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Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant

nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits

of linear operation in such systems are important, currently there is very little quantitative knowledge

of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than

in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis

and quantitative models that can be directly used to predict the DR of vibrating 2D circular

drumhead NEMS resonators. We show that DR has a strong dependence / 10 logðE3=2
Y q�1=2

3D rte5=2Þ
on device parameters, in which strain e plays a particularly important role in these 2D systems,

dominating over dimensions (radius r, thickness t). This study formulizes the effects from device

physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D

NEMS vibrating at radio and microwave frequencies. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4868129]

Nanoelectromechanical systems (NEMS) have enabled

interesting fundamental studies and technological applica-

tions by coupling mechanical degrees of freedom with other

physical properties in structures at scales approaching the

fundamental limit.1 Two-dimensional (2D) nanomaterials2–4

are attractive for making NEMS because they offer

extremely light weight, ultrahigh mechanical flexibility,

exceptionally high mechanical strength, and robust

nanomechanical resonances, in addition to other interesting

physical and chemical properties in atomically-thin

membranes. This combination of unique device geometry

(miniature size and very high aspect ratio, size/thickness) and

compelling material properties makes 2D NEMS interesting

for both fundamental device studies and potential applications,

such as charge density wave detection,5 surface adsorption

sensing,6 and signal processing.7 For all these applications, one

important aspect in device performance is the dynamic range

(DR), the ratio between the highest signal level prior to any

nonlinear bifurcation (“signal ceiling”) and the lowest

detectable level (“noise floor”). This allowable range of signal-

to-noise ratio (often in decibels, dB) sets the linear operating

range of the device as a transducer. The signal ceiling is

determined by the onset of nonlinearity,8,9 and the noise floor

is set by all noise processes in measuring device motion.10,11

As continued miniaturization of resonant NEMS advan-

ces from conventional thin film structures into atomically

thin 2D NEMS, devices become increasingly susceptible to

external stimuli (thus increasing responsivity), while noise

may also increase due to thermal fluctuations (inversely pro-

portional to device mass) and thus could limit the linear

operation. To date, in very few experimental studies DR val-

ues (in dB) have been estimated for 2D NEMS,6,12,13 but nei-

ther direct measurement of DR nor its analytical model has

been reported, lacking a systematic investigation. Although

analysis of beam-structured 1D NEMS resonators suggests

that devices with smaller cross-sectional areas have lower DR

(e.g., few-micron long single-walled carbon nanotube’s DR is

expected to fall below 0 dB, thus completely incompetent as a

linear transducer),11 how to quantitatively estimate DR of 2D

NEMS is unknown, and the scaling laws and conclusions in

previous 1D devices are not simply applicable to 2D NEMS.

In this Letter, we present a detailed theoretical analysis of

how the intrinsic DR of these 2D NEMS resonators depends

on various devices parameters—including size, number of

layers (i.e., discrete thickness), and initial built-in tension. In

addition, because these ultimately thin 2D NEMS devices

also make an attractive platform for “putting mechanics into

quantum mechanics,”14–17 we investigate the device motions

near their quantum limit at low temperatures and show how

quantum phenomena affect the device linear dynamic range.

While 1D NEMS resonators may be modeled as strings,

beams, or hanging chains,18 2D devices with thickness of only

one to few atomic layers behave universally as membranes in

the presence of nonzero tension4 due to their much lower and

even negligible bending rigidities in this regime.19–21 While

doubly-clamped structures with open sides and edges have

been investigated,6,12,22–27 the coexistence of clamped and free

boundaries, and defects along the edges, could cause stress

localization and excess dissipation processes.28 Fully clamped

structures such as square or circular membranes possess well-

defined boundary conditions and exhibit predictable resonance

behavior.4,13,29,30 As illustrated in Fig. 1(a), here we focus on

modeling fully clamped circular membranes under tension to

examine the DR of these 2D NEMS resonators.

