SMILe: Shuffled Multiple-Instance Learning

Gary Doran
gary.doran@case.edu

Soumya Ray
sray@case.edu

AAAI 2013
Resampling Approaches in Supervised Learning
Bagging
Bagging
Bagging
Bagging
Bagging
Bagging

Classifier 1

Classifier k
Bagging

Combine classifiers using voting
Multiple-Instance (MI) Learning
Multiple-Instance (MI) Learning
Multiple-Instance (MI) Learning

Instances

Bags
Multiple-Instance (MI) Learning

Instances

Bags
Multiple-Instance Bagging
Multiple-Instance Bagging
Multiple-Instance Bagging

Resample Entire Bags

(Zhou and Zhang 2003)
SMILEe: Shuffling to create new bags

1. Start with positive bags
SMILe: Shuffling to create new bags

1. Start with positive bags

2. Shuffle positive bag instances
SMILE: Shuffling to create new bags

1. Start with positive bags

2. Shuffle positive bag instances
SMILE: Shuffling to create new bags

1. Start with positive bags
2. Shuffle positive bag instances
3. Sample new bags and label positive
SMILE: Shuffling to create new bags

1. Start with positive bags
2. Shuffle positive bag instances
3. Sample new bags and label positive
SMILe: Shuffling to create new bags

1. Start with positive bags

2. Shuffle positive bag instances

3. Sample new bags and label positive
SMILE: Shuffling to create new bags

1. Start with positive bags

2. Shuffle positive bag instances

3. Sample new bags and label positive
Example: Content-Based Image Retrieval
Example: Content-Based Image Retrieval
Example: Content-Based Image Retrieval
Properties

• Low noise on shuffled bag labels
• Introduces additional constraints
• Additional advantages:
 • Reduced space
 • Improved interpretability
 • Can be used with any classifier
Low noise on shuffled bag labels

\[
\frac{3}{6} \times \frac{2}{5}
\]
Low noise on shuffled bag labels

\[
\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}
\]
Low noise on shuffled bag labels

\[
\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = 5\%
\]
Bags as Constraints

“Positive”
Bags as Constraints

“Positive” OR “Positive”
Shuffling adds constraints
Shuffling adds constraints

Shuffled Bag
Shuffling adds constraints

{ "Positive" } OR { "Positive" }
Variables and Tradeoffs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Bag Size</td>
<td>Decrease Noise*</td>
<td>Less Powerful Constraint</td>
</tr>
<tr>
<td>↑ # of Bags</td>
<td>More Constraints</td>
<td>Decreasing Marginal Information</td>
</tr>
</tbody>
</table>

See paper for formal results
Experiments

• **Hypothesis:** The addition of shuffled bags should increase performance of MI discriminative classifiers.

• **Datasets:** 28 CBIR (image classification)

• **Methodology:** Add various numbers of shuffled bags to an MI dataset, and train using a set kernel classifier (Gärtner et al. 2002).
Shuffling Improves MI Classification

![Graph showing AUC for fox and tiger with labeled axes and legend](image)

- **AUC**
- **Shuffled Bags / Iterations**
- **SMILe**
- **Bagging**
Shuffling Improves MI Active Learning

stripednotebook

Shuffled Bags

Queries

AUC

0
10
20
30
40
50

0
0.70
0.72
0.74
0.76
0.78
0.80
0.82

0
20

Shuffled Bags

0
20
Shuffling helps when datasets are small

5 Initial Bags with 20 Shuffled Bags

Fraction Improved

Queries
Conclusions and Future Work

• SMILe: a new resampling approach for MIL that improves performance beyond bagging
• Helps especially well for small datasets
• Future Work:
 • Expand experiments (more base classifiers)
 • Explore more problem domains
 • Provide stronger theoretical justification