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Abstract—Haptic interface research benefits from accurate
human arm models for control, and system design. The literature
contains many human arm dynamics models, but lacks detailed
variability analyses. Without accurate measurements, variability
is modeled in a very conservative manner, leading to less than
optimal controller and system designs. This paper not only
presents models for human arm dynamics, but also develops inter
and intra-subject variability models for a stylus-based haptic
device. Data from 15 human subjects (9 male, 6 female, ages 20–
32) were collected using a Phantom Premium 1.5a haptic device
for system identification. In this work, grip force dependent
models were identified for 1–3 N grip forces in the 3 spatial axes.
Also, variability due to human subjects and grip force variation
were modeled as both structured and unstructured uncertainty.
For both forms of variability, the maximum variation, 95%, and
67% confidence interval limits were examined. All models were
in the frequency domain with force as input and position as
output. The identified models enable precise controllers targeted
to a subset of possible human operator dynamics.

Index Terms—Haptics and Haptic Interfaces, Physical Human-
Robot Interaction Human Operator Modeling, and System Iden-
tification.

I. INTRODUCTION

HAPTIC interfaces provide a human operator bilateral
force interaction with a remote or virtual environment.

The human arm, with its countless configurations and a
multitude of applications, is by far the most complex and
variable element in haptic interface systems. In order to
develop a stable and useful haptic interface, accurate and
relevant models of human arm dynamics are a necessity. They
are critical for proper stability analysis, interface design, and
improving haptic fidelity. However, because the human arm
is so dexterous and reconfigurable, researchers have reported
that small variations in arm configurations, grip forces, and
application environments result in the arm exhibiting a wide
range of dynamic behavior [1], [2], [3], [4]. Since the arm’s
configuration is constantly subjected to slight changes during
a haptic manipulation task, this implies that in addition to
accurate, task and orientation-dependant models of human arm
dynamics, researchers can also benefit from precise informa-
tion on the variability of those dynamics during haptic ma-
nipulation. Without accurate arm dynamics variability models,
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haptic interface systems are conservatively designed to account
for a larger set of variability than sometimes necessary [5]. In
contrast, the availability of precise variability measurements
will enable more efficient and higher-performance haptic in-
terface systems targeted at subsets of possible human operator
dynamics.

Therefore, the current study aimed to not only create models
of the arm and hand dynamics, but also study the inter and
intra-subject variability observed in the dynamics and model
parameters.

Haptic interfaces with a stylus handle were selected as
the focus of this work because of their accessibility and
relevance to many haptic manipulation tasks. Stylus handles
are commonly found on commercially available haptic devices
and are convenient for mimicking other tools that require
a similar grasping style. Paintbrushes, dentistry tools, and
surgical blades are just a few examples of objects that are held
in a pinched-grasp similar to how one would hold a stylus.

The models developed in this study used the common con-
vention of force at the hand as the model input and measured
hand position as model output because a key capability of
haptic devices is the ability to apply forces to the arm and
track hand position. This formulation was consistent with
the impedance model for human interaction and the two-port
framework for haptic interfaces [6], [7].

Dynamic models for the human arm originated with re-
searchers investigating the body’s biomechanics, joint dynam-
ics, and mechanical impedance modeling [8], [9], [10], [11],
[12]. As robotics and haptic technology became more mature,
researchers began to develop single-input-single-output (SISO)
models based on mass-spring-dampers (MSD) systems, which
have been shown to accurately reflect arm dynamics and are
more suitable for real-time computer implementation [13],
[14], [15], [11]. More recently, human arm dynamics have
been increasingly modeled using robots or manipulators that
can be used for haptic feedback in an effort to improve
haptic system design and fidelity. For instance, Hasser et al.
developed a hand grasping model while operating a haptic
knob [16]. Woo et al. characterized the inertia, stiffness,
and viscosity of the arm exerting forces of 0–20 N using a
one degree-of-freedom (1 DOF) haptic device [17]. Dong et
al. described non-parametric frequency responses of human
fingers using various grip configurations subjected to a random
vibration [18]. Various others have modeled intrinsic and
reflexive muscle parameters for the shoulder, elbow, and wrist
joints using a 2D (horizontal plane) planar haptic device
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with a cylindrical grip handle [19], [20], [11]. Speich et al.
characterized human arm parameters using a 1 DOF haptic
device with a spherical handle and also a custom 3 DOF haptic
device with a stylus handle [21]. Kuchenbecker et al. also used
a stylus handle with a grip force sensor on a custom 1 DOF
manipulator to characterize the hand and wrist [2].

Researchers have also made progress investigating the
vibro-tactile responses of the human hand using haptic devices.
McMahan et al. identified a five-parameter MSD model of the
hand interfaced with a stylus grip haptic device using a 1 DOF
linear actuator custom-mounted onto the Phantom’s stylus
itself (for high frequency 10-200 Hz vibro-tactile feedback
applications) [22]. Israr et al. have used both stylus-based
devices and spherical actuators to shake the hand at 10-500
Hz [23], [24]. Also, Diaz et al. have investigated the vibration
modes from 0.7–200 Hz in 1 DOF of the human operator using
a racquet grip on the Phantom Premium 1.0 and a custom
haptic interface [25].

The mentioned works have contributed greatly to haptics
research, but what is currently not found in the literature
are experimentally-derived results describing the uncertainty
and variation found in human arm dynamics. Human operator
variability is frequently modeled as the set of all passive
nonlinear impedances [26]. However, this approach typically
results in overconservative designs, which limit the haptic
interface system’s performance. More limited uncertainty sets
are used in some studies (e.g. [27]), however these models
are not based on detailed human experiments. Indeed, many
studies used human experiments and reported the amount of
variance observed from their data collections and parameter
identifications, but the variances are not modeled in a way
that can be directly used for robust stability and performance
analysis.

