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Abstract—This paper presents a quantitative comparison frame-
work for bilateral teleoperation systems (BTSs) that have differ-
ent dynamic characteristics and sensory configurations for a given
task-dependent performance objective (TDPO). µ-synthesis is used
to develop the framework since it can efficiently treat systems con-
taining uncertainties and disturbances. The framework consists of:
1) a feasibility test and 2) a comparison methodology using prior-
itized TDPOs. As the formulation used is based on µ-synthesis,
the system, operator, and environment models are represented
in the form of linear nominal models with frequency-dependent
multiplicative uncertainties. This framework is applied to a BTS
including an uncertain human operator and environment in a prac-
tical case study. The validity of the proposed quantitative frame-
work is confirmed through experiments. The proposed framework
can be used as a tool to design BTSs, especially when there are
constraints in designing drive mechanisms and choosing sensory
configurations.

Index Terms—Bilateral teleoperation system, haptic inter-
face, quantitative comparison, µ-synthesis, task-dependent per-
formance objective.

I. INTRODUCTION

THE DIFFICULTY in implementing a teleoperation sys-
tem comes from the unpredictability of human and en-

vironment impedances, communication disturbances (i.e., time
delay), and quantization error. Previous works in the literature
focus on the design of robust controllers to overcome such
uncertainties and disturbances from a control point of view.
The controllers are designed for a specific master device, slave
manipulator, and task. Thus, the teleoperation system with a
well-tuned controller can perform the best. This approach is
applicable when it is possible for the designer to freely select
mechanisms and sensors for the master device and the slave ma-
nipulator. However, in most applications, there are constraints
in designing mechanisms and choosing sensors, including fi-

Manuscript received August 16, 2006; revised February 5, 2007. This pa-
per was recommended for publication by Editor H. Arai and Associate Editor
P. Rocco upon evaluation of the reviewer’s comments. This work was sup-
ported in part by the National Science Foundation, U.S., under Grants CISE
IIS-0222743, CISE EIA-0329811, and CISE CNS-0423253, in part by the DoC
under Grant TOP-39-60-04003, in part by the Ministry of Health and Wel-
fare, Korea, under Grant 02-PJ3-PG6-EV04–0003, in part by the International
Cooperation Research Program (M6-0302-00-0009-03-A01-00-004-00) of the
Ministry of Science and Technology, Korea, and in part by the National Re-
search Laboratory (NRL) Program (M1-0302-00-0040-03-J00-00-024-00) of
the Ministry of Science and Technology, Korea.

K. Kim is with the Northwestern University, Evanston, IL 60208 USA
(e-mail: keehoon-kim@northwestern.edu).
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nancial cost. For example, in robotic telesurgical systems for
minimally invasive surgery, the size of actuators and the num-
ber of sensors are restricted since the slave manipulator works
inside the patient through a small port. In such a situation,
one has to carefully design drive mechanisms, and distribute
the limited number of sensors. In other words, the best archi-
tecture implementing a teleoperation system subject to the re-
strictions of the task should be designed. However, a systematic
quantitative methodology comparing different architectures and
evaluating design criteria such as dynamic characteristics and
sensory configurations is not yet available to guide overall de-
sign of teleoperation systems. This paper presents a quantitative
comparison (QC) framework for bilateral teleoperation systems
(BTSs) that have different dynamic characteristics and sensory
configurations for a given task-dependent performance objec-
tive (TDPO), in order to provide a framework for the design of
BTSs.

The following terms are used through this paper.
1) BTS: A system that combines a master device, a slave

manipulator, and a controller for transmission of the kine-
matic and dynamic information.

2) Task: The objective of a BTS, such as force and/or position
tracking under specified human operator and environment
conditions.

3) TDPO: The minimal performance specifications of a BTS
required to complete the given task, subject to the stability
of the BTS.

When determining the design guidelines of a BTS, the hu-
man operator, the environment where it is operated, and its
objective should be considered. A system can be used in a
relatively well-known environment or a very uncertain environ-
ment. Sometimes, force-tracking performance is needed rather
than position performance or vice versa. Therefore, different
design criteria should be applied to design a BTS according to
different tasks. In this paper, we define a new term, “TDPO” for
quantitative performance specifications of a BTS.

