoreceiver (2011-FS), c) a Princeton instruments liquid-
nitrogen cooled InGaAs camera attached to an Acton Spectrometer (2300i) and d)
a Scontel superconducting detector (LTD 24/30-008).

The samples were mounted on top of 0.5- to 2-mm RF strip lines3. For the 3C-
SiC, ring-shaped RF waveguides fabricated on chip were also used3. These sample/
waveguide assemblies were then mounted in optical cryostats with RF access. The
RF signals were generated by two signal generators (Agilent E8257C or Rohde &
Schwarz SM300 vector source) whose outputs were gated using RF switches
(MiniCircuits ZASWA-2-50DRþ ) for pulsed experiments. These signals were
then combined, amplified to peak powers as high as 25 W (Amplifier Research
25S1G4A and Mini-Circuits ZHL-30W-252-Sþ ), and sent to wiring in the
cryostat connected to the waveguides and striplines. The RF and optical pulses were
gated with pulse patterns generated by either a digital delay generator (Stanford
Research Systems DG645), Pulse Pattern Generator (Agilent 81110A) or arbitrary
waveform generator (Tektronix AWG520). The phase of the Rohde & Schwartz
signal was also controlled by the AWG520.

The ODMR measurements in this paper were all taken using lock-in techniques,
in which an RF pulse was alternatively gated on and off (Figs 1 and 3a–c) or the
phase of one of the pulses was alternatively gated by 180� using IQ modulation

(Figs 2, 3d,e and 5). We used a 20-Hz software lock-in technique3 (Figs 1–3) and a
hardware lock-in at frequencies up to 200 kHz (Fig. 5) to accommodate the
bandwidths of the Thorlabs and Newport photoreceivers, respectively.

Because the PL spectra of the various divacancy orientations have overlapping
phonon sidebands, these measurements collected IPL from all defect orientations at
once. This procedure reduced the normalized DIPL/IPL signal but prevented defect
PL from being rejected. The measured DIPL/IPL values are additionally reduced
from their ideal values both by extra fluorescence from the SiC samples (notably
Vanadium impurities in the SI 6H-SiC) and by long fluorescence collection times.
To achieve high optical spin polarization, we used long optical pulses (20–100 ms)
in our measurement cycles. Because the timescale of optical polarization was faster
than the bandwidth of most of our detectors, we did not gate the fluorescence
collection. Therefore, much of the PL collected was from defect spins already
polarized earlier in the pulse. Fast and gated fluorescence detection would lead to
significantly higher DIPL/IPL values.
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indicates that the PL peak at 1.135 eV is two peaks lying on top of each other, which we label 

QL5 and QL6. This identification of two overlapping peaks is consistent with previous PL 

measurements23 of the UD-2 spectrum in 6H-SiC, which have found two closely-spaced zero-

phonon lines at 1.135 eV.  
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Supplementary Figure S2. Measurement of spin relaxation times in 6H-SiC. (a) 

Measurement of spin relaxation times (T1 times) for QL2 at temperatures ranging from 20 K to 

200 K. (b) Temperature dependence of T1 for QL1 and QL2. To perform these spin relaxation 

measurement sequences, we optically polarized the spins, rotated a spin species with an RF 

π pulse immediately after the optical pulse, waited a variable delay time, and then 

optically measured the spin projection after that delay. The ∆IPL signal is locked into the 

presence or absence of the RF pulse at 20 Hz. As the spins relax at long delay times, ∆IPL 

decays. For QL2 in SI 6H-SiC, T1 is 620 ± 100 µs at 250 K and increases to 5 ± 1 ms as the 

sample is cooled to 100K. At 20K, the T1 times for QL1, QL2, QL3, and QL4 were 

respectively 24 ± 4 ms, 18 ± 6 ms, 8 ± 1 ms, and 11 ± 3 ms. 
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Supplementary Figure S3. Room-temperature spin coherence of PL1 in implanted 4H-SiC. 

(a) Room-temperature ODMR spectrum for semi-insulating 4H-SiC that is implanted with a 1013 

cm-2 dose of 12C, showing an additional ODMR line at 1.322 GHz that is not in the as-grown 

material (Figure 3a in the main text). This ODMR line corresponds to PL1. (b) Hahn-echo 

coherence measurement of PL1, showing a 6 ± 1 s spin coherence time (T2 time). The shorter 

T2 time in this implanted sample relative to the T2 times in the as-grown semi-insulating 4H-SiC 

material (~50 s at room temperature) is likely due to material damage from the ion 

implantation. Implanted n-type 4H-SiC also exhibited a PL1 ODMR line at room temperature. 
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Supplementary Figure S4. Temperature dependence of ODMR in 4H-SiC. (a) ODMR 

spectrum of as-grown 4H-SiC in a narrow frequency range, at B=0. (b) Wider frequency range to 

include PL3 at 1.14 GHz, also at B=0. The wide ODMR lines are due to a saturated color scale. 