Study Objectives

The current work focuses on modeling not only the 3D arm
dynamics, but also the inter and intra-subject variability (due
to human variation and grip force changes, respectively) as a
function of frequency.

This study used data collected from human experiments to
identify both grip-force-dependent 3D Cartesian-space models
of the human arm and inter-subject variation using force
as the model input and measured position as output. The
measured human experiment dynamics were modeled using
five-parameter linear transfer functions based on the dynamics
of one mass, two springs, and two dampers.

Variability of the dynamics was studied in two forms: as
the statistics of the identified arm dynamics model param-
eters (referred to from here on as ‘structured variability’)
and as multiplicative unstructured uncertainty (referred to as
‘unstructured variability’). The unstructured variability was
modeled in a form consistent with robust stability theory using
transfer functions composed of up to five stable complex-
conjugate pairs of poles and up to five minimum-phase
complex-conjugate pairs of zeros. In this way, they can be
directly applied to robust stability analysis of haptic interfaces.
The structured variability, on the other hand, is consistent and

Fig. 1. The experimental setup and arm configuration used for the human
experiment data collections.

applicable to mu-synthesis stability analysis methods. Details
for robust stability analysis can be found in texts such as [28].

The arm dynamics and unstructured variability model struc-
tures were proposed by the authors in [29], but only nine
grip-force-dependent measured-dynamics models and three
maximum unstructured variability models were studied. Also,
the data in the previous study was collected from nine subjects
without the use of stereographic user interface display, or a
force sensor at the haptic device end effector. In the current pa-
per, 15 subjects were studied, the user interface was displayed
using stereographic 3D images and a force sensor was used
for data collection. In addition, structured variability results
are introduced along with additional unstructured variability
models. Structured variability results were obtained from 135
new measured-dynamics models, one for each axis, subject,
and grip force combination. Also, in addition to the maxi-
mum observed inter and intra-subject variability, the 95% and
67% confidence interval (CI) limits for variability were also
identified and studied.

II. METHODS

The following methods were consistently applied to each of
the three Cartesian axes.

A. Subjects

Fifteen subjects (6 female, 9 male, ages 20–32) were
recruited with prior consent for this study and were not
compensated for their participation. Each subject was free
from any movement impairments that would have affected this
study and tested using their dominant arm. The experimental
procedures were reviewed and given exemption status by the
institution’s Internal Review Board.

B. Equipment

Experiments were performed using a Phantom Premium
1.5a haptic device (Sensable Technologies Corp., Woburn,
MA) equipped with both a Nano 17 6-DOF force/torque
sensor (ATI Industrial Automation, Apex, NC) to measure
end effector forces and a FlexiForce force-sensitive resistor
to measure grip forces (TekScan Corp., Boston, MA). The
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Fig. 2. This was the on-screen view seen by the subjects. The blue cross
bars give the user a fixed coordinate frame to judge 3D motion. The sphere
is a cursor controlled by moving the haptic device’s stylus. The color of the
sphere changes to correspond to the label used for each grip force in the
gauge located in the lower right of the screen. The green transparent box at
the intersection of the crossbars was the static target position each subject
was instructed to keep the cursor at during the experiment.

force/torque sensor was attached to the Phantom at the end
effector. A custom stylus made of Delrin was attached via
the Phantom’s stock passive gimbal to the force/torque sensor.
The stylus and gimbal together had a mass of 52 g. The
grip force sensor was mounted to the surface of the stylus
4 cm from the gimbal’s center and a Phidgets Inc. (Calgary,
Alberta, Canada) 1018 analog-to-digital interface was used to
acquire data from the grip force sensor at 65 Hz. A dual-core
2.53 GHz Xenon workstation (Dell Corp., Round Rock, TX)
ran a real-time servo loop of 1 kHz and acquired data from
the motor encoders using a PCI-6602 counter and the force
sensor using a PCI-6031 analog-to-digital converter (National
Instruments Corp., Austin, TX). Motor outputs were controlled
using a PCI-DDA08/12 digital-to-analog converter (Measure-
ment Computing Corp., Norton, MA). The user interface was
programmed in OpenGL and displayed stereoscopically using
a 120 Hz, 22 in CRT monitor (Dell Corp., Round Rock,
TX) and Crystal Eyes 3 active shutter glasses (RealD Corp.,
Beverly Hills, CA).

C. Arm Model Experiment Paradigm

During each experiment trial, the subject was instructed to
wear stereographic shutter glasses, sit facing a 22” computer
monitor in a chair with no arm rests, and use their hand to
hold a stylus-shaped handle at the end effector of the Phantom
haptic device as one would hold a pen. Figure 1 shows the arm
configuration and experiment setup for the experiments. Since
the elbow and wrists were not supported, some muscle contrac-
tions (including the biceps, deltoid, and pectoralis major) were
required to counter gravity and maintain a fixed hand position.
Figure 2 shows the graphical user interface (GUI) presented to
the subject. The stereographic GUI displays a spheroid cursor
that reflects the motion of the stylus at the gimbal pivot point

on a 1:1 scale in virtual 3D space. Each subject’s grip force
was displayed in two ways: using a gauge and by changing
the color of the sphere to signal that a certain grip force was
achieved (red for 1 N, cyan for 2 N, and magenta for 3 N).
Changing the color of the cursor with respect to the grip force
minimizes the need for subjects to divert their attention away
from the cursor to the force gauge.