We consider nanomechanical nonlinearity in the reso-

nant motion of a circular membrane arising from the

deflection-induced tension.31,32 The equation of motion is8

€x þ x0

Q
_x þ x0

2xþ x0
2j2x3 ¼ Fext

Mef f
; (1)

with x0, Q, Fext, and Meff being the angular resonance fre-

quency, quality factor, external drive force, and effective

a)Author to whom correspondence should be addressed. Electronic mail:

philip.feng@case.edu

0003-6951/2014/104(10)/103109/5/$30.00 VC 2014 AIP Publishing LLC104, 103109-1

APPLIED PHYSICS LETTERS 104, 103109 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.22.156.125 On: Wed, 12 Mar 2014 16:45:11

http://dx.doi.org/10.1063/1.4868129
http://dx.doi.org/10.1063/1.4868129
mailto:philip.feng@case.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4868129&domain=pdf&date_stamp=2014-03-12


modal mass, respectively. The Duffing-type nonlinear coeffi-

cient j for circular membrane is32

j2 ¼ 13þ 21� � 4�2

30 1þ �ð Þr2e
; (2)

where � is Poisson’s ratio of the material, r is the membrane

radius, and e is the initial strain. The critical amplitude ac,

which determines the onset of bistability, is given by

ac ¼

ffiffiffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3
p

9j2Q

s
; (3)

for circular membranes. Illustration of driven responses of a

Duffing resonator is shown in Fig. 1(b), with the critical am-

plitude highlighted. A conventional measure for the upper

limit of the linear operating range is 0.745ac, the 1 dB com-

pression point below ac.
11

The lower limit, i.e., the noise floor, is intrinsically lim-

ited by the Brownian motion of the device, which has a

displacement-domain spectral density

S
1=2
x;th x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBTQ

x3
0Mef f

s
; (4)

where kB is Boltzmann constant and T is temperature.

The dynamic range for linear operation is then defined

by the ratio (in dB) between the 1 dB compression point and

the noise floor11

DR � 20 log
0:745acffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sx;thDf

p
 !

; (5)

where Df is the measurement bandwidth (we follow the

Df¼ 1 Hz convention in all numerical calculations). Using

x0 ¼ 2:405
r

ffiffiffiffiffiffi
eEY t
q3Dt

q
and Mef f ¼ 0:2695q3Dpr2t for circular

membranes (EY: Young’s modulus; t: thickness; q3D: 3D

mass density of the material), from Eqs. (2) to (5), we obtain

DR ¼ const:þ 10 log
1

Df

1þ �
13þ 21� � 4�2

1

kBTQ2

� �

þ 10 log
rte5=2E

3=2
Y

q1=2
3D

 !
: (6)

We note that the Qs of devices can be affected by many fac-

tors (e.g., temperature, pressure, and viscosity of surrounding

medium, etc.)—for example, often Qs can increase by

FIG. 1. (a) Schematic of a 2D circular membrane NEMS resonator, with

illustration of the mode shape of the fundamental resonance mode. (b)

Nonlinear response of a Duffing resonator. Bottom dashed curve:

Thermomechanical noise. Solid lines: Frequency response curves under dif-

ferent driving amplitudes. Dotted lines: The critical amplitude ac and the

1 dB compression point 0.745ac. Double-ended arrow: Dynamic range for

linear operation.

FIG. 2. Intrinsic dynamic range of 2D NEMS resonators at 300 K. (a) DR of single layer graphene, h-BN, and MoS2 circular drumhead resonators of various

diameters (10 nm—10 lm) and under different strain levels (10 ppm—10%). Purple and yellow intercepting planes represent strain e¼ 0.01 (1%) and diameter

d¼ 1 lm surfaces in the 3D parameter space. (b) 2D cross-section plot (DR as a function of d) of the e¼ 0.01 plane. (c) 2D cross-section plot (DR as a function

of e) of the d¼ 1 lm plane. We use the following parameters in calculation: MoS2: t¼ 0.7 nm, EY¼ 0.2 TPa, v¼ 0.25, q3D¼ 5060 kg/m3; BN: t¼ 0.33 nm,

EY¼ 0.75 TPa,v¼ 0.167, q3D¼ 2100 kg/m3; graphene: t¼ 0.34 nm, EY¼ 1 TPa, v¼ 0.165, q3D¼ 2200 kg/m3.
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cooling the devices from room temperature6,12,23,25,28 to

cryogenic temperatures in ultrahigh vacuum.6,23,25,27 For

simplicity of numerical computation employing our model,

as a reasonable estimate for 2D resonators operating in vac-

uum, we use an intermediate value of Q¼ 1000 throughout

our numerical calculations.