In 4H-SiC, all of the ODMR lines that we observe uniformly shift 14 MHz lower in energy when 

warmed from 20K to room temperature. The spin-dependent optical contrast IPL/IPL is affected 

as the sample temperature (T) is increased, and many of the ODMR lines can no longer be 

observed when the sample is at room temperature. However, an ODMR line corresponding to 

PL3 remains visible at room temperature, as does PL1 when the substrate is implanted with 12C 

ions and annealed. The ODMR features corresponding to PL5 and PL6 are also visible at room 

temperature, and their IPL/IPL values are not strongly affected by warming the sample from 

cryogenic to room temperature. Unlike the neutral divacancies in 4H-SiC (PL1-PL4), PL5 and 

PL6 are not conclusively identified. 
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Supplementary Figure S5. Temperature dependence of ODMR in 6H-SiC. The 12C 

implanted semi-insulating and n-type substrates show the same ODMR lines at 20K (QL1-QL6). 

However, at room temperature, the implanted n-type 6H-SiC substrate and the implanted semi-

insulating 6H-SiC differ, with the n-type substrate exhibiting several ODMR lines (QL7-QL9) 

that are not in the semi-insulating substrate. (a) The only ODMR feature in semi-insulating 6H-

SiC at room temperature is the QL2 line at 1.32 GHz. (b) In implanted n-type 6H-SiC, there are 

several new ODMR features that arise at higher temperatures. At lower temperatures, QL7-QL9 

lose their IPL/IPL contrast. 
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Supplementary Figure S6. ODMR spectrum of 12C-implanted n-type 4H-SiC. (a) B-field 

dependent ODMR spectrum when the implantation energy is 190 keV and the dose is 1013 cm-2. 

ODMR lines corresponding to PL1-PL4 are exhibited. Even when implanted with 12C ions and 

annealed, the n-type 4H-SiC had the smallest ODMR signal of any of the hexagonal polytype 

samples that we measured. However, it also exhibited the smallest amount of unwanted 

background luminescence under photoexcitation. For this reason, we chose it for our 

demonstration of patterned ion implantation. (b) ODMR spectrum at B=0 of the patterned ion-

implanted n-type 4H-SiC, for the sample shown in Figure 4a in the main text. Implantation at a 

lower energy (10 keV) was used for this sample so that the ions would not penetrate the PMMA 

mask used for the patterning31. ODMR spectra measured at 20K in both the masked (dark blue) 

and unmasked (turquoise) regions of that sample are shown. One of the peaks is c-axis oriented 

and the other is basal oriented, corresponding to PL5 and PL6 respectively. 
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Supplementary Figure S7. Magnetic field dependence of ensemble spin coupling strength at 

(a) B=1.7 G and (b) B=64 G. For these data, tfree = 32 s and T = 20 K. The data in (b) are the 

same as in Figure 5 in the main text but reprinted here to be compared to those in (a). While f 

for the c-axis oriented defects (QL1, QL2, and QL6) is roughly the same at the low (1.7 G) and 

high (64 G) fields, the basal-oriented defects QL4 and QL5 exhibit much stronger f  values 

(greater than a factor of 5) at the higher field. This can be understood by the fact that, when they 

are modeled by equation S1, their Hamiltonians have large E terms and their eigenstates have 

low magnetic moments at B=0. As B increases, the magnetic moments of the eigenstates 

increase. QL3 is also oriented along a basal plane, but the relatively small E term in its Hamilto-  

nian causes the interaction strength to be less dependent on B.  
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PL line Other Identification Orientation Optical ODMR 1 ODMR 2 D (GHz) E (MHz) Room 20 K? 

  name     energy (eV) (GHz) (*) (GHz) (*)     temp?   

4H-SiC 

PL1 P6b (hh) divacancy c-axis 1.095 1.336 - 1.336 < 1 implanted yes 

PL2 P6'b (kk) divacancy c-axis 1.096 1.305 - 1.305 < 1 no yes 

PL3 P7'b basal divacancy basal 1.119 1.140 1.304 1.222 82.0 yes yes 

PL4 P7b basal divacancy basal 1.150 1.316 1.353 1.334 18.7 no yes 

PL5 unknown c-axis 1.189 1.356 1.389 1.373 16.5 yes yes 

PL6 unknown basal 1.194 1.365 - 1.365      < 1 yes                yes

PL7 unknown basal - 1.333 - - - yes yes 

6H-SiC 

QL1 unknown c-axis 1.088 1.300 - 1.300 < 2 no yes 

QL2 unknown c-axis 1.092 1.334 - 1.334 < 2  yes yes 

QL3 unknown basal 1.103 1.228 1.243 1.236 7.5 yes yes 

QL4 unknown basal 1.119 1.208              1.425               1.317                  109                                   no yes 