The choice of the performance index is a critical factor for
QC. Several different performance indexes have been used in
the literature to quantify BTS performance. Hannaford used
a two-port network model design framework in which the
operator commands position and the interaction force between
the slave manipulator and the environment is reflected to the
operator [1]. He introduced the hybrid matrix, and discussed
how it could be used as a measure of performance of the
teleoperator. Anderson and Spong introduced passivity theory
and the concept of a scattering matrix to overcome the stability
problems resulting from time delay for the two-port inter-
face [2]. The scattering matrix can be used as a measure of the
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passivity of the teleoperation system under uncertainty, such as
constant time delay. Colgate and Brown suggested the achiev-
able impedance range, Z-width, as a measure of performance
in sampled data systems [3]. Adams and Hannaford applied
virtual coupling to impedance and admittance interfaces so as to
find the Z-width to satisfy unconditional stability [4]. Lawrence
defined transparency as a performance objective matching the
environment impedance and the impedance perceived by the
human through the teleoperator, and proved that all four infor-
mation channels are required for high levels of transparency [5].
Yokokohji and Yoshikawa defined a performance index of
maneuverability that quantified how well the transfer functions
from operator force to master and slave positions and forces
match. [6]. Recently, Çavuşoğlu et al. suggested a new measure
of fidelity that is the sensitivity of the transmitted impedance to
changes of the environment impedance. This measure was used
to design teleoperation controllers for telesurgical systems [7].
The aforementioned frameworks are based on the assumptions
that the operator and environment are linear and passive. In
addition, they have difficulty in treating uncertainty of the
plant, disturbance, and noise systematically.

Another approach is to use an H∞ or µ-synthesis framework
in which an admissible controller is designed to minimize H∞
norm or µ of the closed-loop transfer function. Kazerooni et al.
developed an H∞ framework to design a controller that trans-
mits only force signals from the master and slave robots [8]. Yan
and Salcudean suggested a general framework forH∞ optimiza-
tion using motion scaling [9]. Leung et al. applied µ-synthesis
to design controllers for time-delayed teleoperation [10]. With
these frameworks, the robust stability and robust performance
of the system can be treated exactly with multiple sources of
uncertainties. In the three H∞ optimal approaches mentioned
before, the controllers have been designed for a specific
impedance of human and environment. There are also works in
the teleoperation literature focusing on passivity-based design
of controllers, such as for time-delayed teleoperation [11] and
nonlinear teleoperation systems [12]–[15].

The proposed QC framework is to compare BTSs, which have
different dynamic characteristics and sensory configurations.
Since the design criterion would depend on the objective of the
BTS and the environment where it is operated, the BTSs are
compared with respect to a user-defined TDPO. In this paper, a
µ-synthesis-based formulation is used to develop the framework
for the comparison of teleoperation system since µ-synthesis is
a well-developed method to efficiently treat systems containing
uncertainties and disturbances. This is critical as BTSs suffer
from the uncertainty caused by the human operator and the
environment. Although some parts of µ-synthesis are still open
problems, we believe that it is the best tool available to treat the
system with uncertainty.

As the formulation used is based on µ-synthesis, which is
a linear multivariable control synthesis technique, the method
is directly applicable to multi-DOF manipulators, but it cannot
directly handle nonlinear models. The system, operator, and en-
vironment models are represented in the form of linear nominal
models with frequency-dependent multiplicative uncertainties
(Section II-A).

Architectures commonly used in teleoperation systems, the
performance objectives, and human and environment uncertain-
ties in these architectures are described in Section II. The QC
methodology is presented in Section III. In Section IV, the pro-
posed methodology is applied to a case study, and a procedure
to compare BTSs for the given TDPO is developed. Also, some
techniques for the comparison are introduced to summarize the
results. This section can be an example for readers wishing to
apply the methodology for their own systems. In Section V,
the proposed methodology is validated through experiments, by
comparing the experimental performance of six different BTSs
and four different sensory configurations with the QC analy-
sis results. This is followed by the concluding discussions in
Section VI.

II. FORMULATION

The objective of this paper is the development of a methodol-
ogy for systematically and quantitatively studying the effects of
the master and slave manipulator mechanisms, the combination
of sensors and actuators used, and their dynamic and noise prop-
erties, subject to specified task and TDPO. The formulation that
will be used for specifying the system, task, human operator and
environment characteristics, and performance objectives will be
based on the robust control methodology of modern systems
theory. Therefore, the expressive capabilities of the robust con-
trol design framework to model and incorporate uncertainties
will be inherited. We will specifically include in the formula-
tion the uncertainties in the dynamic models of the mechanisms,
human operator, and environment, as well as the system distur-
bances originating from sensor noise and quantization effects.
Also, as the robust control methodology is immediately appli-
cable to multi-input–multi-output systems, it will be possible
to seamlessly model and study multi-DOF teleoperation sys-
tems without any special treatment. In the following sections,
the formulation that will be used in the subsequent analysis
will be introduced, presenting the BTS model in Section II-A,
human operator and environment models in Section II-B, and
performance objective that will be used in Section II-C.