Figure 2 depicts the intrinsic dynamic ranges of mono-

layer graphene, molybdenum disulfide (MoS2), and hexagonal

boron nitride (h-BN) circular membrane resonators of various

diameters and initial tension values (we use diameter d¼ 2r
in the plots) at room temperature (300 K). From the plots, we

can see that the dynamic range for 2D NEMS resonators

increases with device diameter, in contrast to the 1D case

where DR decreases with device length. This difference

exemplifies the effect of dimensionality on scaling laws. In

the 1D case, frequency scales with device length L as

x0�L�2, while approximately ac � L for large L values

under nonzero tension,11 and Mef f � L. As a result,

DR � 20log L�3=2ð Þ. In 2D membranes, x0� d�1, Mef f � d2,

and ac� d, thus DR � 20 log d1=2ð Þ. Therefore, opposed to

their 1D counterparts, 2D NEMS devices can benefit from

larger aspect ratios (lateral dimension versus thickness, e.g.,

r/t or d/t), which lead to greater DR. Importantly, the effect

from tension/strain is more pronounced than that from device

dimensions. From Eqs. (2) and (3), one has ac � e1=2, and

with x � e1=2, it yields DR � 20log e5=4ð Þ, as clearly shown

in Fig. 2(c) (note the polarity of the horizontal axis). This sug-

gests that, together with the ultrahigh strain limit in these 2D

membranes (often up to �10% to 20%, orders of magnitude

higher than in conventional structures), device strain can be

harnessed as a highly effective tuning mechanism for engi-

neering the device dynamic range.

One feature inherent to NEMS resonators based on 2D

layered materials is the discreteness in device thickness,

which sets a fundamental distinction between these

atomically-thin layers and macroscale membranes. From Eq.

(6), we expect that for the same material (given EY and q3D),

devices with fewer layers (smaller t) exhibit smaller DR.

Figure 3 plots the intrinsic DR for 1-, 2-, and 3-layer MoS2

circular drumhead resonators. Thinner devices clearly show

lower dynamic range (with other device parameters given),

due to the higher thermal noise motion amplitude arising

from their smaller motional masses. This discretization of

DR with number of layers is an intriguing signature of lay-

ered 2D materials and should be exploited in future device

applications. For example, linear resonators may be

employed for radio frequency (RF) signal processing,33 and

nonlinear resonators can be harnessed to create logic and

memory building blocks.34 Under a given drive, using a uni-

versal tension tuning mechanism (e.g., a back gate), it may

be possible to selectively set all the 1-layer (1L) devices into

the nonlinear regime, while the 2L and 3L devices remain

linear. This controlled selectivity can be used to build recon-

figurable mechanical circuits from these 2D materials, where

devices with different layer numbers can be selectively

toggled between different functions in a programmable way.

We now examine the DR of 2D devices at cryogenic tem-

peratures, where quantum effects become dominant. NEMS

devices operating near or at the quantum limit are of consider-

able interest for both fundamental physics and quantum infor-

mation processing applications.14–17,35–41 The dynamic range

of their quantum mechanical motion determines the useful-

ness of these devices as linear sensors for quantum-limit

FIG. 3. Intrinsic dynamic range of MoS2 NEMS resonators of different layer numbers at 300 K. (a) DR of 1, 2, and 3 layer MoS2 circular drumhead resonators

of various diameters (10 nm—10 lm) and under different strain levels (10 ppm—10%). Green and orange intercepting planes represent strain e¼ 0.01 (1%)

and diameter d¼ 1 lm surfaces in the 3D parameter space. (b) 2D cross-section plot (DR as a function of d) of the e¼ 0.01 plane. (c) 2D cross-section plot

(DR as a function of e) of the d¼ 1 lm plane.