QL5 unknown basal 1.134 1.340                   -                       -   -                         yes yes 

QL6 unknown c-axis 1.134 1.347 - 1.347     < 5       no                 yes                   

QL7 unknown c-axis - 1.345 (**) - 1.345 (**)     < 5         yes                no 

QL8 unknown c-axis - 1.371 (**) - 1.371 (**)     < 5      yes                no 

QL9 unknown basal - 1.332 (**) 1.365 (**) 1.349 (**) 17 (**) yes no 

3C-SiC 

RL1 Ky5 unknown [111] 1.120 1.328 1.328 < 2 MHz substrate- yes 

  dependent   

* At B = 0 and at 20 K, unless not visible at low temperature, in which case the room-temperature values are given   

** Room temperature frequency                 

 

Supplementary Table S1. Observed defect optical energies, ODMR lines, and orientations. 

The neutral divacancies in 4H-SiC are spin-1, g=2 spins.9 The c-axis defects have C3v symmetry, 

and the basal defects have the lower C1h symmetry. They can be modeled with the Hamiltonian: 

ܪ																																				 ൌ B݃Bߤ ∙ S ൅ ቆܵ௓ܦ
ଶ ൅

1
3
ܵሺܵ ൅ 1ሻቇ ൅ ሺܵ௑ܧ

ଶ െ ܵ௒
ଶሻ																																			ሺS1ሻ 

where B is is the Bohr magneton, g is the Lande g-factor, B is the external magnetic field, S is 

the spin, and D and E are the axially symmetric and anisotropic components of the crystal field 

interaction, respectively. At B=0, the spin transition energies are D-E and D+E. In 6H-SiC, the 

photoluminescence (PL) and optically-detected magnetic resonance (ODMR) transition energies 

of QL1-QL6 are similar to the neutral divacancies (PL1-PL4) in 4H-SiC, suggesting a close 

association. However, they are not conclusively identified. 
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The PL lines corresponding to QL1-QL6, which have been seen before,23 are known as 

the UD-2 spectrum in 6H-SiC and are attributed to complexes involving intrinsic defects. 

However, no previous work has associated defects with the D and E values that we observe with 

the QL1-QL6 PL lines. Son et al.20 report observations of ODMR with some of the zero-field 

splittings that we observe, but they do not observe a spectral dependence for the ODMR signal. 

Lingner et al.19 observe some similar zero-field splittings to those of our 6H-SiC defects. 

However, the D and E values of their defects are not exactly the same as ours, and they associate 

their defects with lower energy optical transitions. 

In 3C-SiC, a previous PL band similar to the one we observe has been observed22 but 

associated with a spin-1/2 ODMR signal. Another study21 has associated this band with a spin-1 

ODMR signal but observed a zero-field splitting 50-80 MHz different than the one we observe 

and did not determine a spectral dependence for this ODMR signal. The PL bands from both of 

these reports and the spin-1 ODMR signal observed depend on the sample annealing temperature 

in a manner similar to our observations. An electron paramagnetic resonance study14 has 

observed a spin-1 defect in 3C-SiC with zero-field splitting and symmetry similar to the one we 

observe, which persists up to room temperature. It tentatively attributed this signal to a neutral 

divacancy. 
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Supplementary Note 1. Estimation of defect creation efficiency 

 

For the 190 keV energy 12C implantations used in the main text, we estimate that we have 

created defects in 6H-SiC with a 5% creation efficiency, which we define here as the number of 

fluorescent defects of a single species created per implanted 190 keV 12C ion. To arrive at that 

estimation, we put together three factors: 

 

1. For the three c-axis oriented defect species in 6H-SiC, our double resonance 

measurements show that the density of implanted spins was approximately 1016 cm-3. 

 

2. Those chips were implanted with 12C ions at a dose of 1013 cm-2. 

 

3. Finally, by modeling the ion implantation process using transport range of ions in 

matter (TRIM) simulations, we find that the vacancies generated by the 190 keV ion 

implantation process are concentrated in the upper 400 nm of the chip. For these 

simulations, used the TRIM software package created by James Zieglier, documented at 

http://www.srim.org. 

 

Putting together these three factors, we find a 5% creation efficiency for 190 keV 12C 

ions. Because a single implanted 12C ion causes a cascade of damage in the crystal, the creation 

efficiency of fluorescent defects per crystal vacancy is significantly lower. For 190 keV 

implanted ions, our TRIM calculations model 620 vacancies per implanted ion. For the 10 keV 

energy ions 12C ions, TRIM calculations model 130 vacancies per implanted ion. 
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Supplementary Note 2. Experimental considerations and calculation of optical polarization 

for the double electron-electron resonance measurements 

The double electron-electron resonance (DEER) measurements presented here and in the 

main text all use a hardware lock-in technique based on IQ modulation. Defining the Bloch 

sphere such that the sense species spins are initialized in the +z direction, the phase of the first 

/2 pulse of the Hahn echo sequence rotates the spin around the x axis. The  pulse rotates the 

spin around the y axis. The phase of final /2 pulse is modulated between being a rotation around 

the Hahn axis and the -Hahn axis, where Hahn is the angle of a vector in the x-y plane, defined 

relative to the x-axis. 

