
GiPSiNet: A MIDDLEWARE FOR NETWORKED SURGICAL SIMULATIONS ∗

Vincenzo Liberatore
Division of Computer Science

Case Western Reserve University
10900 Euclid Avenue, Cleveland, Ohio 44106

United States
vincenzo.liberatore@case.edu

M. Cenk Çavuşŏglu
Division of Computer Science

Case Western Reserve University
10900 Euclid Avenue, Cleveland, Ohio 44106

United States
cavusoglu@case.edu

Qingbo Cai
Division of Computer Science

Case Western Reserve University
10900 Euclid Avenue, Cleveland, Ohio 44106

United States
qingbo.cai@case.edu

Abstract

Virtual environments are a promising new medium among
the simulation methods for surgical education. The net-
work extension of surgical virtual environments will enable
continuing education and advanced training over wide ge-
ographical areas. However, the network settings also pose
several non-trivial problems in terms of bandwidth limits,
delays, packet losses,etc. for distributed surgical virtual
simulations.

In our previous work [6], we presentedGiPSi (Gen-
eral Interactive Physical Simulation Interface), an open
source/open architecture framework for developing surgi-
cal simulations. GiPSi works on individual workstations
and, in our ongoing development, we extend GiPSi to a
network environment. This network extension involves the
development of a middleware module (GiPSiNet) to reme-
diate for the lack of networkQoS(Quality of Service) and
to enhance the user-perceived quality (fidelity and realism)
of a networked simulation. In this paper, we introduce the
design of the GiPSiNet middleware and describe the tech-
niques to provide timely data delivery over the network.
We also provide the evaluation measures for the perfor-
mance of user-perceived simulation quality in the presence
of network dynamics.

Keywords
Surgical simulation, Virtual reality, Network, Middleware.

∗URL: http://vorlon.cwru.edu/ ∼vxl11/ . The presenta-
tion was made possible in part by School of Graduate Studies at Case
Western Reserve University.

1 Introduction

Medical education can be improved through the use of sim-
ulations whenever possible [1]. Among the various simu-
lation methods for surgical education, virtual environments
are a promising new medium. With virtual environments, a
user can perform surgery on a simulated patient by manip-
ulating simulated organs using simulated surgical instru-
ments (haptic devices). An example of a surgical simulator
is shown in Figure 1.

The accessibility of surgical virtual environments can be
substantially extended by network communications. The
resulting networked simulations will enable continuing ed-
ucation and advanced training over wide geographical ar-
eas. However, the network settings also pose several non-
trivial problems for distributed surgical virtual environ-
ments because the physical communication platform intro-
duces constraints in terms of delays and bandwidth. More-
over, haptic data traffic cannot expect any special handling
within a best-effort network such as the Internet, and con-
sequently can be subject to delays or packet losses due to
congestion. Since the simulator should sense a user’s in-
put (e.g., the position of a haptic device) and respond (e.g.,
with haptic force feedback) to the user in real-time, the is-
sues such as the network delays can greatly impair the user-
perceived simulation performance. Thus, the quality of a
networked surgical simulation critically depends on meth-
ods to enable an effective remote interaction.

In our previous work [6], we presentedGiPSi (Gen-
eral Interactive Physical Simulation Interface), an open
source/open architecture framework for developing surgi-
cal simulations. GiPSi works on individual workstations
and, to enable it to operate in a network environment, we

 ��
 ��

Simulated on Computer

Control the
 Instrument

Display Simulated
 Surgical Scene

Haptic
 Feedback

Figure 1: Surgical simulator concept. Simulation snapshot
courtesy of F. Tendick [14].

have designed an open source and open architecture mid-
dleware moduleGiPSiNet. GiPSiNet acts as an intermedi-
ary between applications and the network and takes actions
to remediate for the lack of networkQoS(Quality of Ser-
vice) [13]. In our ongoing project, we develop, deploy, and
evaluate the GiPSiNet middleware for the distributed sur-
gical virtual simulations.

Specifically, the objectives of the GiPSiNet middleware
are to address the following issues:

• Abstraction for heterogeneous haptic devices and data
representations.