Using the stereographic GUI and the Phantom stylus, the
subject was instructed to maintain one of the three tested grip
forces (1, 2, and 3 N) and try their best to keep the cursor
(red sphere in Fig. 2) at the static target at the center of the
crossbars (inside the transparent green box shown in Fig. 2)
throughout the duration of the trial. Maintaining a static hand
position served to stabilize the hand about the center of the
haptic device workspace and minimize any complex cognitive
strategies so that the observed dynamics would be largely the
result of low-level motor control. Once the subject achieved
the desired grip force and centered the cursor at the target, they
vocally signaled an experimenter to initiate stimulation forces
to the hand along one of the three tested Cartesian coordinate
axes. The unstimulated axes of the phantom were unrestrained.
When each trial was over, the subject was given as much
time as needed to rest and prevent fatigue to their hand and
arm caused by the trial. To minimize any order effects, the
combinations of grip force and stimulation direction were
presented in random order to each subject.

During the experiments, the position at the stylus gimbal’s
center was recorded in all three degrees of movement (X being
left and right, Y being up and down, and Z being forward and
backward) while the subject’s arm was stimulated with random
forces in only one of the degrees of movement at a time (see
Sec. II-D). The duration of stimulation lasted 60 s, and the
ability of the subject to consistently maintain a specific grip
force was monitored by the experimenter via the experiment
visual interface described in Sec. II-C. In order not to exceed
the 3 A current limit on the Phantom’s motors, the stimulation
forces at the stylus were limited to not exceed 5 N. Nine
sets of data were collected from each subject, one for every
combination of three grip forces and three directions of force
stimulation (X, Y, and Z directions). The grip forces were the
source of inter and intra-subject variability and selected to be
1–3 N because grip forces less than 1 N were insufficient for
maintaining a hold on the stylus under the stimulation forces
and grip forces greater than 3 N were very difficult for the
subjects to consistently maintain for longer than 60 s. Subjects
were instructed to maintain a static cursor position at the center
of the crossbars in order to trigger a consistent motor control
strategy throughout the experiments.

A total of 135 trials were recorded for this study from 15
subjects, three grip forces, and three stimulation axes.

D. Input Signals Used in the Human Experiment

For system identification, input signals such as frequency
sweeps, pseudo-random binary sequences, discrete sinusoidal
signals, and random noise typically produce comparable re-
sults [30], [31]. However, when modeling the human arm,
frequency sweeps and discrete sine waves are not suitable
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Fig. 3. Example of input and output signals (5 second duration).

because at low frequencies (< 3 Hz), human anticipatory
reflexes make it difficult to keep the arm passive to force
disturbances. Fortunately, the more random the force distur-
bance is, the less likely it will trigger the arm’s reflexes.
For this reason, the current study used colored noise inputs
with a bandwidth of 30 Hz to render them unpredictable by
the human subjects and still achieve frequency responses in
the range of 0.6–30 Hz. Colored noise was generated from
Gaussian white noise that was low-pass filtered to 30 Hz
(13th order Butterworth) because of the limits imposed by
neural signal delay for voluntary movement (Fig. 3). During
complex tasks, such as target reaching, humans take up to
110 ms to respond to changes in target position [32]. It takes
approximately 75 ms for a neural signal to travel from the
brain to the ankle muscles and back [33]. For the wrist, [34]
found that it takes approximately 50 ms to resist an extension
by an external force. Since the arm is closer to the brain than
the ankle and the target in this study is static, 50 ms was
assumed as the approximate time delay for the arm in the
experimental task. Under this assumption, the bandwidth for
the human arm was approximated to 20 Hz, justifying the
selection of 30 Hz noise bandwidth. It is important to note that
the current study does not model the neural delay, but serves
to provide an approximation for the bandwidth of volitional
human movement.

E. Arm Dynamics Model Structure

Figure 4 represents the system that was identified. The
human arm was conceptualized as a MSD model containing
five parameters (1 mass, 2 springs, and 2 dampers), similar
to those used in [35], [21], [36], [25]. In addition to being
consistent with models from the literature, MSD models can
be readily simulated in real time with common computer
hardware and are appropriate for the purposes of the current
study’s focus on the dynamics at the end-effector of the human
arm. Mass M represents the inertia from the arm, spring k1

Fig. 4. This block diagram represents the identified system. The left most
block represents the haptic device that exerts a force on the human arm. A
force sensor (center block) was placed between the haptic device and the
user’s arm. The dashed box on the right contains the MSD model for the
human arm. Mass M represents the inertia of the of the arm. The spring k1
and damper b1 represent the hand grasp stiffness while spring k2 and damper
b2 represent the arm stiffness. FPhantom is the measured force applied at
the end effector of the haptic interface and xarm is the measured position of
the stylus gimbal center that is attached to the force sensor.

and damper b1 represents the grasp stiffness while spring k2
and damper b2 represent the arm stiffness.

