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A
ctuating and sensing at the nano-
scale are among the most important
yet challenging functions in realizing

new tools to interact with ultrasmall objects
of interest. Such actuating and sensing func-
tions often require harnessing mechanical
degrees of freedom and exquisitely motion-
coupled properties in nanostructures. Nano-
electromechanical systems (NEMS) based on
atomically thin, two-dimensional (2D) crystals,
such as graphene,1�5 have recently shown
attractive potential for novel actuators and
sensors, owing to the ultralow weight and
ultrahigh mechanical flexibility of these
materials and other 2D attributes that are
inaccessible in bulk.1�7 While graphene,
the early hallmark of 2D crystals, has been
extensively studied for NEMS,1�5 such ex-
plorations in 2D crystals beyond graphene
with distinct electronic and optical proper-
ties are highly desirable.
Ultrathin crystals of transition metal di-

chalcogenides (TMDCs)8,9 have emerged as
a new class of 2D layered materials beyond
graphene. Molybdenum disulfide (MoS2),

a prototype semiconducting TMDC, with a
sizable bandgap and unique valley and
spin properties,10�13 has demonstrated re-
markable promise for new electronic and
optoelectronic applications.8�17 In contrast to
graphene being a semimetal, MoS2 is a semi-
conductorwith its electronic structure depen-
dent on thickness and continuously on strain,
as demonstrated experimentally.10,11,18 2D
MoS2 crystals also offer excellent mechan-
ical properties,18�20 similar to those of
graphene.1�7 In addition to its ultralow
weight (areal density of FA = 3.3fg/μm2 for
monolayer), 2D MoS2 has exceptional strain
limit (εint ∼ 10�20%)18,19 and high elastic
modulus (EY∼ 0.2�0.3TPa).19,20 These prop-
erties suggest intriguing possibilities for
innovating NEMS transducers where the
mechanical properties of 2D MoS2 are
coupled to its band structure and other
electronic and optoelectronic attributes
(unavailable in graphene). However, motion-
coupled MoS2 nanodevices have not
yet been explored, due to the difficulties
not only in nanofabrication of movable
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ABSTRACT Molybdenum disulfide (MoS2), a layered

semiconducting material in transition metal dichalcogenides

(TMDCs), as thin as a monolayer (consisting of a hexagonal

plane of Mo atoms covalently bonded and sandwiched

between two planes of S atoms, in a trigonal prismatic

structure), has demonstrated unique properties and strong

promises for emerging two-dimensional (2D) nanodevices.

Here we report on the demonstration of movable and

vibrating MoS2 nanodevices, where MoS2 diaphragms as thin

as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ∼ 60 MHz in the very high frequency (VHF) band, and

frequency-quality (Q) factor products up to f0� Q∼ 2� 1010Hz, all at room temperature. The experimental results from many devices with a wide range

of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2
nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also

opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.

KEYWORDS: two-dimensional (2D) crystals . molybdenum disulfide (MoS2) . nanoelectromechanical systems (NEMS) . resonators .
thermomechanical noise . frequency scaling . displacement sensitivity
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devices, but also in detection of their vanishingly
miniscule motions. In this work, we demonstrate
MoS2 NEMS resonators with resonances in the high
and very high frequency (HF and VHF) bands, achieving
displacement sensitivity of 30.2 fm/Hz1/2, and with
fundamental-mode frequency-quality factor product up
to f0 � Q ≈ 2 � 1010Hz, a figure of merit that surpasses
values in graphene NEMS counterparts.1�5 Combining
experiment and analysis, we illustrate the important
elastic regimes with scaling laws, which shed light on
design and engineering of future devices toward
microwave frequencies.

RESULTS AND DISCUSSION

Device Processing, Characterization, and Thermomechanical
Resonance Measurement. We employ photolithography,
wet etching, and micromechanical exfoliation to fabri-
cate our prototype MoS2 NEMS, which consist of ex-
foliated MoS2 nanosheets covering predefined micro-
trenches on a SiO2-on-Si substrate (see Methods). The
thickness of each suspended MoS2 diaphragm is initi-
ally estimated by examining its color and contrast in
optical microscope. After all the resonance measure-
ments that we describe below, the thickness and sur-
face of each device is carefully examined using atomic
force microscopy (AFM) and scanning electron micro-
scopy (SEM).

Without external excitations, thermal fluctuation
and dissipation processes dictate the devices to be in
Brownian motions, manifested as thermomechanical
modes of damped harmonic resonators, each with a
frequency-domain displacement spectral density (see
Supporting Information, S1)
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Here kB is the Boltzmann constant, Meff, ω0, and Q are
the effective mass, angular resonance frequency, and
quality factor of the mode, respectively. Given the
structure and shape of our devices, the fundamental
mode of the out-of-plane thermomechanical motions
is themost salient. Thermomechanical motions are the
minimal levels of motions that can be possibly mea-
sured from the devices, and set a fundamental limit for
detection. We employ a specially engineered optical
interferometry scheme that efficiently transduces mo-
tion into a voltage signal, Sv,th

1/2 (ω) = R (ω)Sx,th
1/2 (ω) with

R (ω) being the transduction responsivity and with
best motion sensitivities at the level of ∼30 fm/Hz1/2

(see Methods and Supporting Information, S1 and S6).
This enables us to directly observe the intrinsic thermo-
mechanical modes of the devices at room temperature,
and for some devices, in both vacuum and ambient air.