A. Model of the BTS

In this study, we will assume a linear manipulator model
with structured multiplicative dynamic uncertainty with additive
disturbance [16], which can be represented in the form of linear
fractional transformation (LFT), as shown in Fig. 1

The manipulator models with multiplicative uncertainty are
as follows:

P m ⊂ P̂ m(I + ∆pm) = P̂ m(I + W pm∆̂pm) (1)

P s ⊂ P̂ s(I + ∆ps) = P̂ s(I + W ps∆̂ps)(2)

where P m and P s are, respectively, the master device and
slave manipulator transfer functions from force input to position
output, (̂·) denotes the nominal model, and∆(·) ⊂ Cn×n denotes
the multiplicative uncertainty. On the right-hand side of (1) and
(2), the uncertainty term ∆(·) is decomposed into W (·) and
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Fig. 1. LFT form representation of systems with uncertainty and disturbances.
G: system model; K: controller; ∆z : uncertainty block; inputs w, d and u:
uncertainty block output, disturbance input, and control input, respectively;
outputs z, e, and y: uncertainty block input, error signal to be minimized, and
plant output, respectively.

Fig. 2. Bode plot of real response and response of nominal model +
uncertainty.

∆̂(·) ∈ B∆, such that B∆ = {∆ ∈ ∆ : σ̄(∆) ≤ 1}.1 Fig. 2
shows the relations of responses of the real plant, the nominal
model, and uncertainty of the manipulator model in (1).

The representation of uncertainty in this form can be used to
model more general perturbations (e.g., time varying, infinite
dimensional, nonlinear, which may even actually be certain)
provided that they are given appropriate “conic sector” interpre-
tations via Parseval’s theorem [16]–[19].

For example, LFT representations can be constructed for
memoryless nonlinearities bounded by conic limits (e.g., see
[20] and [21]). For more general nonlinearities, the existence
of conic sector bounds can be guaranteed if the nonlinearities
satisfy the Lipschitz condition, and the control and state spaces
are restricted to a prescribed compact subset [22]. The nonlinear
system can then be characterized as an uncertain linear system
using conic sector bounds. It is important to note that the LFT
representation of nonlinear systems using conic sector interpre-
tation is an approximation. As it may be possible to quite accu-
rately model a nonlinear element, such as quantization, rather
than representing it in the form of an uncertain linear element,
the LFT representation may lead to conservative results. How-
ever, the analysis techniques we use cannot directly deal with
the nonlinearity, and robust control techniques in the nonlinear

1σ̄(·) denotes the maximum singular value of (·).

Fig. 3. Manipulator models with uncertainty and disturbance terms for two
commonly used manipulator configurations. (a) Manipulator configuration with
only position sensor. (b) Manipulator configuration with both position and force
sensors. See Table I and Sections II and III for the details of the notation.

domain are not as comprehensive as their linear counterparts.
Therefore, in this study, we chose not to pursue a nonlinear
analysis, per se.

Fig. 3 shows the models for two commonly used manipula-
tor configurations as examples. Fig. 3(a) shows a manipulator
configuration with only a position sensor, and Fig. 3(b) shows a
manipulator configuration with both position and force sensors.
Gear ratio of the actuator system is explicitly included, as this
is a commonly used design variable. Both of the models include
the effects of the manipulator mechanism uncertainties, which
can be used to model the common nonlinear effects, such as
friction and backlash. The models also include the sensor noise
and quantization effects modeled in the form of additive dis-
turbance terms. In the analysis, these disturbance terms will be
represented in the form

d(·) = W d(·) d̂(·) (3)

where d̂(·) is a unit random input, shaped by the frequency-
dependent weight W d(·) . The magnitudes of the disturbance
terms (i.e., noise and quantization) are typically determined
from the specifications of the sensor and data acquisition sys-
tems used. The magnitudes of the uncertainty terms resulting
from the nonlinear effects are typically estimated empirically us-
ing numerical techniques. (For example, see Section IV andV).

B. Model of the Human Operator and Environment

While most common robotic systems are designed not to be
affected by dynamic interaction with the environment, commu-
nication of interaction between the human and the environment
is the goal of a BTS. Therefore, human operator and environ-
ment models need to be included as part of the overall system
model.