• Modularity through encapsulation and data hiding.

• Customizability to accommodate diverse surgical vir-
tual simulations.

• Efficient utilization of network bandwidth and other
system resources. GiPSiNet should be lightweight
and efficient for data communication via techniques
such as data compression.

• Compensation strategies for networks with delay, jit-
ter, and congestion. A main objective of GiPSiNet is
to enable high quality (fidelity and realism) of remote
simulation in the absence of network QoS.

• Qualitative and quantitative measures for a compre-
hensive performance evaluation.

Organization. In Section 2, we describe the architectural
design and modules of GiPSiNet. Section 3 introduces the
techniques that GiPSiNet adopts to ensure timely data de-
livery over the network. In Section 4, some measures are
given for the performance evaluation of GiPSiNet. In Sec-
tion 5, we introduce the related work. Section 6 concludes
this paper.

2 Architectural Design of GiPSiNet

GiPSi [6] is an open source/open architecture framework
for developing organ level surgical simulations, and works

on individual machines. To enable GiPSi to operate in a
network environment, we develop the GiPSiNet middle-
ware. A technical objective is to develop an organization of
the software and enforce a precise abstraction of the com-
munication flow.

The GiPSi framework currently provides an API be-
tween the simulation kernel and I/O (haptic I/O, visual-
ization). In order to extend the kernel-I/O API to a net-
work environment, a middleware layer (GiPSiNet) is added
between the kernel and the I/O module; such a middle-
ware encapsulates all networking functionality (Figure 2).
The resulting simulator involves two communication end-
points: (1) theclient, which interacts with the end-user
(e.g., surgeon, trainee) through the haptic I/O and visual-
ization interfaces, and (2) theserver, where the simulation
kernel runs and the physical models are numerically simu-
lated. The middleware transparently incorporates the com-
plex adaptive methods that are described in the rest of the
paper. Moreover, the networked framework inherits from
GiPSi its flexibility and potential for extensibility to a vari-
ety of surgical simulations.

2.1 Communication Model

The development of a middleware necessitates a precise
agreement between the client side and the server side.
GiPSiNet uses the followingcontract between the client
and the server. The client sends the server: (1) an inputxi,
which represents state derived from user actions, such as a
scalpel position, and (2) an integration interval∆ti. The
server replies to the client with a linearized approximation
Vi+1, which is the system state after the integration inter-
val ∆ti assuming that the inputxi is applied continuously
during such interval. Figure 3 shows the canonical way for
the client to exploit its contract with the server: the client
sends(xi, ∆ti) to the server, which replies to the client af-
ter a computation interval with the new stateVi+1. The
communication is structured around the concept ofdata
unit, which is the basic information block exchanged be-
tween the two communication end points. The two data
unit types in GiPSiNet represent the information flowing
from the client to the server(xi, ∆ti) and from the server to
the client (Vi+1). In these terms, the information exchange
follows a classical on-demand protocol: the client sends a
data unit (request) to the server, which replies with another
data unit (response). In an ideal scenario, the client sends
its requests at regular intervals of length∆ti (say, 100ms,
as in the non-networked GiPSi simulator), and the server
reply is delivered before∆ti. GiPSi views each data unit as
a foundational building block for its operations. However,
each “unit” requires several operations, e.g., segmentation
and compression, to be executed in the GiPSiNet middle-
ware.

User

FEC

Compression

Segmentation

Data representation

(client)

FEC

Segmentation

Compression

Data representation

GiPSiNet

(server)

Protocol Protocol

Playout Playout

GiPSiNet

(e.g., surgeon,

 trainee)

Network

Input/Output

Haptic interface

Visualization

Simulation

kernel

Figure 2: The GiPSiNet software architecture. Shaded module are part of the existing GiPSi platform, clear modules are part
of the GiPSiNet middleware.

V1V0V

1 32 τττ

(x(x(x
4V

Remote (server)

t

t

2 Local (client)

)))), ,,, 3210(x
3V2V1V

3V

t2∆t0∆t 1∆t

0∆t 3∆t2∆t1∆t

∆ 3

Figure 3: Timeline of data unit exchanges between client and server.