FIG. 4. Thermomechanical noise spectral density as a function of tempera-

ture for 2D NEMS resonators (single layer graphene, h-BN, and MoS2) with

strain e¼ 0.01 (1%) and diameter d¼ 1 lm. Dashed lines show results from

equipartition theorem (Eq. (4)), and solid lines are calculated with quantum

fluctuation-dissipation theorem (Eq. (7)).
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applications such as gravitational wave detection42 and single

molecule MRI.43 As the device temperature continues to

decrease, thermomechanical motions (spectral density given

in Eq. (4)) gradually give way to quantum fluctuations as the

ratio �hx0=kBT continues to increase. By substituting the ther-

mal energy kBT with the thermally averaged quantum energy

(with zero-point energy taken into account),44 the quantum

mechanical motion spectral density is45

S
1=2
x;QM x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hx0 coth

�hx0

2kBT

� �
Q

x3
0Mef f

s
; (7)

which, in the high temperature limit of kBT ��hx0, degener-

ates to Eq. (4). Figure 4 displays S1=2
x as a function of tem-

perature for single-layer graphene, h-BN, and MoS2 devices

with d¼ 1 lm and e¼ 0.01 (1%). The deviation from classi-

cal statistical mechanics is evident below 100 mK, with dif-

ferent onset temperatures for different 2D NEMS. Below 10

mK the decreasing trend of S1=2
x ceases, with the values

asymptotically approaching the quantum zero-point energy.

By substituting Eq. (4) with the expression given by the

quantum fluctuation-dissipation theorem (Eq. (7)), we calcu-

late the quantum-limited DR for 2D resonators using Eq. (5)

and plot the results in Fig. 5. Significant quantum effect is

found at low temperatures, which reduces the DR for linear

operation. In Fig. 5(b), the right side of the curves (larger di-

ameter) has the same slope as in Fig. 2(b), as bigger devices

have stronger tendency to remain classical. As device size

decreases (left side of the plot), the resonance frequency

increases and quantum effects become more pronounced.

Once quantum fluctuations replace thermomechanical

motions and become the noise floor (Fig. 4, left end), the DR

is further reduced from the classical case and the curves (in

Fig. 5(b)) assume a steeper slope. Note the sequence of dif-

ferent devices entering the quantum regime is similar to that

in Fig. 4. Similarly, in Fig. 5(c), the right side represents the

classical regime with slope of the curves identical to that in

Fig. 2(c), and the left side shows the quantum effect, as

greater strain increases the resonance frequency which

allows the quantum effect to be better observed.

To experimentally verify the predictions of DR with our

theoretical model (Eq. (6)), one needs to precisely measure

both the intrinsic thermomechanical noise and the onset of

mechanical nonlinearity in the same 2D resonator. In recent

experiments, either of these has been measured sepa-

rately,4,6,12,13 but not yet both, due to practical limitations in

the detection and actuation techniques employed. We antici-

pate that advances in experimental schemes can lead to accu-

rate measurement of DR in devices with various dimensions

and tension levels, to validate the DR prediction and its scal-

ing law.

In summary, we have shown that 2D NEMS resonators

are intrinsically different than their 1D counterparts in terms of

scaling laws for dynamic range, with dependence

/10 log[rte5/2]. Larger 2D devices have greater DR due to

reduced thermal fluctuations and deferred onset of bistability.

Device initial strain (e) has stronger effects on the dynamic

range than the dimensional parameters (r, t) do and should be

exploited for its efficient DR tuning mechanism. These find-

ings suggest that 2D NEMS devices (in contrast to 1D ones)

are particularly suited for DR-sensitive applications, and can

offer broader and highly tunable dynamic ranges.
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