The optical initialization/readout time is 100 s, using a 975 nm laser focused to roughly 

20 m by a 14 mm lens with 60 mW of power reaching the sample. This time was chosen to 

match or exceed the saturation time of IPL with laser pulse length, so that the spins would be 

polarized at the start of each cycle. The timescale of this saturation curve is highly dependent on 

the optics, such as the lens choice at the sample and whether there is a pinhole at the detector. 

For the DEER measurements presented here, we used a 35 mm lens to focus the collimated 

fluorescence onto a 300 m detector with no pinhole, and the measured IPL saturation curve 

showed a 30 s saturation time. Since there is no pinhole, these optics are not confocal. For 

confocal optics, the timescale of optical readout is much faster, but the signal strength is much 

weaker due to the smaller volume of PL collection. 

Because of the long readout/initialization time, the spatial profile of the optically 

initialized (magnetized) spins is large-radius disk with a decaying tail outside the disk, whose 

radius is significantly larger than the confocal laser spot size. The diameter of this disk is not 

precisely known but it is estimated to be in the 100 m range. Based on stopping range of ions in 

matter simulations (SRIM), we estimate that the thickness of this disk is 400 nm. 

In order to calculate the defect optical polarization, we first use the results of our DEER 

measurements to separately calculate the defect density and the bulk magnetization from those 

defects. By applying equation 1 in the main text to the DEER data, we can use the fitted  to 

infer the spin density by applying a statistical model of instantaneous diffusion26,27,32 (see 

Supplementary Note 3). 
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For a homogeneous distribution of spins and small exchange coupling, the free induction 

decay of the DEER magnitude is given by: 

 

ሻݐ஽ாாோሺܫ																																																															 ൌ ݁ି௞஼ி௧,																																																												ሺS2ሻ 

 

where 

																																																																		݇ ൌ
஻ߤ଴݃ଶߤߨ2

ଶ

9√3ħ
,																																																															ሺS3ሻ 

 

C is the spin concentration, and F is the net fraction of spins flipped by the drive pulses. 

 The factor F is used to account for the imperfect Rabi pulses used in the measurement 

sequence. To calculate F, we consider that the carrier-frequency-dependent probability of a spin 

flip given by our  pulses is given by Rabi’s formula: 

 

,୤୪୧୮ሺ݌																																	 ,ߜ ሻݐ ൌ
ଶ

ଶ ൅ ଶߜ
sinଶ ൬

1
2
ඥଶ ൅ ൰ݐߨଶ2ߜ 																																					ሺS4ሻ 

 

where  is the Rabi frequency, is the detuning from the center frequency of the pulse and t is 

the pulse length. The total fraction of spin polarization excited by a  pulse is given by 

integrating pflip weighted by the low-power ODMR spectrum (), and finding the maximum of 

this integral as a function of pulse length. This fraction is given by: 

 

ܨ																																					 ൌ max௧ ቆ
׬ ,flipሺ݌ ω െ ω଴, ሺωሻ݀ωߩሻݐ

ሺωሻ݀ωߩ׬
ቇ ,																																											ሺS5ሻ 

 

Where 0 is the carrier frequency. Note that this maximum occurs near but not exactly at 

t=1/(2), due to unequal rotation rates of defects as a function of detuning. 

 For the c-axis spins and  = 2.5 MHz, as used in Figure 5 of the main text, we calculate 

F to be 0.51, 0.56, and 0.57 for QL1, QL2, and QL6 respectively. Our DEER measurements use 

two pulses, and the net change in polarization of the drive species between the optically 

initialized state and its state after the first pulse can be different from the net change between 
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the first and second  pulses. However, such a difference would manifest itself as a tpulse → –tpulse 

asymmetry in the DEER data (Figure 5c) at Hahn = 0 and Hahn = . While such asymmetry is not 

zero, it is clearly small, and we neglect it for this analysis. 

 To calculate the spin density, we then use  values extracted from fits to equation 1 in the 

main text, which are  = 130 ± 15 s,  = 96 ± 3 s, and  = 150 ± 30 s for QL1, QL2, and QL6 

respectively, when the drive spin baths are unpolarized. Using ܥ ൌ 1/ሺ߬݇ܨሻ, we find that the 

concentration of c-axis spins is 9.1 × 1015 cm-3, 1.1 × 1016 cm-3, and 7.1 × 1015 cm-3 for QL1, 

QL2, and QL6 respectively. We did not calculate the density of basal-oriented spins, because of 

high uncertainties in the DEER measurements for these species. 