2.2 GiPSiNet Modules

Data representation module.This module creates, imple-
ments, and documents a format to represent the data ex-
change implied by the kernel-I/O API.

Protocol module. In the protocol module, a light-weight
protocol is implemented to establish a connection between
client and server. The emphasis is on light-weight methods
that highlight the network effect of various software design
choices. However, more complex solutions, such as SOAP,
CORBA, HLA, or RTP framing can be incorporated after
the interaction of network and simulation is better under-
stood. The protocol is based on a connectionless transport
(UDP), which is better suited to real-time traffic.

Segmentation module.The data size of each server data
unit (the linearized modelVi+1) is currently of the order
of 11,664 bytes. The client data unit (the local statexi) is
much smaller and of the order of 12 bytes. Meanwhile, In-
ternet traffic is based on packets whose size cannot exceed
certain bounds, typically 1500 bytes (the Ethernet Maxi-
mum Transmission Unit), including UDP/IP headers. If a
data unit is longer than the given bound, it is divided up
among multiple packets (segmentation). Data unit segmen-
tation is made necessary by the datagram nature of the UDP
protocol and by the need for fast, light-weight communica-
tion that is controllable by and interacts with the simulator.
In a best-effort network, each individual packet can be de-
livered out-of-order or lost. Therefore, the middleware and
the associated protocol implementsegmentation handling
to patch individual packets together into a simulation data
unit (or to detect that a data unit was lost) by keeping an
appropriate data structure of packet sequence numbers.

Compression module.GiPSiNet can benefit from a short
data unit: short data exchanges require fewer packets,
which in turn decreases the overhead of keeping track of
multiple segments. Shorter data units also decrease the loss

probability. Furthermore, a short data unit has a shorter
transmission time given the same amount of end-to-end
available bandwidth. Data unit size can be reduced by re-
sorting to compression. A data compressor is implemented
in the GiPSiNet middleware immediately upstream of the
network code. The data compression algorithm is based
on the standard Burrows-Wheeler algorithm [2], which is
simple, light-weight, and leads to better compression rates
than other widespread techniques. Moreover, the algorithm
can compress each data unit independently of others, which
renders compression resilient to losses.

Section 3 introduces the GiPSiNet modules that ensure
timely data delivery.

3 Timely Data Delivery

Most of today’s networks are based on the best-effort
model, which provides low level of QoS. This leads to the
dropping or loss of data units, and consequently the degra-
dation of the simulation realism and effectiveness. An ap-
proach to enhance the user experience is to add appropriate
modules within the GiPSiNet middleware, without altering
the remaining modules.

Data Exchange: Timeline.The ideal timeline schema op-
eration is such that, when the client sends a data unit, at
time i∆ti = iδ (where∆ti = δ is a fixed time quantity)
to the server, the client simultaneously sets the simulation
state toVi. The client is then anticipated to receive the
next stateVi+1, before the next sampling instance(i+1)δ.
However, the segments forming theVi+1 state could be lost
or delayed, which in turn would cause theVi+1 state to be
late or not forthcoming. In some instances the client’s data
unit could itself be lost and the client may end up waiting
for Vi+1 from the server. Hence, this timeline schema is
based on ideal assumptions that do not hold in best-effort

networks. The modules to be added to the middleware en-
deavor to diminish the incidence of late or missing of data
units.

Retransmission. There are two categories of data losses:
the client data unit loss, and the server data unit loss. As a
result, the client can fail to receive the next state informa-
tion Vi+1 from the server. In order to avoid this, the client
would resend the input information to the server at regular
intervals of lengthδ, irrespective of whether the server has
received the data or not. Thus, regular retransmission by
the client can support timely data delivery to some extent.