High Frequency and Very High Frequency MoS2 Nanomechan-
ical Resonators. We first demonstrate high frequency
nanomechanical resonators based on MoS2 diaphragms
of d∼ 6 μm in diameter, with thickness in the range of
t≈ 13�68 nm (∼20�97 layers). The left panel in Figure 1
shows the characteristics measured from a diaphragm
with d≈ 5.7 μm and t≈ 68.1 nm. This device exhibits a
fundamental mode resonance at f0 � ω0/2π ≈ 19.68
MHz, with Q ≈ 710 (Figure 1c) in moderate vacuum of
pressure (p)≈ 6 mTorr. This device makes an exquisite
interferometricmotion transducerwith a displacement
sensitivity (noise floor) of 49.5 fm/Hz1/2 (see Supporting
Information, S1). AFM measurements (Figure 1d,e)

Figure 1. High frequency (HF) MoS2 nanomechanical resonators and device characteristics. The left and right panels showdata
from two representative devices with different thicknesses. Shown in the same order within both panels: (a) Optical image; (b)
SEM image; (c) Measured thermomechanical resonance (solid curve) and fit to a finite-Q harmonic resonator model (dashed
curve); (d) AFM image (dashed lines indicate the approximate positions of height measurement traces); (e) Representative
height measurement traces (offset for clarity), with colors corresponding to the dashed lines in (d). All scale bars are 5 μm.
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show thickness and surface morphological features.
Right panel of Figure 1 shows data from a thinner
device of similar size (d ≈ 5.5 μm, t ≈ 38.0 nm, ∼54
layers) with f0 ≈ 14.13 MHz and Q ≈ 550, and a
remarkable displacement sensitivity of 33.5 fm/Hz1/2.

We further explore smaller, thinner devices and
demonstrate MoS2 resonators in the VHF (30�300 MHz)
band (Figure 2). The thinnest device (Figure 2b), only
9-layer-thick (see Supporting Information, S2 for details),
makes aVHF resonatorwith f0≈49.7MHzandQ≈80.We
further note that these MoS2 resonators are very robust;
even incompletely covered devices (Figure 2a,c) operate
at VHF with considerably high quality factors (Qs). These
smaller circular diaphragms all make excellent interfero-
metric motion transducers with displacement resolutions
down to ∼40�250 fm/Hz1/2 in the 30�60 MHz band.

We summarize in Figure 3a,b the characteristics,
including both the resonance frequencies (f0 values)
and the Qs of all the devices investigated, with
various dimensions. It is clear (Figure 3a) that smaller
diameters lead to higher frequencies. In both groups,
thicker devices tend to attain higher Qs (Figure 3b),
suggesting surface-related dissipations (Q�1 � 1/t,
or the surface-to-volume ratio, S/V∼ 1/t) in these devices.
This is in excellent agreement with the well-known
thickness-dependent Qs in conventional MEMS/NEMS
resonators that have high surface-to-volume ratios.21,22

We note that, in an earlier study on resonators made of
graphene and very thin graphite,1 no clear Q dependence
on thickness was observed, which is in contrast with
observations in this work and previous studies.21,22 It could
be that the surface-related dissipation in those graphene/
graphite resonators might have been overshadowed by
other stronger damping effects. While there are consider-
able varieties of device sizes and thicknesses, we can use a
widely adopted figure of merit (FOM), f0 � Q product, to
evaluate device performance and compare the MoS2 re-
sonators in this work with recent graphene resonators.1�5

The best FOM value achieved in our MoS2 resonators is
f0 � Q ≈ 2 � 1010Hz, which surpasses the highest f0 � Q

value in graphene devices reported to date, at room
temperature and under similar experimental conditions.

We repeatedly observe that most of the thermo-
mechanical resonances sustain even in ambient air.
As shown in Figure 3d, Qs of∼500�100 in vacuum drop
to∼10�1 in air, following a power law ofQ� p�1/2 in the
range of p∼ 1�100 Torr, and then Q � p�1 in the range
of p ∼ 100�1000 Torr. These measured air damping
(Q dependence on pressure) characteristics of MoS2 reso-
nators are similar to theQ-pressuredependencemeasured
in other membrane-structured MEMS/NEMS resonators.23

Data in all other plots are measured at p ≈ 6 mTorr and
therefore are not compromised by air damping. In Q data
from vacuum in all devices, besides the visible correlation

Figure 2. Very high frequency (VHF) thermomechanical resonances measured from smaller and thinner MoS2 resonators.
For each of the four devices, optical image, SEM image (corresponding to the dashed box in the optical image), and
thermomechanical resonance are shown. The left axis denotes measured noise voltage spectral density, with the same scale
in all four plots. The right axis is thermomechanical displacement spectral density, with individual scale depending on the
characteristics of each device (thus, the interferometric transduction). Right inset in (d) is a zoom-in view of the same curve
(rescaled the vertical axis). Device dimensions: (a) d≈ 2.7 μm, t≈ 62.2 nm (89 layers); (b) 1.9 μm, 6.1 nm (9 layers); (c) 2.5 μm,
43.0 nm (61 layers); (d) 1.5 μm, 27.2 nm (39 layers). All scale bars are 2 μm.
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to thickness (or S/V ∼ 1/t), we observe no noticeable evi-
dence suggesting dominant clamping losses (dependent
on aspect ratio, i.e., length-to-thickness or diameter-to-
thickness ratio)24,25 or other mechanisms.