 To calculate the optical polarization, we use f fitted in equation 1 of the main text to 

infer the average change in magnetic field magnitude when the drive spins are flipped by a  

pulse. We find these values to be f = 1.1 ± 0.1 kHz, 2.4 ± 0.1 kHz, and 1.6 ± 0.2 kHz for QL1, 

QL2 and QL6 respectively. Using the concentrations calculated above, we can then compare the 

value of flipped magnetization to the spin density. The change in magnetic field corresponding to 

a precession frequency change of f can be calculated from the Zeeman splitting: 

 

																																																																						ܤ ൌ
݄݂
஻ߤ݃

.																																																																												ሺS6ሻ 

 

Assuming that the magnetization profile is a large-radius magnetized disk, the 

magnetization change due to a  pulse is then simply ܤ/0. Finally, the optical polarization 

(Poptical) can be calculated as the percentage of spins that must be originally magnetized to 

achieve this magnetization. For a ms = 1 change in spin:  
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ܤ
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Using equation S7 and the experimentally fitted f and  values, we find the degree of optical 

polarization of the three c-axis spins. This leads us to calculate the degree of optical polarizations 

to be 36%, 58%, and 60% for QL1, QL2, and QL6 respectively. As noted in the main text, since 
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PL is collected from spins that are not in the uniformly polarized center of the optical excitation 

area, these values are likely to be lower bounds for the ideally polarized values. 
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Supplementary Note 3. Theoretical considerations for double electron-electron resonance analy-

sis.

A. Effect of strong spin polarization — qualitative discussion

We consider the dynamics of an ensemble of spins Sk (k = 1, . . . N ) of the given species,

e.g. QL1, interacting with all other spins in the SiC sample. Everywhere below we will consider

for each spin only the two levels which are involved in the experiment (i.e. are excited by the

preparatory π/2 pulse and are involved in the subsequent dynamics), so that all spins below are

considered as spins 1/2. This situation is very similar to the previous studies of such systems as

e.g. the NV impurities in diamond, where the standard theories developed in the area of NMR

and ESR are applicable. The imporant difference, however, is that the spins we are studying are

strongly polarized, and our goal here is to analyze the resulting differences.

Since the characteristic energies of the spin flips for all species are sufficiently different, we

can neglect the flip-flops between the spins of the different species. Moreover, we note that the S

spins are subjected to a widely varying local fields, which are of the order of the inhomogeneous

linewidth, i.e. of the order of 1/T ∗2 with T ∗2 ∼ 200–250 ns. At the same time, the coupling between

the S spins is of the order of 1/T2, which is almost an order (or even more) of magnitude smaller.

As a result, the flip-flops are strongly suppressed even between the S spins themselves; note that

this conclusion is justified for all spin species in the sample. Thus, the interaction between the S

spins can be reduced to

HSS =
∑
j,k

AjkS
z
jS

z
k , (S8)

and the influence of all other spin species on the S spins can be described by a random static field:

HSR =
∑
k

BkS
z
k . (S9)

Since the initial state of the S spins is strongly polarized, for the relevant two-level subspace we

can write the initial density matrix as

ρ(0) =
∏
k

(1k + pσz
k)/2, (S10)

where p is polarization, and σz
k is the Pauli matrix of the two-level relevant subspace of the k-th

spin. The evolution of the spin system during the experiment is described by the relevant evolution

operator U(t), so that the final density matrix is ρ(t) = U(t)ρ(0)U †(t). At the same time, the full
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photoluminescence (PL) signal is an incoherent sum of the PL signals from all spins, and the signal

from the j-th spin is assumed to be determined by only by the population of the level | ↑〉 of this

spin. Thus, the PL signal at the end of the experiment is proportional to

S =
∑
k

Tr[σz
kU(2τ)ρ(0)U

†(2τ)]. (S11)

Now we should take into account that during the π/2 and π pulses, the Rabi driving is not very

large, and does not fully excite the whole spectral line of the S spins, so that the rotation axis and

angle both depend on Bk. For instance, for the Hahn echo experiments, the evolution operator has

the form

U(2τ) =
(∏

k

exp (−iYk)
)
exp [−i(HSS +HSR)τ ]

(∏
k

exp (−iΦk)
)

(S12)

× exp [−i(HSS +HSR)τ ]
(∏

k

exp (−iXk)
)
, (S13)

where Xk and Yk describe the actual rotations performed by the excitation and readout pulses,

respectively (both are nominally π/2 pulses), and Φk describes the actual rotation performed by

the refocusing pulse (nominally π pulse). Note that, depending on Bk, the actual rotations can be

very different from the nominal ones. Since the rotations Xk, Yk, and Φk are different for different

spins, and vary smoothly throughout the given spectral line, we can not separate all relevant spins

into those which are excited and those which are not.