A transfer function model for the arm, Harm, was then
derived (detailed in the Appendix) from the five-parameter
MSD model with measured force Fsensor as input and position
of the hand Xarm (considered equal to the measured stylus
gimbal center) as output. In Laplace notation, the transfer
function (derived in the appendix and consistent with [36],
[21]) was

Harm(s) =
Xarm(s)

Fsensor(s)
=

Ms2 + (b1 + b2)s+ k1 + k2
b1Ms3 + (b1b2 + k1M)s2 + (b2k1 + b1k2)s+ k1k2

, (1)

This arm model transfer function was fitted to the mea-
sured human experiment frequency response in each axis in
order to identify five parameters M , k1, k2, b1, and b2. The
measured human experiment frequency response (arm position
as output and force sensor measured force as input) was
computed using Welch’s transfer function estimation (Matlab’s
tfestimate.m) with 32 Hamming windowed segments
and 50% overlap in order to minimize FFT artifacts. Each
fit was performed using nonlinear constrained optimization
(Matlab fmincon.m function) in the frequency domain by
minimizing the cost function

p∑
n=1

Wt(n)
(
Hexp(j2π

n

N
)−Harm(j2π

n

N
)
)2
, (2)

where Wt(n) was a weighting function, Hexp(s) was the fre-
quency response of the force-input, position-output human ex-
periment data, Harm(s) was the measured-dynamics model’s
frequency response calculated from (1) with the identified
parameters, p = 57 was the number of data points for 30 Hz
of data, and N = 958 was the total number of frequency re-
sponse points resulting from the 32 segment Welch frequency
response estimation method. The weighting function, when
used, was defined as the mean-squared coherence of the force
input and position output, as in [20]. Coherence was calculated
via Matlab’s mscohere.m function with 958 FFT samples to
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match the frequency response data. In effect, each empirical
frequency response sample was weighted by how closely the
input and output signals corresponded at that frequency.

Equation (2) was used as the cost function to identify three
sets of arm model structure parameters.

1) Set 1: Grip-Force-Dependent Measured-Dynamics
Model Parameters: Parameters for this set were derived
from nine measured-dynamics model fits. One model fit
was identified for each grip force at each axis. For this set,
Hexp(s) was defined as the measured frequency response
data averaged over all subjects, resulting in nine grip-force-
dependent measured-dynamics model transfer functions. The
weighting function used for each fit was the mean-squared
coherence averaged over all subjects (Fig. 5). These models
provide dynamic equations that are useful for simulating the
arm’s dynamics during haptic system design.

2) Set 2: Nominal Arm Model Parameters: Parameters in
this set were derived from three measured-dynamics model
fits, one for each axis. These fits were obtained by defining
Hexp(s) as the central complex value of the minimum circle
bounding the complex measured frequency response data (real
and imaginary values considered to be on orthogonal axes)
for all subjects and all grip forces at each frequency sample.
The minimum bounding circle center (found using the Crystal-
Peirce algorithm in [37]) was necessary in order to find what
was effectively the center frequency response of the range
at each frequency sample about which variability could be
estimated. No weighting function was used for these fits
because these models were used to calculate unstructured
variability (Sec. II-G).

3) Set 3: Individual Arm Model Parameters: This set was
derived from 135 measured-dynamics model fits, one for
each subject, grip force, and axis combination. For this set,
Hexp(s) was defined as each of the 135 total sets of measured
frequency response data. The weighting function used for
these fits was the mean-squared coherence for each set of the
135 experiments. These parameters were used to calculate the
structured variability statistics presented in Sec. II-F).

F. Structured Variability

‘Structured variability’ refers to the statistical characteristics
of the five identified arm model parameters M , k1, k2, b1,
and b2. Structured variability results were obtained from 135
measured-dynamics models using the arm model structure
and methods described in Sec. II-E3. From these models,
the following statistics were computed: standard deviation,
mean, minimum, maximum, and the 95%, and 67% confidence
intervals.

G. Unstructured Variability Model

‘Unstructured variability’ refers to the inter and intra-subject
variability observed in the measured arm frequency response,
defined as Hexp

arm(s) with respect to the three Ĥarm(s) nominal
arm models (Sec. II-E2).

Variability was considered as unstructured multiplicative
uncertainty. Under this assumption, the uncertainty model was
defined as follows [28].

100 101
0

0.5
1

X−Axis Input, X−Axis Output Coherence

γ2

100 101
0

0.5
1

Y−Axis Input, Y−Axis Output Coherence

γ2

100 101
0

0.5
1

Z−Axis Input, Z−Axis Output Coherence

γ2

Frequency (Hz)

 

 

1N
2N
3N

Fig. 5. Subject-averaged mean-squared coherence with force as input and
position as output.

For a system with plant transfer function P ,

P (jω) ∈{P̂ (jω)
(
1 +Wu(jω)Δ(jω)

)
: sup|Δ(jω)| ≤ 1},

Δ(jω) ∈ R (3)

where P̂ is the nominal plant transfer function, Wu(jω) is
the uncertainty weighting function, and R is the set of all
proper real rational functions [28]. The uncertainty weighting
function Wu(jω) has the relationship

|Wu(jω)Δ(jω)| ≥ |P (jω)

P̂ (jω)
− 1| (4)

and can be interpreted as the percentage uncertainty in the
nominal plant P̂ (jω) at frequency ω.

Therefore, the magnitude of the unstructured uncertainty
function |Wu(jω)| was considered to represent the unstruc-
tured variability of the measured frequency response with
respect to the nominal arm models. This was done by using
the right side of (4) and defining the nominal arm models,
Ĥarm(s), as the nominal plant transfer function P̂ (jω) and the
set of all individual measured frequency responses, Hexp

arm(s),
as P (jω).