Theoretical Analysis of Elastic Transition Regime and Fre-
quency Scaling. To gain insight and quantitative under-
standings of the device frequency scaling, we perform
analytical modeling. For vibrations of clamped MoS2
diaphragmswithboth flexural rigidityD= EYt

3/[12(1� ν2)]
(v being the Poisson ratio) and tension γ (N/m, as in
surface tension), we determine the fundamental-mode
resonance frequency to be26,27

f0 ¼ kd

4π

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16D
Fd4

kd

2

� �2

þ γd2

4D

" #vuut (2)

where F is the areal mass density and k is a modal
parameter that is determined numerically (see Sup-
porting Information, S3). In the tension-dominant limit
(γd2/Df¥), eq 2 converges into the membrane model,
while in the modulus-dominant limit (γd2/D f 0) it
approaches the plate model. These asymptotic char-
acteristics are clearly demonstrated in Figure 4, with
scaling of f0 upon varying device thickness. This leads
to the quantitative determination of a “crossover” tran-
sition regime at intermediate thicknesses for any given
diameter and tension level. Experimental data from

Figure 3. Performance of MoS2 nanomechanical resonators. (a) Measured fundamental-mode resonance frequency, and (b)
measured Q factor as functions of device dimensions. (c) Resonance frequency vs thickness over square of diameter (t/d2).
The blue and red symbols in a�c represent bigger and smaller devices, respectively. The divided-color symbols indicate
devices based on incompletely covered microtrenches. (d) Measured Q dependence on pressure for different resonances.
We have investigated >20 devices, see Supporting Information, S6, for a complete list of devices and their measured
parameters.

Figure 4. Elucidating elastic transition from the “plate” limit
to the “membrane” limit in very thinMoS2 resonators: (solid
curves) calculated resonance frequency vs device thickness
for three different device diameters, each with 0.1 and
0.5 N/m tension (except in the top curve family where we
show an additional tension of 4.2 N/m, corresponding to 3%
strain in monolayer); (black dashed lines) 6 μm ideal mem-
branes (eq S12) under 0.1 and 0.5 N/m tension; (blue dashed
line) 6 μm ideal plate (eq S13); (blue hexagons) measured
devices with large diameter (∼6 μm); (red circles) small
diameter (∼2 μm) devices. Circles with divided colors
denote slightly larger (∼2.5 μm) devices with less than
complete coverage (as shown in Figure 2). Vertical dotted
lines mark the thicknesses of 2�5 layers of MoS2.
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larger-diameter (d∼ 6 μm) devices agree well with the
6 μm curves, and data from smaller-diameter (d∼ 2 μm)
devices match the 2 μm curves. Data from slightly larger
(d ∼ 2.5 μm) and incomplete diaphragms (see SEM
images in Figure 2 for examples) fall in between the data
from the above two groups.

Comparing our experimental and analytical results,
we find that thicker devices essentially operate in the
plate limit, where f0 is determined by the device
dimensions and shows little dependence on tension.
This is also evident in Figure 3c where data from larger
devices (d∼6 μm) appear to follow the trend of f0� t/d2

for ideal plates. In contrast, our thinnest devices oper-
ate in the transition regime and approach the mem-
brane limit. From these results we estimate a tension
level of γ ≈ 0.3�0.5 N/m in these devices, consistent
with values obtained in static nanoindentation tests of
mechanically exfoliated MoS2.

19,20 This value is also
comparable with that found in exfoliated graphene,6

suggesting similarity in the exfoliation processes of
both materials. We note that these tension values
correspond to strains of only ε ≈ 0.01�0.04%, which
are ∼250�2000 times lower than the intrinsic strain
limit (∼10�20%).18,19

Our analysis indicates that ultrathin devices (e.g.,
below five monolayers, vertical dashed lines in Figure 4)
will operate in the membrane limit and attain great
tunability via tension. Importantly, herewe clearly demon-
strate that for d∼ 2�6 μm or larger, devices thinner than
10�20 layers are already well in the membrane regime.
For d < 1 μm, only few-layer devices behave as mem-
branes. Figure 4 also provides the design guidelines and
scaling laws: reducing the lateral dimension and engineer-
ing high tension are both effective toward scaling up the
resonance frequency. For instance, for d = 0.5 μm (the
greencurves in Figure 4), resonatorswith f0 =1GHzcanbe
achieved in both asymptotic regimes, by trading thickness
versus tension. In particular, even a moderate tension of
γ ≈ 4.2 N/m (strain ε ≈ 1.5% for bilayer and ε ≈ 3% for

monolayer) leads to f0 > 1 GHz for d= 0.5 μmdevices with
less than three layers (Figure 4).