Together with strong polarization, this creates a problem for detailed quantitative analysis of

the experiments. Formally, the initial density matrix does not have a form of a typical ESR/NMR

experiment with small polarization, i.e. it can not be written in the form ρ(0) ≈ 1 + p
∑

j σ
z
j . In

order to proceed with the analysis of the experiments, we neglect this, and use the standard form

of the initial density matrix. In this way, we can adopt the standard theories for the analysis of

the echo, Rabi, and DEER experiments, developed earlier. Of course, the results for the density of

the spins and the degree of polarization obtained in this way should be considered as qualitative

estimates. Taking into account that many other experimental parameters, such as the polarization

profile in the sample, are also not perfectly known (see below for more detail), we consider this

theoretical simplification acceptable.
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B. Local field distribution in the presence of strong spin polarization

There is another, qualitatively important effect of the strong spin polarization. The polarized

spins create a macroscopic magnetic field (demagnetizing field) throughout the sample, which is

not determined only by the local environment of the given spin Sk. This field, if treated without

care, can lead to artificial divergence in the local field Bk.

We consider a large number of S spins, located in different parts of the sample with volume

V . Each spin interacts with an ensemble of N partially polarized spins 1/2 which are randomly

scattered in the sample. Our goal is to find the distribution of the local fields created by these

spins. We assume that the sample is macroscopic, i.e. we can select a volume around each point

of the sample, and this volume contains many S spins (each spin Sk has its own arrangement of

the other spins around it), but is very small in comparison with the sample dimensions (so-called

microscopically large volume33). We choose such a volume located at a given point in the sample,

take the spin Sk located there, and make it the origin of our coordinate frame; our goal is to

determine the distribution of Bk for the ensemble of S spins located in this volume.

Let us assume that we chose the spin S0. The interaction between S0 and the surrounding spins

Ik is

H =
∑
k

(2g/r3k)(1− 3 cos2 θk)S
z
0I

z
k (S14)

where g is the prefactor (which includes the magnetic moments of S and I), rk is the distance

between given S0 and Ik, and θk is the polar angle of the vector connecting S0 and Ik; the z-axis

of the coordinate system is along the quantizing field (e.g. c-axis for QL1 spin species). We want

to find the shape of the resonance line of the central spins I(ω), where

ω =
∑
k

ωkεk =
∑
k

(g/r3k)(1− 3 cos2 θk)εk (S15)

is the frequency corresponding to the field created by the spins I on the spin S0, with εk = ±1
describing the state of Ik (up or down). Note that for polarized spins the states with different εk

have different probability to occur, we denote these probabilities as p(εk).

By definition30,34, since we consider an ensemble of the central spins in a given microscopically

large volume (i.e. an ensemble with different geometrical arrangements of the spins Ik around each

spin S0), we have

I(ω) =
∑
ε1=±

∑
ε2=±

. . .
∑
εN=±

∫ (
d3r1
V

)(
d3r2
V

)
. . .

(
d3rN
V

)
p(ε1)p(ε2) . . . p(εN)δ(ω −

∑
k

ωkεk)

(S16)
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where δ(ω −∑k ωkεk) is the Dirac’s delta function. In other words, we are averaging over all

coordinates of all spins Ik (the integrals over all positions rk), and over all possible orientations of

these spins (the sums over εk), and pick up only those instances where the local field (equal to the

sum of ωkεk) equals ω. Note here that ωk is the function of rk.

The evaluation of this integral can be done in manner similar to Refs. 27, 30, 34, and 35. We

represent

δ(ω −
∑
k

ωkεk) = (1/2π)

∫ +∞

−∞
dt exp (iωt) exp

(
−i
∑
k

ωkεk

)
(S17)

and re-write Eq. S16 as

I(ω) = (1/2π)

∫ +∞

−∞
dt exp (iωt)

[∑
ε=±

p(ε)

∫
(d3r/V ) exp (−iεω(r)t)

]N
, (S18)

where we show explicitly that ω is the function of r.

Now, let us evaluate the expression in the square brackets, it is:

p+

∫
(d3r/V ) exp (−iω(r)t) + p−

∫
(d3r/V ) exp (iω(r)t), (S19)

where p+ = p(ε = +1) and p− is analogous. The integrals over all sample are (as we will see

below) not very well behaved, so we must treat them with caution [3-5]:∫
(d3r/V ) exp (−iω(r)t) =

∫
(d3r/V ) [1− [1− exp (−iω(r)t)]] , (S20)

and re-express similarly the integral with exp (+iω(r)t). As a result, Eq. S19 can be re-written as

1− P − i(p+ − p−)Q, (S21)

where

P =

∫
(d3r/V ) (1− cosω(r)t) , (S22)

Q =

∫
(d3r/V ) sinω(r)t. (S23)

One can see here the problem. The integral P can be regularized for both large and small r [3-5].