Even though a number of researchers have proposed models
for human impedance (e.g., [23]), it is difficult to construct pre-
cise models since the human muscular and neural systems are
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Fig. 4. Human operator model.

highly nonlinear and adaptive. The environment dynamics are
usually nonlinear, uncertain, and sometimes, time varying. In
this study, we will use the linear model with structured mul-
tiplicative dynamic uncertainty representation described ear-
lier (Section II-A) to model human operator and environment
dynamics:

Zh ⊂ Ẑh(I + ∆zh) = Ẑh(I + W zh∆̂zh) (4)

Ze ⊂ Ẑe(I + ∆ze) = Ẑe(I + Wze∆̂ze) (5)

where Zh, and Ze are the human operator and environment
impedances. Again, on the right-hand side of (4) and (5), the
uncertainty term∆(·) is decomposed into W (·) and ∆̂(·) ∈ B∆,
such that B∆ = {∆ ∈ ∆ : σ̄(∆) ≤ 1}.

A common choice in the teleoperation and haptics literature
is to consider an extended uncertainty set composed of the set of
all passive systems. This type of uncertainty sets typically result
in conservative controllers as this is a very extensive uncertainty
set. In this study, we will focus on uncertainty sets in the form
of variations around a nominal model. The nominal models and
uncertainty sets are typically determined empirically through
experiments. If the environment or the human operator are not
well characterized for the given task, then a large multiplicative
uncertainty term can be used. If, on the contrary, the environ-
ment or the human operator impedance is well characterized for
the given task, then a relatively precise nominal model and a
small uncertainty set can be used, which would result in a less
conservative, higher fidelity system.

In this paper, the intentional force command τha and the reac-
tion force τhp of the human operator are distinguished (Fig. 4).
When there is movement of the master device caused by control
input while the human operator just gripping the master device,
i.e., τha = 0, then the reaction force generated by the human
operator impedance Zh is the reaction force. This term varies
as a function of the passive dynamics of the arm as well as
the stiffness generated by the cocontraction of the muscles. The
intentional force command term τha is the state-independent
active component of the human operator force, and is modeled
as an independent input term in the form

τha = W τha
τ̂ha (6)

where τ̂ha is a unit random input, shaped by the frequency-
dependent weight W τha

.

C. Performance Objectives

In an H∞ or µ framework, cost functions represent the per-
formance objectives for the system. In teleoperation, there are

TABLE I
SUMMARY OF THE NOTATION USED

two commonly used performance objectives in the literature:
force tracking and position tracking. If the interaction force
between the slave manipulator and the environment is identical
to the force between the master device and the human operator,
and the operator’s position constrained by the master is
identical to the position of the slave, then it is called the “ideal”
response of the teleoperation system [5], [6]. However, ideal
response is not achievable with a practical system since it
implies a marginally stable active system, which can easily
become unstable as a result of uncertainties in the model, or
quantization errors in a discrete-time implementation.

In the literature, two common force error forms have been
used for quantifying force-tracking performance: 1) ef1 =
um − τe (such as, in [1]–[4], [7], [9], [10]) and 2) ef2 = τh − τe

(such as in [5], [6], [8]). If um = τe, corresponding to the exact
tracking with respect to the first case, the human operator feels
the dynamics of the master device as well as the interaction force
at the slave side. This performance objective is useful since it
does not require the dynamics of the master device, but it is
inevitable for human operator to feel the dynamics of the mas-
ter device. Moreover, when the actuator for the master device
is nonback-drivable or the master device is heavy to handle, it
is not useful to achieve realistic presence. For higher level of
presence, control input should compensate for the dynamics of
the master device so that human operator feels the interaction
force at the slave side directly, i.e., τh = τe, corresponding to
exact tracking with respect to the second case. However, since
this form requires the dynamic model of the master device, it
is difficult to be achieved if uncertainty is not handled properly.
In the proposed framework, both of these performance objec-
tives can be used as µ-synthesis that can treat the uncertainty
efficiently.

Position-tracking error is the difference between positions of
the human and the slave manipulator expressed as

ep = xh − xs. (7)

Here, we assume that human position is same as the master
device’s position, i.e., a rigid master. In (7), if ep goes to zero, we
can say that the master device constrains the human position to
follow the slave manipulator’s position or the slave manipulator
follows the human position command.
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If the performance index includes only the force- and
position-tracking error terms, the optimal controllers designed
will result in infinitely large control actions. So, it is necessary
to include penalty functions to keep the control inputs um and
us below the actuator limits.