CONCLUSIONS

In conclusion, we have demonstrated a new type of
nanomechanical resonators vibrating in the HF and
VHF bands based on suspended 2D MoS2 crystals.
These MoS2 devices demonstrate robust resonances
with high Qs and naturally make motion transducers
exhibiting exceptional displacement sensitivities ap-
proaching 30 fm/Hz1/2 at room temperature. A figure of
merit f0 � Q ≈ 2 � 1010 Hz is achieved at room
temperature, among the highest in known nano-
mechanical resonators based on 2D materials includ-
ing graphene. Our study unambiguously identifies
the transition between the “plate” and “membrane”
regimes and establishes quantitative design guidelines
and scaling laws for engineering future generations of
MoS2 NEMS and ultrasensitive 2D resonant transdu-
cers. As thermomechanical fluctuations represent a
fundamental noise floor, the thermomechanical reso-
nant characteristics measured from the MoS2 devices
may provide important information for future engineer-
ing of MoS2 resonant NEMS, where achieving large
dynamic range28 and matching to intrinsic noise floor
are important. Examples include low-noise feedback
oscillators,29 noise thermometry,30 and signal transduc-
tion near the quantum limit.31 Furthermore, the demon-
stration of very high frequency MoS2 nanomechanical
resonators with frequency scaling capability enables
a 2D semiconducting NEMS platform for a number of
exciting future experiments and device technologies,
such as coupling dynamical strains and resonant mo-
tions into MoS2 field effect transistors15�17 and optoe-
lectronic devices,9,32 exploring spin interactions with
MoS2 NEMS resonators for quantum information
processing,33 and engineering vibratory and flexible
devices toward fully exploiting the very high intrinsic
strain limits18,19 promised by ultrathin MoS2 structures.

METHODS
Device Fabrication. MoS2 nanomechanical resonators are fab-

ricated by exfoliating MoS2 nanosheets onto prefabricated
device structures. First, circular microtrenches of different sizes
are patterned onto a silicon (Si) wafer covered with 290 nm of
thermal oxide (SiO2) using photolithography followed by buf-
fered oxide etch (BOE). The etch time is chosen such that the flat
Si surface is exposed. ThenMoS2 nanosheets are exfoliated onto
this structured substrate. We note that the yield for making
suspended MoS2 devices with fully covered microtrenches is
much lower than for making graphene devices with similar
geometries, especially for thinner (mono- and few-layer) de-
vices. Suspended MoS2 sheets covering microtrenches are then
identified under an optical microscope (Olympus MX50) with a
50� objective, where all the optical images are taken.

Thermomechanical Resonance Measurement. Undriven Brownian
motions of MoS2 nanomechanical resonators are measured
with a custom-built laser interferometry system (see Supporting
Information, S1, for details). A He�Ne laser (632.8 nm) is focused

onto the suspended MoS2 diaphragms using a 50�microscope
objective, with a spot size of ∼1 μm. We apply a laser power of
∼100 μW�700 μW onto the device which assures good optical
signal and does not exhibitmeasurable heating (see Supporting
Information, S4). Optical interferometric readout of the MoS2
device motion is accomplished by detecting the motion-
modulated interference between the reflections from the
MoS2 diaphragm�vacuum interfaces and the underneath va-
cuum�Si interface. We have specially engineered our system to
achieve pm/Hz1/2 to fm/Hz1/2 displacement sensitivities for
various devices by exploiting latest advances and techniques in
such schemes.34�36 The optical detection scheme and settings
are carefully tuned to remain identical during the experiments.
The vacuum chamber is maintained under moderate vacuum
(∼6 mTorr), except during characterization of air damping,
when the pressure is regulated and varied between vacuum
and atmospheric pressure (760 Torr). Throughout the pressure
dependence measurements we observe no evidence of bulg-
ing effect due to trapped air underneath MoS2 diaphragms
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(see Supporting Information, S5). Thermomechanical noise spec-
tral density is recordedwith a spectrum analyzer (Agilent E4440A).

Scanning Electron Microscopy (SEM). SEM images are taken inside
an FEI Nova NanoLab 200 field-emission SEM, using an Everhart-
Thornley detector (ETD) for detecting secondary electrons at an
acceleration voltage of 10 kV.

Atomic Force Microscopy (AFM). AFM images are taken with an
Agilent N9610A AFM using tapping mode. To measure the
thickness of each device, multiple traces are extracted from
each scan, from which the thickness value and uncertainty are
determined (see Supporting Information, S2).
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S1.  Measurement of Nanomechanical Resonances 

S1.1.  Optical Interferometry Measurement System 

 

Figure S1.  Schematic of the optical interferometry measurement system.  The 632.8 nm beam from a 

He-Ne laser goes through a beam expander, followed by a neutral density (ND) filter.  It is then focused 

onto the device through a 50 objective with window correction.  The reflected beam, redirected by a 

beam splitter (BS1), is focused onto a photodetector (PD).  The electronic signal is transmitted to a 

spectrum analyzer using a coaxial cable.  The second beam splitter (BS2) and the CCD camera facilitate 

white light imaging.  The device operates inside a vacuum chamber with a quartz window.   