For each axis, a stable and minimum-phase transfer function
in Laplace notation of the form

V (s) = K

∏Nn

i=1(s− zi)∏Nd

i=1(s− pi)
(5)

with a scaling term K , stable poles pi, numerator order Nn,
minimum-phase zeroes zi, and denominator order Nd was
fitted to envelope the maximum Wu(jω) over all subjects and
all grip forces using the Matlab’s fmincon.m function. Each
transfer function was constrained to have Nn ≤ Nd so that the
modeled uncertainty would not asymptotically approach zero.
The cost function used was

p∑
n=1

Wt(n)

[(
Wu(j2π

n

N
)− V (j2π

n

N
)
)2]

, (6)
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TABLE I
ARM STRUCTURE PARAMETERS – GRIP FORCE DEPENDENT MODELS

X-axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
1N 0.2892 428.4 99.45 2.998 5.802
2N 0.2869 448.6 93.93 2.443 5.698
3N 0.2731 455.5 96.17 2.325 5.629

Y-axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
1N 0.4602 469.69 121.8 7.063 5.996
2N 0.3892 625.94 122.2 5.996 6.005
3N 0.4186 671.20 126.0 5.858 6.410

Z-axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
1N 0.2115 843.1 323.9 0.7093 19.42
2N 0.2525 868.3 332.8 0.5882 19.90
3N 0.2353 855.1 355.1 0.4925 20.56

TABLE II
NOMINAL ARM MODEL PARAMETERS

Axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
X-axis 0.2179 379.5 78.75 1.839 4.645
Y-axis 0.2692 552.4 105.3 3.609 6.430
Z-axis 0.2041 769.9 271.7 0.7764 18.06

where Wt(n) was a weighting function, V (jω) was the
variability transfer function from (5), p = 57 was the total
number of frequency samples for 30 Hz of data, and the total
number of frequency samples was N = 958 due to the 32
segment Welch frequency response estimation method. The
weighting function was tuned visually in order to avoid local
minimum solutions that did not properly provide a bound for
the computed unstructured uncertainty.

The 67% CI limits for unstructured variability were also
examined in order to provide less conservative models for
stability analysis. The 67% CI limits were computed using
empirically estimated cumulative distribution functions gath-
ered from the experimental data (Matlab’s ecdf.m function).

III. MEASURED-DYNAMICS MODEL RESULTS

A. Arm Dynamics Model Identification Results

Three sets of arm dynamics models were identified, each
with force as input and position as output (Sec. II-E1–II-E3).
This paper presents the parameters from Sets 1 and 2, and (for
conciseness) only the statistics from Set 3 (consisting of 135
model fits) are presented in Sec. III-B1.

Set 1 consists of nine measured-dynamics models, whose
arm structure parameters are listed in Table I. Bode plots for
these model transfer functions are shown in Fig. 6.

Parameter Set 2 consisted of three nominal arm models, one
representing the center of the range of measured frequency
responses for each axis over all grip forces and all subjects.
These models were used for the calculation of the unstructured
variability models in Sec. II-G. The identified parameters for
the nominal arm models are reported in Table II and the Bode
plots for the model transfer functions are in Fig. 7a–c.

Each model was identified to accurately reflect the measured
frequency response data across 0.6–30 Hz.
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Fig. 6. A–C) The thicker lines are the frequency responses of the grip-force
dependent X, Y, and Z-axis measured-dynamics models calculated using (1).
The thinner lines are the frequency response of the measured arm dynamics.
The model parameters for the 1, 2, and 3 N models are in Table I.
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TABLE III
STRUCTURED VARIABILITY - ARM STRUCTURE PARAMETER STATISTICS

X-axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
Minimum 0.0340 140.6 53.05 0.0020 3.148

Mean 0.3240 459.4 104.8 2.579 5.920
Maximum 0.8016 757.9 196.2 7.095 10.34
Std Dev 0.1464 144.5 27.59 1.337 2.192

95% CI Min 0.1433 228.0 63.20 0.8686 3.678
95% CI Max 0.5664 650.5 151.3 4.561 10.29
67% CI Min 0.2527 393.0 91.12 1.957 4.372
67% CI Max 0.3759 539.6 116.8 2.883 6.222

Y-axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
Minimum 0.2275 292.3 88.66 3.830 4.020

Mean 0.4763 620.2 132.5 6.094 5.890
Maximum 0.9115 926.5 199.7 9.898 9.721
Std Dev 0.1528 185.8 29.05 1.403 1.398

95% CI Min 0.2747 313.1 90.10 4.212 4.145
95% CI Max 0.7221 896.6 194.7 8.904 8.591
67% CI Min 0.3852 525.1 115.5 5.304 5.150
67% CI Max 0.5367 738.6 144.7 6.425 6.272

Z-axis M (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
Minimum 0.0003 590.3 194.6 0.0002 10.66

Mean 0.2357 886.9 365.8 0.5241 20.14
Maximum 0.4810 1050 588.7 1.939 28.88
Std Dev 0.1261 105.4 105.8 0.4884 5.129

95% CI Min 0.0161 679.1 214.1 0.0002 13.09
95% CI Max 0.4252 1043 533.0 1.420 27.61
67% CI Min 0.1630 849.4 293.3 0.1091 16.28
67% CI Max 0.2968 941.0 421.6 0.8081 24.67

B. Variability Results

The observed inter and intra-subject arm dynamics variabil-
ity across all subjects and grip forces was identified in two
forms: structured variability and unstructured variability.

1) Structured Variability: Structured variability was char-
acterized across all subjects and grip forces using statistics
from 135 individual arm dynamic model fits. For the sake of
conciseness, the actual model parameters were not reported,
but their statistics are reported in Table III. The root-mean-
squared error between the measured position and model-
simulated position outputs for all 135 models was found to
have an average of 2.39 mm with a standard deviation of 2.73
mm (7.25 mm maximum and 0.72 mm minimum).