The complete cost function e in the linear fractional form
(Fig. 1) to be used in the analysis is then

e = [W 1ef W 2ep W 3um W 4us ]T (8)

where W i (i = 1, 2, 3, 4) are the frequency-dependent weight-
ing vectors that emphasize more important frequency ranges,
and scale the errors and control input limits. The weighting vec-
tor should be specified according to the task and performance
objectives.

III. QC METHOD

In this section, the QC method is introduced. Section III-A
explains how to calculate the performance and stability margin
in the µ framework. Section III-B introduces a feasibility test
for TDPO. Section III-C presents the QC procedure.

A. Performance Measure

In this formulation, reciprocal of the structured singular value
of the system, including the H∞ suboptimal controller designed
using µ-synthesis technique with the proper uncertainty and
performance blocks, will be used as the quantitative index for
objective comparison. The µ-synthesis algorithm calculates a
feasible controller that makes the closed-loop system stable for
the specified uncertainty set, and makes the infinity norm of
the transfer function from the disturbance input to error output
less than or equal to 1. This synthesis algorithm can be em-
bedded into an optimization algorithm by using an additional
scaling variable β, as will be formally defined later. The pro-
posed quantitative index can then be numerically calculated by
finding the largest β value that yields a feasible controller. This
would quantify the best performance that can be achieved by
the overall system with respect to the chosen application-based
performance criteria, and can be used to objectively compare the
effects of varying different components and design parameters
of the haptic interface system. In the remainder of this section,
we will formally define the performance measure we have just
conceptually described.

For M ∈ Cn×n, the structured singular value µ∆(M) is de-
fined as

µ∆(M) =
1

min{σ̄(∆) : ∆ ∈ ∆, det(I − M∆) = 0} (9)

where ∆ is a prescribed set of complex block diagonal matri-
ces.2 The interconnected system shown in Fig. 1 is well posed
and internally stable, and the norm of the transfer function from
disturbance inputs to error outputs ‖Fu(Fl(G,K),∆z)‖∞ ≤ 1
for all ∆z ∈ B∆ if and only if

‖T ‖µ = sup
ω∈R

µ∆(T (jω)) ≤ 1 (10)

2For brevity, we have not explicitly specified the block diagonal structures of
∆ and ∆, since they can be determined from the context.

where T = Fl(G,K), ∆ = {diag[∆z,∆f ]} ∈ B∆ with ficti-
tious uncertainty block ∆f introduced for calculating the robust
performance3 [16]. Here, ∆z is a complex block diagonal matrix
representing the structured uncertainty, where the block diago-
nal entries correspond to the uncertainty terms.

The µ-synthesis algorithm tries to find a stabilizing controller
K such that condition (10) is satisfied.

Let us introduce a weighting factor β multiplying T and use
the µ-synthesis to find a stabilizing controller, such that

‖βT ‖µ = sup
ω∈R

µ∆(βT (jω)) ≤ 1. (11)

From (11), if ‖[wT ,dT ]T ‖2 ≤ 1, then β‖[zT eT ]T ‖2 ≤ 1, for
∆ ∈ B∆. Therefore, ‖[zT ,eT ]T ‖2 ≤ 1/β. Larger β presents
more robustness, in the sense of stability, and better perfor-
mance. This forms the basis of the QC methodology that is
developed in the rest of this section.

The aforementioned scheme can be incorporated into an op-
timization scheme, finding the largest β value (βmax) such
that (11) is satisfied. 1/βmax quantifies the achievable perfor-
mance and stability margin when ∆f , ∆z ∈ B∆. From (8),
W1 is decomposed into its magnitude, β1 = ‖W 1‖∞, and a
unit magnitude transfer function, W̃ 1 = W 1/‖W 1‖∞. W 2,
W zh, and W ze from (8), (4), and (5) are similarly decomposed
into two parts, β2W̃ 2, βzhW̃ zh, and βzeW̃ ze, respectively. If
∆f ∈ B∆ and ‖e‖2 ≤ 1 for a unit disturbance, ‖d‖2 ≤ 1, in
Fig. 1 {

|β1| · ‖W̃ 1(τh − τ e)‖2 ≤ 1
|β2| · ‖W̃ 2(xm − xs)‖2 ≤ 1

}

which gives

‖W̃ 1(τh − τe)‖2 ≤ | 1
β1

| (12)

‖W̃ 2(xm − xs)‖2 ≤ | 1
β2

|. (13)

Therefore, 1/β1 and 1/β2 represent the upper bounds of the
force- and position-tracking errors, respectively.