But the integral Q, which does not appear for unpolarized spins, does not behave well for large r,

demonstrating logarithmic divergence.

To deal with it, we use the approach of Lorenz, well known in micromagnetism33. We separate

the sample (which is assumed macroscopically large in all directions) into a spherical inner part,
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with r ≤ R, where ω(r) is large, and the outer part (the rest of the sample), where ω(r)t � 1.

Equivalently, we can represent this as the sphere of the radius R� n−1/3, where n = N/V is the

density of the spins, i.e. a sphere which contains many S and I spins, but is much smaller than the

sample itself.

In the beginning, we perform integration over r, and the integration over θ will be done later.

For the inner part, the contribution is calculated as

limα→0

∫ R

α

r2dr sin (z/r3) (S24)

where z = gt(1− 3 cos2 θ). We denote x = 1/r3, and have

∫ R

α

r2dr sin (z/r3) = (1/3)(F (R; z)− F (α; z)), (S25)

where F (y; z) = y3 sin (z/y3) − z ci(|z|/y3), and ci(z) is the integral cosine function. First, we

see that F (α; z) vanishes for α→ 0. Second, by the choice of the parameter R (ω(r)t� 1 for all

points with r ≥ R), we should take the limit z/R3 � 1. Then, we have the contribution from the

inner part of the sample

limα→0

∫ R

α

r2dr sin (z/r3) = (z/3)[1− ln (γC |z|/R3)], (S26)

where the logarithm is the asymptotic form of the cosine integral function for z/R3 � 1, and γC

is the Catalan’s constant. Again, we clearly see the logarithmic singularity.

Now we should integrate in Eq. S26 the angular part, i.e.∫ π

0

sin θdθ

∫ 2π

0

dφ (z/3)(1− ln γC |z|/R3) (S27)

with z = gt(1− 3 cos2 θ). Since ln γC |z|/R3 = ln |gt|γC/R3 + ln |1− 3 cos2 θ|, and∫ π

0

(1− 3 cos2 θ) sin θdθ = 0, (S28)

we have finally the total contribution from the spins in the inner sphere:

(1/V )2πc0gt/3, c0 =

∫ 1

−1
(1− 3x2) ln |1− 3x2|dx (S29)

where in the integral c0 we used the standard change of variables x = cos θ. Note that the factor

ln |gt|γC/R3 becomes zero after the integration over the angles, and therefore the contribution

from the inner sphere does not depend on R.
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At the same time, the contribution of the inner sphere to the integral P in Eq. S22 is the same

in the standard unpolarized case27,34:

1− Γ|t|/(nN) ≈ exp (−Γ|t|/(nN)) (S30)

where Γ = 4π2γ2�n/(9
√
3), and n = N/V is the concentration of the spins. Note that ref. 34 uses

the expression for the interaction constant which must be multiplied by a factor of 2/3 to coincide

with the standard secular approximation for the dipolar coupling Hamiltonian of two unlikie spins.

Here this factor is inserted into Γ.

Now, the contribution of the outer part of the sample to the integral P vanishes. Indeed, for

ω(r)t� 1, this part of integral acquires the form∫
(d3r/V )ω2(r)t2/2 (S31)

and, since ω2(r) decays as 1/r6 at large r, the radial part of this integral has a form (up to irrelevant

factors)

(1/V )

∫ S.B.

R

r2dr 1/r6, (S32)

where S.B. denotes the sample boundary, and we should remember that both R and S.B. are very

large, so the integral goes to zero as (1/V )R−3.

Now, we have only one remaining part: the contribution of the outer part of the sample to the

integral Q. Again, since the values of r are large in this region, we replace sinω(r)t by ω(r)t, and

have for the contribution from outer part

Qout =

∫
out

(d3r/V )ω(r)t = tΔB/V, (S33)

where the integration proceeds over the sample with the excluded sphere in the center. This is the

quantity which is just proportional to the demagnetizing field ΔB created at the given point of

the sample (more specifically, in the given microscopically large volume near a given point of the

sample) by the uniform magnetization proportional to the spin polarization. The properties of this

field are well known33. E.g., this field is independent of the size of the sample but depends on its

shape, and this field (for a non-singular sample) varies microscopically slowly over the sample,

i.e. it is constant for a given microscopically large volume, but varies from one such volume to

another. This field can be calculated with the standard methods of micromagnetic theory.