2) Unstructured Variability: For the unstructured variability
models, multiplicative unstructured uncertainty was calculated
using the nominal arm models (Table II) and (4). Force
conciseness, the maximum and 67% CI data were reported and
not the 95% CI data, as the 95% CI data differed by less than 5
dB from the maximum uncertainty in the 0.6–30 Hz frequency
range. Each unstructured variability model was a transfer
function consisting of up to five stable complex-conjugate
pole pairs and five minimum-phase complex-conjugate zero
pairs. Table IV reports the poles and zeros for the transfer
functions as fitted for the maximum and 67% CI limits.
Each unstructured variability model closely enveloped the
uncertainty observed from all 16 subjects and 1–3N grip forces
from 0.6–30 Hz, as seen in Fig. 7d–f.

The maximum unstructured uncertainty observed for all
three axes was < 10 dB from 0.6–30 Hz. In the same
frequency range, the the 67% CI variability models were all
< 0 dB and exhibited approximately 10 dB less multiplicative
uncertainty than the maximum uncertainty.

TABLE IV
UNSTRUCTURED VARIABILITY MODEL POLES AND ZEROES

X-Axis Max Variance 67% Confidence Interval
K 1.322 0.4476

Zero Pair 1 −3.420 ± 12.88j −68.65 ± 0.000j

Zero Pair 2 −67.28 ± 0.0024j −2.349 ± 7.134j

Zero Pair 3 −2.714 ± 6.183j −54.65 ± 133.3j

Zero Pair 4 −5.458 ± 27.34j −6.627 ± 41.04j

Zero Pair 5 −29.81 ± 159.5j –
Pole Pair 1 −2.294 ± 4.224j −41.16 ± 0.0011j

Pole Pair 2 −53.48 ± 69.71j −8.028 ± 42.57j

Pole Pair 3 −54.64 ± 160.1j −4.297 ± 7.713j

Pole Pair 4 −1.971 ± 13.26j −43.17 ± 167.8j

Pole Pair 5 −4.536 ± 27.25j –

Y-Axis Max Variance 67% Confidence Interval
K 1.856 1.163

Zero Pair 1 −2.259 ± 7.250j −2.379 ± 8.072j

Zero Pair 2 −23.53 ± 129.2j −10.43 ± 18.00j

Zero Pair 3 −6.371 ± 39.57j −43.20 ± 99.69j

Zero Pair 4 −16.45 ± 92.46j −1547 ± 331.6j

Zero Pair 5 −5.785 ± 30.96j –
Pole Pair 1 −56.82 ± 66.53j −93.89 ± 128.0j

Pole Pair 2 −19.90 ± 49.73j −8.189 ± 0.000j

Pole Pair 3 −3.334 ± 4.181j −756.9 ± 1363j

Pole Pair 4 −19.81 ± 117.5j −6.038 ± 15.00j

Pole Pair 5 −2.908 ± 34.03j –

Z-Axis Max Variance 67% Confidence Interval
K 2.592 0.5320

Zero Pair 1 −1.312 ± 6.482j −924.6 ± 122.0j

Zero Pair 2 −208.8 ± 0.5379j −40.12 ± 84.57j

Zero Pair 3 −20.09 ± 38.93j −1.842 ± 6.803j

Zero Pair 4 −5.210 ± 19.61j −10.63 ± 39.00j

Zero Pair 5 −5.004 ± 40.79j −6.796 ± 95.29j

Pole Pair 1 −388.7 ± 18.74j −13.19 ± 44.69j

Pole Pair 2 −4.004 ± 17.33j −2.594 ± 6.321j

Pole Pair 3 −7.647 ± 49.51j −73.98 ± 0.0048j

Pole Pair 4 −2.042 ± 6.189j −487.2 ± 964.86j

Pole Pair 5 −5.494 ± 35.932j −8.092 ± 95.687j

IV. DISCUSSION

The proposed arm model structure produced transfer func-
tions that closely matched the frequency response of the
measured data from 0.6–30 Hz for the X, Y, and Z axes. As
seen in Fig. 6, the model frequency responses best matched
empirical data up to 20 Hz for all axes. From 20–30 Hz,
however, the differences between the model and empirical
frequency responses were more apparent. This may suggest
the need for further study to model frequencies beyond 20
Hz, which may be dominated by dynamics outside the scope
considered in the current study (such as low-level motor
reflexes or other non-linear dynamics). Specific to the higher
frequencies, several studies have begun to use MSD models
to investigate the hand’s vibro-tactile response to force inputs
in the ranges between 10-500 Hz [22], [23], [24], [25].

Also, it is important to note that the slight differences
between the nominal model and empirical frequency responses
between 20–30 Hz (Fig. 7) does not change the validity of the
unstructured variability results. This is due to the fact that
the unstructured variability bounds are designed to envelope
the variation of the empirical frequency response about the
nominal model frequency response.

A. Comparison with Previous Arm Model Parameters

The identified models successfully captured the magnitude
response plateaus that start around 10 Hz in all three axes
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Fig. 7. A–C) For each axis, the black dotted lines representing the nominal arm model Ĥarm(s) Bode plots (whose parameters are in Table II) are plotted
over the multi-colored thin lines showing the measured frequency responses for all subjects and all grip forces, Hexp

arm(s). These arm models were used as
the nominal model for calculating the unstructured uncertainty in (4). D–F) Magnitude response for the inter/intra-subject unstructured variability models of
the X, Y, and Z axes (dashed pink like for the max model and solid green line for 67% model) plotted along with the maximum uncertainty and 67% CI
limits they were modeled after (pink x markers and green circles, respectively).
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Fig. 8. The frequency responses of different models reported in literature
(solid color lines) to the current study’s nominal Z-axis arm model (black
dashed line). All models correspond to forward and backward motion.