Let ∆z = diag[∆T
zh,∆T

ze]
T . If ∆z ∈ B∆ and ‖z‖2 ≤ 1 for

unit perturbation, ‖w‖2 ≤ 1, i.e., ‖T 11‖∞ ≤ 1, the system is
stable by the small gain theorem. In other words, the system is
stable when

‖∆′
z‖∞ =

∣∣∣∣
∣∣∣∣
[

βzh 0
0 βze

] [
∆zh 0
0 ∆ze

]∣∣∣∣
∣∣∣∣
∞

< ‖βz‖∞ (14)

and

‖z′‖∞ = ‖[W̃ zhZhxm, W̃ zeZexe]‖∞ > 1/‖βz‖∞ (15)

where ‖βz‖∞ = ‖diag[βzh, βze]‖∞. Hence, ‖βz‖∞ quantifies
the stability margin from (14) and (15). Therefore, when
∆f ,∆z ∈ B∆, error minimization can be stated as minimiza-
tion of |1/β1| and |1/β2| and the stability margin maximization
as minimization of |1/βzh| and |1/βze|.

3Fl and Fu , respectively, refer to the lower and upper LFT forms [24].
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TABLE II
CLASSIFICATION OF A BTS FOR TDPO

B. Feasibility Test for TDPO

A TDPO for a BTS is specified by the choice of position and
force performance objective bounds β′

1 and β′
2 and the stability

margins β′
zh and β′

ze in (12)–(15).
As an example, consider the following situation.
1) A BTS should be robust to 20% uncertainty for nomi-

nal impedances of a human operator and environment to
guarantee the stability of a BTS.

2) Force- and position-tracking errors should be less than 0.1
N and 0.5 mm to complete a given task.

Then, the desired performance and stability requirements would
correspond to β1 ≥ β′

1 = 10, β2 ≥ β′
2 = 2, βzh ≥ β′

zh = 0.2,
and βze ≥ β′

ze = 0.2 in (12)–(15). Therefore, β′
1, β′

2, β′
zh, and

β′
ze specify the TDPO.
Before QC of BTSs, a given TDPO should be tested for feasi-

bility, i.e., if it can be achieved at the specified minimum bounds.
The feasibility can be verified by evaluating ‖T ′‖µ, where
T ′ = T (β′

1, β
′
2, β

′
zh, β′

ze) is the plant model multiplied with the
specified weighting factors. If ‖T ′‖µ > 1 for ∆f , ∆z ∈ B∆,
then the given TDPO is feasible and QC of BTSs can proceed.
Since stability margins cannot be compromised, a given BTS
can fall into one of the three categories specified in Table II with
respect to a given TDPO. This can be determined by the value of
‖T ′(β1, β2)‖µ, where T ′(β1, β2) = T (β1, β2, β

′
zh, β′

ze), when
βzh and βze are fixed to β′

zh and β′
ze, as shown in Fig. 5.

If T ′(β′
1, β

′
2)‖µ ≤ 1, as shown in Fig. 5(a), then it is type 1,

which means that the TDPO is feasible. If ‖T ′‖µ ≥ 1, but
‖T ′(β′

1, β
′
2)‖µ ≤ 1 for some β′

1 and β′
2 that are less than β′

1

and β′
2, as shown in Fig. 5(b), then the BTS is type 2, which

means that although the specified TDPO is not feasible, it can
be made feasible by relaxation of performance objectives. If
‖T ′‖µ ≥ 1 and ‖T ′(β1, β2)‖µ can never be less than 1 under
the stability margins of the given TDPO, as shown in Fig. 5(c),
then it is type 3, which means that stability of the BTS cannot
be guaranteed with the specified stability margins.

If the given TDPO is feasible, i.e., type 1, for a BTS, then
the BTS can be quantitatively compared with other BTSs, as
explained in Section III-C.

C. Comparison Procedure

Consider the following performance measures:

Qβ1(β
′
2, β

′
zh, β′

ze)

= min
{

1
β1

|‖T ‖µ ≤ 1,W1 = β1W̃1,W2 = β2W̃2,Wzh

= βzhW̃zh,Wze = βzeW̃ze, β2 ≥ β′
2, βzh ≥ β′

zh, βze ≥ β′
ze

}
(16)

Fig. 5. Classification of TDPO. β1 and β2 are reciprocals of the upper bound
of force- and position-tracking error in (12) and (13). (a) TDPO 1 is feasible
(type 1). All combinations of β1 and β2 when µ > 1 represent the attainable
performance of the BTS. The best performance can be calculated through 1 to
2 (3 to 4) when priority of force (position)-tracking error is higher than position
(force)-tracking error. (b) TDPO 2-A,B,C are unfeasible, but it can be made
feasible by relaxing performance objectives (type 2). TDPO 2-A can become
feasible only when force-tracking performance is relaxed as path 2. TDPO
2-B can become feasible only by relaxing position-tracking performance as
path 4. TDPO 2-C can become feasible by relaxing any one of the components.
(c) TDPO 3 is not feasible since the stability of a BTS is not guaranteed (type 3).