Figure S1 shows a schematic of the measurement system.  Detection of the thermomechanical 

motion of the MoS2 devices is based on optical interference from light waves reflected from the 

suspended MoS2 diaphragm-vacuum interfaces, and from the vacuum-Si interface (described and 
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analyzed in more detail in Section S1.2).  In this geometry, reflectivity of the bottom Si surface 

in the microtrench is important for achieving a large interferometry signal.  Using buffered oxide 

etch (BOE) to remove the SiO2 layer above, we obtain a smooth Si surface that is important for 

the interferometry.  At the laser wavelength 632.8nm, the reflectivity of the Si surface is ~35%.   

To achieve a tightly focused spot size on the device, the He-Ne laser beam is directed to a 

beam expander and then focused through a microscope objective (50, NA=0.5) with optical 

window correction.  This gives a spot size of ~1m on the sample.  To minimize laser heating, 

we limit the laser power on the device to be below ~700W.  Such laser power levels give good 

interferometric signals in resonance measurements, and do not induce observable frequency shift 

due to parasitic laser heating.   

Optimizing the alignment of the optics is crucial for our measurements because of the 

minimal motions of the devices due to thermomechanical fluctuations.  Position of the measured 

device is adjusted using a motorized stage (Prior Scientific ProScan III).  The MoS2 diaphragm’s 

motion with respect to the underneath Si surface changes the interference and therefore leads to 

small-signal variations in the interferometric intensity.  This is then detected with a low-noise 

photodetector (PD) (New Focus 1801), and recorded by an RF/microwave spectrum analyzer 

(Agilent E4440A).  Most of the measurements are performed under moderate vacuum (~6mTorr) 

except for the pressure dependence measurements.   
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S1.2.  Interferometric Motion Transduction 

The reflectance R of the device (total reflected light intensity divided by incidence light 

intensity) is determined by the interference of the reflected light from all the interfaces.  Analysis 

of the multiple reflections inside the device structure (Fig. S2 inset) gives1 
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Here, r1, r2 and r3 are reflection coefficients at the vacuum-MoS2, MoS2-vacuum, and vacuum-Si 

interface:   
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and 1, 2 are the corresponding phase shifts: 
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2 dnvacuum ,       (S3) 

where d1 is the MoS2 thickness, d2 is the vacuum gap depth, and  is the laser wavelength.   

Using Eqs. S1-S3, the reflectance R’s dependence on vacuum gap depth is calculated and 

plotted in Fig. S3 for =632.8nm and d1=21nm, as an example.  We use nvacuum=1, nMoS2=5.263-

1.140i2 and nSi=3.881-0.019i.  The dependence of R on d1 is discussed in Section S1.5.   

With no external drive, thermomechanical (Brownian) motions of the device lead to 

fluctuations of the vacuum gap size d2.  These spatial fluctuations are transduced into the 

variations in R.  Therefore, the slope at d2=290nm (the SiO2 thickness) in Fig. S2 determines the 

“displacement-to-optical-reflectance” responsivity, and is estimated to be -0.38%/nm.   
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Figure S2.  Optical reflectance of the device versus the vacuum gap size for =632.8nm and 

d1=21nm.  The slope of the curve at 290nm (the vacuum gap size in our devices, indicated by the vertical 

dashed line) determines the responsivity of the system.  Inset: Schematic of reflection at multiple 

interfaces.  (Higher order reflections are not shown for clarity, but are included in the calculation).   
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S1.3.  Thermomechanical Resonance Measurement and Noise Analysis 

The signal measured on the spectrum analyzer typically takes the form of a resonance response 

on top of a frequency-dependent background (see Fig. S3, and also Fig. 1 and Fig. 2 in the main 

text for typical examples).  To relate the measured electronic signal to the mechanical motion of 

the device, we perform analysis on the thermomechanical noise.   

In the frequency domain, the thermomechanical motion of a resonator is given as3 
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and when the device is on resonance, the expression simplifies to 
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Here, kB, T, ω0, Q, and Meff are, respectively, the Boltzmann’s constant, temperature, angular 

resonance frequency, quality factor, and the effective mass of the device (more details in Section 

S1.4).  For example, for the 68.1nm-thick MoS2 resonator in Fig. 1 left panel in the main text, 

using its dimensions, measured resonance frequency, measured Q, temperature (300K), and Eq. 

S5, we determine its thermomechanical displacement noise spectral density on resonance to be 

2/1
,thxS =125.3fm/Hz1/2.   

Assume the noise processes are uncorrelated, the total noise power spectral density (PSD) is 

the sum of the PSDs from individual noise processes.  Thus we have   21

,,
2/1

, sysvthvtotalv SSS  .  
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Here 2/1
,thvS  is the thermomechanical motion noise spectral density translated into the electronic 

domain, through the ‘displacement-to-voltage’ responsivity 2/1
,

2/1
, thxthv SS .  The other term, 

2/1
,sysvS , is the voltage noise floor of the measurement system, which depends on the details of the 

detection scheme.  Typically we have 2/1
,sysvS 0.10.35µV/Hz1/2 in the 1060MHz frequency 

band, which slightly increases with increasing frequency.  The level of 2/1
,sysvS  determines the off-

resonance ‘baseline’ background ( 2/1
,

2/1
, sysvtotalv SS   off the resonance).   