Forward Error Correction (FEC). The probability of loss
of an n-packet data unit increases with the value ofn. A
general way to maintain low loss rate is to keep the value
of n as small as possible, but a complementary method
is to encode the data unit redundantly with FEC meth-
ods. Although FEC does not eliminate packet losses, it
can nonetheless significantly reduce the probability that
a longer data unit is lost, and therefore is included in
the GiPSiNet middleware. Using these methods, then-
segment data unit is encoded intom > n segment, such
that the reception ofn segments out ofm would enable the
reconstruction of the data unit.

Playout. The ideal time interval within which the client
receives the server’s reply isδ, which can differ from the
actual time lag∆ti. If ∆ti < δ, the data unit can be
buffered and used at the scheduled time, but a more se-
vere problem occurs when the server reply is late. One way
to deal with this problem is to have a large value assigned
to δ, such that most data units can be received on time.
However,δ cannot be too large, since it would effect the
performance and the realism of the simulation. Therefore,
the appropriate way is to have the value ofδ depend on the
Round Trip Time (RTT) and the server computation time,
and should change over time to reflect changing network
conditions. The GiPSiNet middleware contains a module
for adaptive playout that dynamically adjusts the value ofδ.
The playout module borrows concepts from the Voice-over-
IP (VoIP) literature and, in particular, it uses Algorithm 4
from [12], which appears to be effective, yet simple and
robust. Then, the client includes the new value ofδ in its
request to the server, because the value ofδ is dynamically
changing and moreoverδ is equivalent to the integration
step.

4 Evaluation

A broad objective of the evaluation is to ascertain the ef-
fectiveness of the methods described in this paper and to
improve upon them in critical scenarios. The first step
in this direction is to develop a framework for the semi-
automatic evaluation of GiPSiNet in the context of surgi-
cal simulations. The framework is used to evaluate the
effectiveness of surgical simulations over various network
configurations and then to improve simulation performance

accordingly. It consists of hardware, software, and quanti-
tative and qualitative results that enable the performance
evaluation of GiPSiNet. GiPSi will be run on a real and
emulated networks with a set of benchmark tasks and to in-
troduce causes for deviation from the ideal behavior, such
as network-induced delays, packet losses, or congestion.
The quality of the software should also be evaluated from
the user’s perspective, for example, by expert reviews. We
next describe several aspects of the evaluation details.

Benchmark Suite. In measuring performance, the first
hurdle is to bridge the two worlds of network dynamics and
user-perceived quality. Furthermore, the linkage should be
as automated as possible so that different software design
choices can be prototyped and tried in relatively short time
frame. Network behaviors are related to simulation perfor-
mance by executing a standard task remotely and measur-
ing the performance on that task. The task performance
can depend on network conditions and, in certain circum-
stances, it can even become impossible (e.g., in case of a
network partition). Thus, the performance on a benchmark
task gives an indirect but significant indication of the im-
pact of network conditions on user-perceived performance.
However, performance can be measured with an automatic
procedure. Specifically, an automatic controller can be im-
plemented for executing each task. For example, a state-of-
the art automatic controller moves the scalpel using compli-
ant control to perform the Fitts’ task [4, 5]. The controller
performance will be observed under different network con-
figurations.

An important step in the evaluation to build and doc-
ument a benchmark suite of standard surgical tasks on
which performance can be evaluated. The benchmark tasks
should be simple enough such that they can be programmed
with control techniques of general knowledge. Meanwhile,
the benchmark tasks should be representative of simple op-
erations that a human user could do, and should enable the
validation of the simulator under various network condi-
tions. The standard Fitts’ task will be used as a bench-
mark task, and task performance will be quantified using
the Fitts’ index of performance. In addition, the evalua-
tion adopts benchmark tasks that are more general and rep-
resent other common tasks performed in typical surgery,
including tasks that require tracking of simple trajecto-
ries using surgical tools and maintaining constant contact
force between the surgical tool and tissue. In addition, the
GiPSiNet evaluation can adopt suitable performance met-
rics, such as task completion time and error in trajectory
tracking, and the amount of simulated damage that a con-
troller inflicts under poor network conditions for constant
force application tasks.