Now, we take the limit N →∞ and calculate

(1− P − i(p+ − p−)Q)N ≈ exp [−NP − i(p+ − p−)NQ] (S34)
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because both P and Q are of order of 1/V . As a result, we get

I(ω) =
1

2π

∫ +∞

−∞
dteiωt−Γ|t| exp (−i2πn(p+ − p−)c0gt/3) exp (−it(p+ − p−)nΔB) (S35)

In other words, the distribution of the local fields in the given microscopically large volume has

Lorentzian shape as for the unpolarized spins, but has a center which is shifted away from zero.

The shift contains two contributions: one is the demagnetizing field ΔB created due to the spin

polarization, and the other one equals to 2πn(p+ − p−)c0g/3 created by the spins in the inner

sphere.

Now, we have to consider different macroscopically large volumes in the sample. Each such

volume will have its own value of ΔB, so the the resonance line will be additionally broadened

by the distribution of ΔB over the sample. This distribution depends on the sample shape, and

for the samples of ellipsoidal shape has zero width, so the line width will be the same as in the

unpolarized case. For all other sample shapes (or polarization profiles, if p is non-uniform over

the sample), the width will be larger than Γ.

Interestingly, this is in striking contrast with the case of an individual central spin, where the

polarization of the surrounding spins always decreases the resonance line width. Indeed, assume

that we are measuring the line width with the standard free induction decay (FID) experiment:

initial state of the central spin is along x, and we are measuring Sx
0 after the time t. This value is

given by

2Tr[Sx
0 exp (−iHt)Sx

0 exp (iHt)] = (1/2)
∏
k

[exp (−iakt)p+ + exp (iakt)p−] (S36)

where ak is the coupling constant between S0 and Ik. This signal can be re-written as

∏
k

[cos akt+ i(p+ − p−) sin akt] = Re
∏
k

ρk exp iχk =

(∏
k

ρk

)
cosχ (S37)

where ρk and χk are the absolute value and the phase of the complex number z = cos akt+ i(p+−
p−) sin akt, and χ is the sum over all χk. I.e., the FID signal decays with the rate determined by

the product of all ρk, and is modulated by the field created by the surrounding spins. If we are

interested only in the decay rate, it is easy to see that

∏
k

ρk =
∏
k

√
cos2 akt+ (p+ − p−)2 sin2 akt ≥

∏
k

cos akt, (S38)

where the right-hand term of the inequality is the FID decay rate for the case of unpolarized spins.

I.e., for a single spin we have an opposite picture: the FID signal for unpolarized case is always
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lower than for the polarized one, i.e. the polarization decreases the decay rate and shrinks the

resonance line.

This calculation now can be applied to our situation. Firstly, we can combine the Hamiltonians

HSS and HSR in the previous section into a single one, Hk =
∑

k SkB
′
k, where B′k now contains

the contributions from all polarized spin species. This is justified for the standard analysis of the

spin resonance experiments, when the initial density matrix (its relevant part) has a form
∑

k σ
z
k,

and the interaction of the given spin with all others is treated in the mean-field way. Secondly, we

note that the contributions from different species enter independently into the distribution of the

local field B′ if the spins are distributed in a statistically independent manner. Thirdly, the calcu-

lations above are straightforwardly generalized to the case where polarization and/or spin density

depend on the position in the sample, provided that this dependence is smooth (i.e. polarization

and the spin density are constant on the scale of the Lorenz sphere).

In our experiments, the implanted spins form a narrow layer with the width of about 400 nm

perpendicular to the c-axis (which is also the quantizing axis forc-axis oriented species like QL1,

see Supplementary Table 1). Using the estimate n ∼ 1016 cm−3 given in the main text, we find that

within the sphere of the 400 nm radius there are ∼ 103 spins, so the approximation nR3 � 1 used

above is justified. Next, since we adjusted the illumination time to be long enough to saturate the

PL signal, it is reasonable to assume that the spin polarization is uniform, being saturated in the

wide spot, whose radius can be estimated ∼ 200 μm. Correspondingly, the expected polarization

profile has a shape of the pancake of the radius 200 μm and about 400 nm thick, and at the edges

of this “pancake” the polarization quickly drops to zero. This profile can be approximated as a

very flat ellipsoidal disk with the spins polarized along the c-axis. The demagnetizing field in such

an ellipsoid is uniform and directed along the c-axis33, being equal to 4πMz where Mz is the total

spin magnetization along the c-axis. Thus, we expect that the spin polarization should not lead to

significant broadening of the resonance line. This is consistent with the experiments: the value

of T ∗2 shows only moderate increase, by about 10%, when the depolarizing pulses are applied.

Finally, although the local fields are shifted by a noticeable amount, comparable to the line width

itself, this shift is almost uniform across the part of the sample which produces the PL signal.

If the illumination power remains the same during all experiments, so that the spin polarization

also does not change in different experiments, this shift can be absorbed by re-defining the central

frequency of the resonance line.
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