(Fig. 6a–c). Similar behavior in the measured magnitude
response was observed in [21], which also modeled the human
arm using a 3 DOF stylus-based manipulator. However, their
transfer functions were fitted from 0.5–10 Hz and therefore,
were not designed to capture the plateau characteristics present
in the measured data. As a result, the current model behaves
quite differently beyond 10 Hz than past models.

However, up to 10 Hz, the frequency response of the current
models are comparable to existing results. Figure 8 shows
the current nominal arm Z-axis Ĥarm model plotted on the
same scale with similar arm models from literature that also
modeled forward and backward direction motion. Speich, et
al. used a five-parameter MSD model with a transfer function
similar to (1). Kosuge used a three-parameter model (mass
m, spring k, damper b) resulting in a second-order transfer
function expressed by

Harm(s) =
Position(s)

Force(s)
=

1

ms2 + bs+ k
. (7)

Although Kosuge’s model structure and experimental methods
differ significantly from the current experiment, it is referenced
here to represent the frequency response of second order
models.

Up to 10 Hz, the current model was most similar in
frequency response to Speich, et al’s stylus handle model.
Their other model used a 1 DOF sphere-handled manipulator,
which exhibited a resonant peak at 3 Hz. The other models
in Fig. 8 were identified for fidelity in the lower frequency
ranges (< 10 Hz), assume a joystick handle grasp, and are
second order, so they drop off at 40 dB/dec from 1–2 Hz. In
contrast, the current model maintains valuable dynamics that
occurred past 10 Hz.

Table V lists model parameters from literature for the
models shown in Fig. 8 in addition to identified parameters
from [25] and [35]. The magnitude responses for [25] and
[35] were not plotted in Fig. 8 because the human operator
MSD parameters were coupled and identified along with other
dynamics, such as neural delays and manipulator vibration

TABLE V
ARM MODEL PARAMETERS FROM LITERATURE

M(kg) k1(N/m) k2(N/m) b1(N·s/m) b2 (N·s/m)

Diaz [25] 0.22 3662 98.6 1.18 6.88
Speich [21] X 0.85 122 330 12.9 12.9

Speich Y 4.03 108 104 9.20 47.6
Speich Z 0.68 81.4 13.0 17.6 13.5

Speich 1DOF 1.46 48.8 375 4.5 7.9
Vlugt [35] 1.88 14998 733 178 37.3

Kosuge [15] 11.6 – 243 – 17.3

modes. For the five-parameter models from literature, it was
assumed that k1, b1 = ks, bs and k2, b2 = kh, bh in [25], while
k1, b1 = kh, bh and k2, b2 = ka, ba in [35]. Also, for the
three-parameter arm models, it was assumed that the spring
and damper correspond to k2 and b2 in the current model
structure (implying a rigid link between the hand and the
haptic device). Of the cited models, only Speich’s X, Y, and
Z models identified the hand in a stylus grip configuration;
Speich’s 1 DOF used a spherical knob, [25] used a horizontal
tennis racquet grip and the rest used vertical joystick grip
configurations.

It was also observed that the identified parameters of the
current model structure were comparable to existing results.
The mass parameters of the current models were identified to
be between 0.0003–0.91 kg, which overlapped the range of
0.22–11.6 kg in past studies . This study’s stiffness results
ranged from 141–1050 N/m for k1 and 53–589 N/m for k2,
which were within the 48.8–14998 N/m for k1 and 13–733
N/m for k2 reported in literature. The current results also
showed that damping parameters ranged between 0.0002–9.9
N·s/m for b1 and 3.1–29 N·s/m for b2, which was lower, but
also overlapped the range of 1.18–178 N·s/m for b1 and 5.5–
47.6 N·s/m for b2 reported by literature.

It is noteworthy that the identified model parameter ranges
do not provide bounds on the range of parameters from
literature, but this is not unexpected. The current study is
relevant for a stylus grasp configuration similar to Fig. 1 while
applying 1-3 N grip forces. In contrast, methods from the cited
literature differ in significant ways, such as in model structure,
grip forces used by subjects, and arm configuration – all of
which can affect the arm’s response. Thus, since the current
variability results were not designed to encompass all those
variations, it is possible for the identified parameter ranges to
exclude some of those from the literature.

B. Grip-Force-Dependent Models

Some apparent trends were observed from the subject-
averaged grip-force-dependent fits (Sec. II-E1 and Table I),
but statistical tests for grip-force trends on the 135 individual
fits (Sec. II-E3) did not reach statistical significance. Statistical
analyses consisted of one-way repeated measures analysis
of variance with Greenhouse-Geisser sphericity correction
and Holm-Sidak multiple comparison tests (grip force as the
factor).

The lack of clear trends was possibly because only three
grip forces were examined in this study. A more appropriate
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study design for trend analysis will likely require a wider range
and more grip force levels. However, due to fatigue concerns
during the 60 s of force input, the currently study was able to
only test three grip forces.