Qβ2(β
′
1, β

′
zh, β′

ze) = min
{

1
β2

|‖T ‖µ ≤ 1,W1 = β1W̃1,

W2 = β2W̃2,Wzh = βzhW̃zh

Wze = βzeW̃ze, β1 ≥ β′
1

βzh ≥ β′
zh, βze ≥ β′

ze

}
(17)
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Qβz h
(β′

1, β
′
2, β

′
ze) = min

{
1

βzh
|‖T ‖µ ≤ 1,W1 = β1W̃1

W2 = β2W̃2,Wzh = βzhW̃zh

Wze = βzeW̃ze, β1 ≥ β′
1

β2 ≥ β′
2, βze ≥ β′

ze

}
(18)

Qβz e
(β′

1, β
′
2, β

′
zh) = min

{
1

βze
|‖T ‖µ ≤ 1,W1 = β1W̃1

W2 = β2W̃2,Wzh = βzhW̃zh

Wze = βzeW̃ze, β1 ≥ β′
1

β2 ≥ β′
2, βzh ≥ β′

zh

}
. (19)

In (16)–(19), β′
1, β′

2, β′
zh, and β′

ze are the values specified for
the TDPO. This comparison is performed only for the BTSs
that pass the feasibility test in Section III-B. Qβ(·) corresponds
to the limit of performance or stability margin when the other
three performance objectives of the TDPO are specified among
β′

1, β′
2, β′

zh, and β′
ze. Though it is more desirable to calculate a

global minimization problem for β1, β2, βzh, and βze, it does
not necessarily result in a unique solution, as shown in Fig.
5(a). Therefore, we will prioritize the individual objectives in
the TDPO. The best performance and stability margin can then
be calculated with respect to this priority order. If the priority
of force-tracking performance is higher than that of position-
tracking performance, and β′

1, β′
2, β′

zh, and β′
ze are the minimum

bounds specified in TDPO, then (16)–(19) can be evaluated as

Qβ1(β
′
2, β

′
zh, β′

ze) =
1
β∗

1

(20)

Qβ2(β
∗
1, β

′
zh, β′

ze) =
1
β∗

2

(21)

Qβz h
(β∗

1, β
∗
2, β

′
ze) =

1
β∗

zh

(22)

Qβz e
(β∗

1, β
∗
2, β

∗
zh) =

1
β∗

ze

. (23)

The best performance and stability margin are then given as
1/β∗

1, 1/β∗
2, 1/β∗

zh, and 1/β∗
ze for a given prioritization of the

TDPO. Note that the best performance and stability will change
if the priority order is changed. For example, the priorities of
force tracking and position tracking are switched

Qβ2(β
′
1, β

′
zh, β′

ze) =
1

β∗∗
2

≤ 1
β∗

2

(24)

Qβ1(β
∗
2, β

′
zh, β′

ze) =
1

β∗∗
1

≥ 1
β∗

1

. (25)

In Fig. 5(a), paths 1 and 2 show the procedure to calculate 1/β∗∗
1

and 1/β∗∗
2 . 1/β∗∗

2 and 1/β∗∗
1 are the results of paths 3 and 4.

We can summarize the procedure for our QC method as
follows.

1) Specify the nominal models and uncertainties of the mas-
ter, the slave, human, and environment in (1)–(5).

2) Specify the disturbance weight vectors to shape the unit
random disturbances in (3), i.e., W d2 , W d4 , W τha

,
W dτh

, and W dτe
.

3) Specify the performance objectives in (8), i.e., W 1ef and
W 2ep.

4) Specify the control input limit in (8), i.e., W 3 and W 4.
5) Specify the priority of TDPO.
6) Test the feasibility.
7) If feasible, calculate QC using (16)–(19) in the specified

priority order.
8) Compare the results.
We have implemented two MATLAB toolboxes for assisting

interested users to apply the proposed framework for studying
their systems: QC toolbox for QC for multi-DOF BTSs and
simulation toolbox to verify the results of QC toolbox [25].
They are freely available for download.