We fit our data to the expression for 2/1
,totalvS , by using 2/1

,
2/1

, thxthv SS   and treating 2/1
,sysvS as a 

frequency-dependent function:   
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From the fitting we obtain 2/1
,sysvS , Q, and  (assuming T = 300K).   

Figure S3 (from the same device as in main text Fig. 1 left panel) shows an example of the 

fitting to the measured noise spectral density, with data (measured voltage spectral density, 

2/1
,totalvS ) plotted against the left y-axis.  We then convert voltage spectral density to displacement 

spectral density through the relationship  2/12/1
vx SS , with displacement scale displayed on the 

right y-axis.  The displacement sensitivity of the measurement system is defined as 

 2/1
,

2/1
, sysvsysx SS , the equivalent ‘fictitious’ displacement that would transduce into the actual 

electronic-domain noise floor of the measurement system.  For example, the 68.1nm-thick MoS2 

resonator, from which the data is shown in Fig. S3, is a motion transducer with a displacement 
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sensitivity of 2/1
,sysxS 49.5fm/Hz1/2.  From the plot one can directly tell that the responsivity of this 

system is 2/1
,

2/1
, sysxsysv SS =0.117µV/Hz1/2/0.0495pm/Hz1/2=2.36µV/pm.  We note that MoS2 

devices with different thicknesses have different responsivities and sensitivities (see Section S1.5 

for more details).  For each of the MoS2 devices, we have carefully performed similar signal 

transduction analysis as briefly discussed above and illustrated in Fig. S3.   
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Figure S3.  Example of measured thermomechanical resonance spectrum and analysis (from the 

same device as in main text Fig. 1 left panel).  Annotations indicate how various quantities can be read off 

from the figure and are related to each other.  See the text in Section S1.3 for more details.   
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S1.4.  Calculation of the Effective Mass of the Resonator 

In order to use Eq. S4 and S5 to estimate the amplitude of the Brownian motion, one needs to 

calculate the effective mass of the device, which depends on the mode shape of the resonance.  

Here we calculate the effective masses for a circular plate and a membrane in their fundamental 

flexural modes of out-of-plane vibrations.  For a circular plate with clamped edge, the deflection 

for the lowest mode (m=0, n=1) as a function of the normalized radial position r (0r1) is 

given as4 
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where J0 is the 0th-order Bessel function J, and I0 is the 0th-order extended Bessel function I.  For 

the fundamental mode, 216.102
01  .  The normalized modal shape is defined as 
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and the effective mass can be calculated as  

  drrurMM eff  
1

0

2
0101, )(2

1 


.       (S9) 

Here M is the total mass of the resonator.  Using Eq. S9 we calculate the effective mass of a 

circular plate to be MM eff 1828.001,   for the fundamental out-of-plane mode.   

Similarly, for a circular membrane, the mode shape is 
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)()( 01001 rJrZ   ,         (S10) 

where 405.201  .  This yields an effective mass of MM eff 2695.001,  .   

 

S1.5.  Effect of Device Thickness 

We examine how the MoS2 thickness affects the interferometry measurement.  Using the same 

equations in section S1.2 (Eqs. S1-S3), the dependence of the device reflectance R on MoS2 

thickness is calculated and plotted in Fig. S4, illustrating how the “displacement-to-optical-

reflectance” responsivity is modulated by the device thickness d1.   
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Figure S4.  Calculated optical interferometric transduction responsivity as a function of MoS2 

thickness.  Note that for certain thickness, the responsivity is 0.   
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S2.  AFM and Thickness Measurement 

We obtain AFM images and estimate thicknesses of our devices using an Agilent N9610A AFM.  

We start with coarse scans to locate the device and center it in the scan field, followed by slow 

scans with high resolution over the entire device area.  We then take multiple traces across the 

edge of the flake in the resulting AFM data, and multiple measurements are made on each trace.  

The average value and standard deviation of the measured height differences are used as values 

for the thickness and its uncertainty.  Figure S5 shows the AFM data from one of our thinnest 

devices (resonance shown in Fig. 2b of the main text).   

0 6

0

6

H
ei

gh
t (

nm
)

Position (m)

a

b c

d

e

 

Figure S5.  AFM and thickness measurement of our thinnest device (t=6.1±0.2nm).  a, b: Perspective 

view and top view SEM images.  c: AFM scan with lines indicating the position of the height traces.  d: 

3D AFM image.  e: the height traces from the AFM scan.  The green, blue and red lines correspond to 

trace 1, 2 and 3 in c, respectively.  All scale bars: 5m.   
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S3. Theoretical Analysis of Device Elastic Behavior and Frequency Scaling 

This section presents our theoretical analysis and modeling of the resonance frequency.  For a 

circular disk with bending rigidity and non-zero tension, the resonance frequency is5,6  
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Here mn is the angular frequency for the resonance mode (m, n), d is the diameter of the disk,  

is the areal (2D) mass density (kg/m2) of the material,  is the tension (force per unit length, in 

N/m, as in surface tension) inside the disk.  D=EYt3/[12(1-2)] is the bending rigidity, with EY 

being the Young’s modulus, t the thickness of the disk, and  the Poisson’s ratio.  k2
mn is a mode-

dependent parameter that is usually solved numerically.   