There were, however, notable differences in the Z-axis
spring and damping parameters compared to the other axes
(Table I). Specifically, the Z-axis k1, k2, and b2 parameters
were increased more than 2 times beyond the range of their
counterparts for the X and Y axes, while b1 was approximately
one order of magnitude less. One interpretation of this is that
the Z-axis had decreased damping, but higher stiffness near the
stylus handle and higher stiffness and damping further away
from the stylus. The cause for these parameter discrepancies
is not obvious and there is no mention of similar phenomenon
in the literature.

However, Z-axis motion kinematics were observed to differ
from that of the other axes and could be a contributing
factor. For all three axes, since a grip force was maintained,
the wrist joint was very rigid compared to the elbow and
shoulder joints. Therefore, force inputs to the X (left/right)
and Y (up/down) axes predominantly cause rotations about one
joint, the shoulder or the elbow, respectively. But Z-axis force
stimulation resulted in forward/backward motion that requires
both the shoulder and elbow joints. Also, X and Y-axis forces
apply torques over the length of the forearm, while Z-axis
forces apply torque over the length of the upper arm.

C. Unstructured Variability

As seen in Fig. 7d–f, the proposed unstructured variability
structure was successful in producing models that closely
enveloped both the maximum and 67% CI limits from the mea-
sured data. Also, the unstructured variability models (Table
IV) were computationally-simple, minimum-phase and stable
transfer functions. These transfer functions can be used to
compute multiplicative uncertainty bounds on the nominal arm
model transfer functions (Table II).

The developed nominal and variability models can be used
in various robust control design and analysis techniques.
Specifically, the multiplicative unstructured uncertainty models
are used for robust performance and stability in the H-infinity
control design framework. Arm models with unstructured
uncertainty are constructed, consistent with (3) as

Hu
arm(s) ∈{Ĥarm(s)

(
1 +Wu(s)Δ(s)

)
: sup|Δ(s)| ≤ 1},

Δ(s) ∈ R (8)

where the nominal arm transfer function Ĥarm(s) is (1) with
parameters from Table II, unstructured variability Wu(s) is (5)
with parameters from Table IV, and R is the set of all proper
real rational functions.

Both the structured and unstructured uncertainty models can
be used for controller design using the μ-synthesis framework.
Structured Variability models can be used for robust stability
analysis using Kharitonov’s Theorem [38]. Previous work,
which used robust analysis methods that can employ the
current models include [39], [40], [27], [41], [42].

It is important to note that the identified uncertainty models
are overbounds on the set of transfer function models of

the arm dynamics and that the actual variability may only
be a smaller subset. Such representations may also lead to
somewhat conservative robustness analyses. Specifically, the
obtained unstructured multiplicative uncertainty models for the
maximum variation case exceeded 0 dB for most of the 0.6–30
Hz frequency range and may lead to conservative results.

D. Limitations

The current experiments and models were designed to be
linearized, small-signal approximations centered about a fixed
stabilization point and arm configuration. Additionally, the
variability captured in the variability models are due to varia-
tions caused by grip force changes of 1-3 N and intrasubject
and intersubject factors. Therefore, due to the dexterity of
the human arm and hand, further study is necessary for arm
configurations and grip forces that significantly deviate from
that which was investigated. Examples of significant changes
include changes in the hand’s grasp orientation or supporting
the weight of the arm at the elbow or wrist. However, even
though the current results are not generalizable, the studied
arm configuration is common for dexterous manipulation using
commercially-available haptic interface devices.

V. CONCLUSION

This paper presented models of the arm and hand dynamics
based on a five-parameter MSD model. These models are
relevant in the context of stylus-based haptic devices operated
by the human arm with a configuration similar to that depicted
in Fig. 1 for grip forces of 1–3 N. Empirical data from 15
individuals were used to identify both grip-force-dependent
and nominal arm models which had identified parameters and
frequency responses that were consistent with literature. The
models were force-input, position-output transfer functions
that were accurate to the measured data in the frequency range
of 0.6–30 Hz for the X and Y and Z-axes. Also, the current
work presented inter and intra-subject model variability data
in the form of both structured and unstructured variability.
The structured variability was the computed statistics from
135 individually identified arm dynamics models and the
unstructured variability consisted of experimentally-derived
transfer functions that accurately modeled the unstructured
multiplicative uncertainty found in the X, Y, and Z axes. The
structured variability and 67% unstructured variability results
were new to literature and provide experimentally-derived
uncertainty bounds useful for designing precise controllers
targeted to a subset of possible human operator dynamics.

APPENDIX

ARM MODEL TRANSFER FUNCTION DERIVATION

Equation (1) was derived from the MSD model in Fig. 4
as follows in Laplace notation (leaving out the dependency
of Fsensor(s), Xarm(s) = X1(s), and X2(s) on the Laplace
variable s for legibility). First, the differential equation for
mass M is transformed into the Laplace domain and X2(s)
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was found as

Mẍ2 = k1(x1 − x2) + b1(ẋ1 − ẋ2)− k2x2 − b2ẋ2

L←→Ms2X2 = k1(X1 −X2) + b1s(X1 −X2)−X2(k2 + b2s)

→ X2 =
X1(k1 + b1s)

Ms2 + (b1 + b2)s+ k1 + k2
. (9)

Then, the measured force Fsensor(s) was solved for as

0 = Fsensor − k1(x1 − x2)− b1(ẋ1 − ẋ2)

L←→ 0 = Fsensor − k1(X1 −X2)− b1s(X1 −X2)

→ Fsensor = X1(k1 + b1s)− (K1 + b1s)X2. (10)

Finally, (9) was substituted into (10) to find the transfer
function Harm(s) in (1), with x1 = xarm.
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