GiPSiNet Instrumentation.The user can perceive differ-
ent levels of simulation realism depending on the computa-
tional capabilities of his own computer and on the overhead
imposed by running GiPSiNet on his machine. An evalu-
ation objective is to assess the computational requirements
of the individual modules within GiPSiNet. To estimate

the running time of each module, GiPSiNet includes in-
strumentation software that can be selectively turned on or
off at run-time.

Network Dynamics. The network behavior effects user’s
perception of the simulation quality. For example, a user
could get quickly dissatisfied with an interactive simulation
if the network introduces unacceptable end-to-end delays.
Networks introduce delays between communication end-
points due to propagation delays, data unit transmission
time, in-network packet processing, and queuing delays.
As a result, an RTTτi elapses between the transmission
of Vi and the receipt ofxi (Figure 3). Analogously, band-
width limitations increase the transmission time and con-
sequently the RTT. Moreover, packet drop-outs can cause
data unit losses and degrade the simulation performance.
Delays can be studied by linking the client and the server
through a bridge that forwards frames after a delay. The
emulator can also introduce packet losses on an emulated
link and limit the bandwidth available between the two end-
points with a simple leaky bucket scheme. The emulation
technology is standard and is based on a commercial off-
the-shelf workstation with two network cards running dum-
mynet over FreeBSD. Such an emulator will be installed
and tested, and a convenient interface will be provided to
quickly set the simulation parameters.

Another potential reason for poor user-perceived perfor-
mance is that best-effort networks can (and often do) pro-
vide low QoS levels in the presence of congestions. An
evaluation objective is to assess the impact of network con-
gestion on simulation performance. The effects of conges-
tion can be evaluated by network emulations on the bench-
mark tasks. An emulation network are developed to contain
the end-points, possibly the network emulator, plus another
two workstations that generate cross-traffic. Scripts will
also be developed to inject cross-traffic according to vari-
ous models (constant bit rate (CBR), Pareto, TCP-regulated
bulk data transfers). Our in-lab results will be further vali-
dated on a wide-area network.

Experiments. The test bed will be used to obtain per-
formance figures on representative tasks. The benchmark
tasks are to be run under several emulated network condi-
tions by setting a range of values for delays, losses, and
cross-traffic in the emulator and in the traffic generator.
Task performance numbers and GiPSiNet computational
requirements will be collected, as described above. Such
performance figures will be related with network condi-
tions and type of cross-traffic, so that general trends can be
isolated. In general, if network conditions are perfect (e.g.,
client and server running on the same machine), then the
only difference between GiPSiNet and the non-networked
GiPSi is the computational overhead posed by the middle-
ware modules. At the other extreme, if network QoS is in-
existent (e.g., a network partition), no communication can
take place. The objective of these experiments is to explore
this spectrum and to relate quantitative task performance
with network conditions, as well as quantify the computa-

tional overhead of the middleware.

Expert Reviews. To obtain a more adequate evaluation
from user’s perspective, expert reviews are conducted by
involving participants of a simulation session. Expert re-
views have proved to be effective to provide useful feed-
back in user interface design [10]. In a simulation session,
the participants will be asked to freely manipulate the soft-
ware and devices attached to it, and to answer a list of ques-
tions regarding the user interface satisfaction, their expe-
rience with the haptic devices, and open-ended questions
with respect to the research values and future directions of
the software. The feedback is used for improve the quality,
accuracy, effectiveness, and usability of the software.

5 Related work

A scalable network architecture has been proposed for dis-
tributed virtual environments with dynamic QoS over IPv6
[3]. Later, a real time platform middleware was developed
in the LAN environment to provide an architecture for pro-
totyping realtime multimodal I/O projects [11]. In [15],
a queuing and packet forwarding algorithm was proposed
and evaluated for distributed virtual environment applica-
tions. Haptic collaboration over the network is under inten-
sive investigation [7, 9, 8]. In [7], the authors examine the
influences of network latency (RTT) on the quality of hap-
tic collaboration. It was shown that the object controllabil-
ity, the feeling of touch, and the performance of a task are
very sensitive to RTT. However, to the best of our knowl-
edge, our project is the first to systematically develop and
evaluate a middleware for distributed surgical simulations.