In the limit of an ideal membrane in which tension dominates, d2/D→∞, Eq. S11 becomes 

 



d

dk mn

mn
2 ,         (S12) 

which is the ‘membrane limit’ of resonance frequency dependence on geometry.  Note that the 

formality of this equation may differ from the other forms of membrane equation, because we 

used surface tension  (force per unit length, N/m), which is more meaningful for 2D structures, 

instead of other forms such as tension (force, in N) or stress (force per unit cross-sectional area, 

with units of Pa, N/m2) which are more applicable to 3D structures.  As a result, the frequency 

depends on the thickness t through the dependence on , the 2D mass density.   

In the other limit where the bending rigidity dominates, d2/D→0, Eq. S11 approaches 
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which is the well-known equation for an ideal circular plate.  Both limits are plotted as dashed 

lines in Fig. 4 of the main text.   

In the regime where neither tension nor bending rigidity is negligible, (k2
mnd/2) can be 

approximated by the following analytical expression6 
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where x=d2/(4D).  For the fundamental-mode (m=0, n=1) resonance, the values of parameters , 

, ,  are given in Ref. 6.  It is also shown that the error between the numerical solution and the 

analytical approximation remains below 3.8% for this mode6.   

Using this analytical approximation, we compute the fundamental-mode resonance frequency 

of clamped MoS2 diaphragms with different diameters and thicknesses (see Fig. 4 main text).  

Here we use 5.06g/cm3 for the 3D mass density of MoS2, and 0.7nm as the monolayer 

thickness7,8.  Poisson’s ratio is chosen to be  =0.165, same as that of graphite in the basal 

plane9.  Indeed, our results are not sensitive to the value of Poisson’s ratio within a reasonable 

range: when a device is near the ideal membrane limit, Poisson’s ratio has no effect on the 

resonance as it does not appear in the membrane equation; when it is in the plate limit, Poisson’s 

ratio enter the equation through the bending rigidity D, 

)1(

1
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
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2
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If we use some other values from the literature, such as 0.2510, 0.12511, or 0.2712, the resulting 

difference is always less than 2.5%.   

We use Young’s modulus of EY=0.2TPa as suggested by existing works11,13,14,15,16.  The 

calculated results are consistent with our experimental data.  In Fig. 4 of the main text, we show 

calculation for tension values ranging from 0.10.5N/m (except for d=0.5m), as typically 

observed in exfoliated nanosheets13,14,15,,17.  For the 0.5m devices, we show an additional curve 

with a tension of 4.2N/m, which can lead to GHz MoS2 resonators.  This tension level 

corresponds to a strain of only 3% in monolayer and 1.5% in bilayer, still significantly below the 

intrinsic strain limit of this material13,16.   

 

S4.  Measuring Device Temperature and Laser Heating Effect 

Experimentally determining the temperature of a suspended MoS2 device is particularly 

challenging, given the small dimensions and the configurations of our devices (e.g., no electrical 

contacts or electrodes).  Conventional thermometry techniques are not applicable.  In this work, 

we exploit intrinsic properties of our devices and use the device itself as a thermometer.  The 

specific technique we employ, called noise thermometry,3, 18 , 19 , 20  uses the device’s intrinsic 

thermomechanical noise spectrum to precisely determine its temperature, according to the 

fundamental equipartition theorem and statistical mechanics.  This allows us to directly measure 

the device temperature with very good precision, through analyzing the noise spectrum of the 

device’s thermomechanical motion, at a series of laser power levels.  The device temperature is 

related to its thermomechanical motion amplitude by 
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Here, keff is the effective spring constant of the resonator and kB is the Boltzmann’s constant.  To 

use the measured voltage domain spectrum density, we use 2/1
,

2/1
, thxthv SS   (see Section S1.3): 
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where  is responsivity (displacement-to-voltage transduction gain) of the measurement setup, 

and can be calibrated experimentally.21   

To examine the heating effects, we use different laser powers.  Since   linearly depends on 

the incident laser power, we normalize our expression accordingly: 
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where I is the incident laser power and C is a constant which remains the same for all laser 

power levels.   

At very low incident laser power levels (~100W to ~700W), we repeatedly observe that the 

resonance characteristics (center frequency f0 and Q) are stable and relatively constant (while we 

observe frequency shift at higher laser power levels).  Our noise thermometry confirms that at 

these low laser power levels, the device temperature is near room temperature (~300K).  Figure 

S6 plots the temperature measured from thermomechanical noise thermometry using Eqs. S16-

S18 for two different devices, demonstrating negligible laser heating effect when the incident 

laser power is below ~700W.   
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Figure S6.  Measured device temperature under different levels of incident laser power.  Data shown 

here have been taken from two different MoS2 resonators.  The green color zone indicates the region with 

negligible laser heating effect.  Beyond this calibration, we have performed our resonance measurements 

for all the devices with laser power levels in the green zone.   