6 Conclusion and future work

In this paper, we described the design, techniques, and
evaluation plan of the GiPSiNet middleware project, which
extends GiPSi to a network environment and enhance the
quality of networked surgical virtual simulations. In the
future, we will deploy GiPSiNet and run experiments for
a better understanding of the interaction between network
and the virtual environments. We will also systematically
evaluate the qualitative and quantitative performance of
GiPSiNet.

Acknowledgement

The authors gratefully acknowledge Technology Opportu-
nities Program (TOP) of Department of Commerce, NASA
NNC05CB20C, NSF CCR-039910, and the Virtual Worlds
Laboratory and School of Graduate Studies at Case West-
ern Reserve University.

References

[1] First, do no harm. Technical report, Institute of
Medicine, 1999.

[2] M. Burrows and D. J. Wheeler. A block-sorting loss-
less data compression algorithm. Technical Report
124, Systems Research Center, Digital, 1994.

[3] M. Eraslan, N. D. Georganas, J. R. Gallardo, and
D. Makrakis. A scalable network architecture for dis-
tributed virtual environments with dynamic QoS over
ipv6. In 8th IEEE international symposium on com-
puters and communications, 2003.

[4] P. M. Fitts. The information capacity of the human
motor system in controlling the amplitude of move-
ment. Journal of Experimental Psychology, 47:381–
391, 1954.

[5] P. M. Fitts and J. R. Peterson. Information capacity
of discrete motor responses.Journal of Experimental
Psychology, 67:103–113, 1964.

[6] T. Goktekin, M. C. Cavusoglu, F. Tendick, and S. S.
Sastry. Gipsi: A draft open source/open architecture
software development framework for surgical simu-
lation. In the International Symposium on Medical
Simulation, pages 240–248, 2004.

[7] S. Matsumoto, I. Fukuda, H. Morino, K. Hikichi,
K. Sezaki, and Y. Yasua. The influences of network is-
sues on haptic collaboration in shared virtual environ-
ments. InProceedings of the Fifth PHANTOM Users
Group Workshop, 2000.

[8] M. McLaughlin, G. Sukhatme, W. Peng, W. Zhu,
and J. Parks. Performance and co-presence in het-
erogeneous haptic collaboration. In11th IEEE Sym-
posium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems (HAPTICS), 2003.

[9] M. L. McLaughlin, J. P. Hespanha, and G. S.
Sukhatme. Touch in virtual environments: Haptics
and the design of interactive systems. Prentice Hall,
2002.

[10] Nielsen, Jacob, Mack, and Robert (Editors).Usability
Inspection Methods. John Wiley and Sons, 1994.

[11] G. Pava and K. E. MacLean. Real time platform
middleware for transparent prototyping of haptic ap-
plications. InProceedings. 12th International Sym-
posium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, 2004.

[12] R. Ramjee, J. F. Kurose, D. F. Towsley, and
H. Schulzrinne. Adaptive playout mechanisms for
packetized audio applications in wide-area networks.
In INFOCOM, pages 680–688, 1994.

[13] J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of
networking in multiplayer computer games. InPro-
ceedings of the International Conference on Appli-
cations and Development of Computer Games in the
21st Century, pages 74–81, 2001.

[14] F. Tendick, M. Downes, T. Goktekin, M. C.
Çavuşŏglu, D. Feygin, X. Wu, R. Eyal, M. Hegarty,
and L. W. Way. A virtual environment testbed
for training laparoscopic surgical skills.Presence,
9(3):236–255, June 2000.

[15] Q. Zhou, H. Yu, D. Makrakis, N. D. Georganas,
and E. Petriu. Quality of service support of dis-
tributed interactive virtual environment applications
in ip-diffserv networks. InIEEE International Work-
shop HAVE (Haptic Virtual Environments and Their
Applications), pages 97–102, 2002.

	TeleHealth2005Ref: In Proceedings of the IASTED Telehealth 2005, Banff, Canada, June 19-21, 2005.