 

S5.  Measurement of Pressure Dependence 

Most of the thermomechanical resonance measurements have been performed in moderate 

vacuum.  In some similar structures made with graphene, bulging due to pressure difference 

caused by trapped air in the cavity has been observed22.  We examine such effect in our MoS2 

device with SEM/AFM and resonance measurements.   

In edge-clamped circular membrane with different pressure on different sides, the maximum 

deflection at the center is related to the pressure difference by23 
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where p  is the pressure difference, t is the thickness,   is the initial tension (in N/m) in the 

membrane, a is the radius, YE  is Young’s modulus,   is Poisson’s ratio, and 0W  is the 

deflection of membrane.  Using our thinnest 1.9µm-diameter device (#20 in Table S1) as an 

example, we estimate the deflection under Pa105p  (using  =0.3N/m) is 25nm.  From both 

SEM and AFM measurements we do not observe clear evidence confirming such bulging effect 

(Fig. S5).  We have found the same behavior for all the devices we measured.   

Furthermore, we have performed pressure dependence measurement on the thermomechanical 

resonances.  If there were air volume trapped underneath the MoS2 diaphragm, as the external 

pressure in the vacuum chamber goes down, we would have expected to observe the resonance 

frequency increases due to increasing tension induced by the growing pressure difference (Fig. 

S7, magenta dashed line), as seen in some graphene resonators with similar geometry18.  

However, we have not observed this trend in the measured resonance frequency of our devices 

based on MoS2 diaphragms fully covering the microtrenches.  Measured data from one such 

example is shown in Fig. S7 (blue circles in the middle).  As shown, these devices behave the 

same way as the devices based on MoS2 diaphragms incompletely covering the circular 

microtrench (data from an example device is shown in Fig. S7, red half-filled circles in the 

bottom), which should not experience any pressure difference.  These results indicate that our 

MoS2 resonators possibly do not experience any bulging and tensioning induced by sustained 

trapped air underneath the MoS2 diaphragms.   
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Figure S7.  Measured pressure dependence of resonance frequency.  Dashed line: theoretical 

calculation of the resonance frequency of a MoS2 resonator with 1atm of air trapped underneath the MoS2 

diaphragm (using geometry from device #2 in Table S1).  Note the curve is plotted on a separate scale 

than the experimental data for clarity.  Blue circles: measured resonance frequency of such a device (#2 in 

Table S1).  Red half-filled circles: measured data from a device where MoS2 diaphragm partially covers 

the microtrench.  

 

S6.  List of All Devices and Their Parameters 

Figure S8 reproduces Fig. 3a&b in the main text.  Table S1 provides a list all the devices we 

have measured, with their specifications and parameters.  Each device in Fig. S8 is indexed and 

labeled with a number, corresponding to the device number listed in Table S1.   
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Figure S8.  Measured resonance frequency and quality (Q) factors of all the devices.  (These plots 

are reproductions of those in Fig. 3a&b in the main text, with all devices labeled).   
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Table S1 | List of Devices and Their Parameters 

Device 
# 

Diameter 

d (m) 
Thickness 

t (nm) 

Resonance 
Frequency 
f0 (MHz) 

Quality 
Factor 

Q 

f0Q 
(MHz) 

Displacement 
Sensitivity 
2/1

,sysxS  (fm/Hz1/2) 
Comments 

1  5.71  68.1±0.8  19.68  710  13900  49.5  Fig. 1, Left Panel 

2  5.51  39.6±0.5  17.99  500  8995  91.7   

3  6.38  39.6±0.5  26.85  100  2685  171.9   

4  6.81  57.5±2.1  14.06  190  2671  30.2   

5  5.53  57.5±2.1  17.25  150  2588  39.9   

6  6.78  57.5±2.1  11.72  350  4102  31.4   

7  5.53  57.5±2.1  18.46  110  2031  32.2   

8  5.73  45.4±1.1  15.74  80  1259  84.9   

9  5.96  38.0±1.6  14.13  550  7772  33.5  Fig. 1, Right Panel 

10  6.17  48.8±1.1  16.76  180  3017  90.8   

11  6.93  66.0±1.1  18.29  50  914.5  51.0   

12  5.99  30.3±0.3  8.49  40  340  41.4   

13  5.65  70.2±0.7  19.65  110  2162  43.6   

14  6.06  13.6±0.8  11.54  105  1212  99.4   

15  6.05  54.6±2.5  19.99  105  2099  69.5   

16  5.51  46.6±1.3  12.99  170  2208  41.3   

17*  2.69  62.2±0.7  48.10  200  9620  51.1  Fig. 2a 

18*  2.41  57.5±2.1  43.77  160  7003  40.9   

19*  2.53  43.0±1.4  53.72  370  19880  49.5  Fig. 2c 

20  1.90  6.1±0.7  49.70  80  4473  243.1  Fig. 2b 

21  1.51  27.2±0.5  57.89  80  4921  205.1  Fig. 2d 

*Device with less than complete coverage.   
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