IV. CASE STUDY

The following case study illustrates the QC method proposed
in Section III. Section IV-A introduces a practical task and its
prioritized TDPO. In Sections IV-B and IV-C, the comparison
procedure described in Section III-C is performed and the results
are discussed.

A. Case Study Model

Consider the following task and TDPO.
1) The BTS will be used to manipulate objects made of sil-

icon gel, which has a consistency similar to human soft
tissue.

2) The operator uses his fingertip to control the master device
with an input bandwidth of less than 5 Hz, which corre-
sponds to the bandwidth of intentional hand motions.

3) Human maximum active force is less than 5 N.
4) Force- and position-tracking error should be less than 1 N

under 100 Hz and 1 mm under 10 Hz, respectively.
5) BTS should be robust to the 10% and 50% of uncertainty of

nominal human and environment impedance, respectively.
6) Force tracking has higher priority than that of position

tracking, once the minimum performance bounds are
achieved.

Table III summarizes the task and TDPO. The values for nominal
impedance of human and environment are taken from [23] and
[26]. β′

1, β′
2, β′

zh, and β′
ze are calculated as shown in Section III.

The y-axis of PHANTOM will be used as the unit gear ra-
tio master and slave reference models. The nominal transfer
function of PHANTOM is given as follows [27], [28]:

Pm = Ps =
1

2.02 × 10−5s2 + 6.46 × 10−5s
.

In this case study, we assume maximum actuator forces of
100 N in order to compare the teleoperation systems without
considering the actuator’s saturation.4 Then,

W3 = W4 =
1

100
.

4The capability of PHANTOM actuator is actually 8.5 N. However, it is not
enough to meet the given TDPO.
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TABLE III
TASK AND TDPO PARAMETERS USED IN THE CASE STUDY

Disturbance caused by modeling error and friction are denoted
by d1 and d3. In this case study, as disturbances, we will only
consider the friction of the manipulators, neglecting the other
sources of disturbance. PHANTOM has 0.04 N end-effector
friction [29]

Wd1 = Wd3 = 0.04.

Sensor noises caused by quantization error in position measure-
ment are 0.3 mm [29]

Wd2 = Wd4 = 0.3.

The amplitude of force sensor noise is assumed to be 1/40 N,
which is based on a 20 N capacity force sensor [30]

Wdτh
= Wdτe

=
1
40

.

As an illustration of the proposed QC method, in this case study,
we will compare the effect of different sensory configurations
and actuator gear ratios on the performance of a BTS. Four
sensory configurations based on the placement of force sensors
will be considered, namely: 1) force sensor only at the slave
side (FSLAVE), 2 force sensors at both master and slave sides
(FBOTH), 3) without any force sensors (FNONE), and 4) force
sensor only at the master side (FMASTER).

B. Evaluation Methods

Although the procedure for QC is straightforward, the large
amount of data generated may make it difficult to compare
BTSs since performance and stability margins are calculated for
every configuration. The following procedure for each sensory
configuration will be used to compare data in this case study.

1) Plot the region of each type in Table II as a function of
actuator gear ratio. This shows the results of the feasibility
test.

2) Plot Qβ(·)(Nm, Ns) as a function of actuator gear ratio.
This shows the results of QC.

3) Evaluate ∂Qβ(·)/∂Nm and ∂Qβ(·)/∂Ns. This gives the
optimal gear ratio for a BTS with respect to the specified
TDPO for each sensory configuration.

4) Plot normalized Qβ(·)(Nm, Ns) with respect to
Qβ(·)(Nm, Ns) of the architecture with force sensors on
both sides (FBOTH). This shows the effect of sensory
configuration.

Fig. 6. Results of feasibility test with the silicon gel environment. Upper left
is for architecture FSLAVE, upper right for architecture FBOTH, lower left for
architecture FNONE, and lower right for architecture FMASTER, as given in
Section IV-A.

Fig. 7. Qβ1 with the silicon gel environment. Upper left is for architec-
ture FSLAVE, upper right for architecture FBOTH, lower left for architecture
FNONE, and lower right for architecture FMASTER, as given in Section IV-A.

C. Comparison of Sensory Configuration
and Drive Mechanism

This section shows the QC results of the case study model.
The results are evaluated by the procedure in Section III for
BTSs with various gear ratios from 1/10 to 10 times the nominal
transfer functions Pm and Ps and the four kinds of sensory
configurations discussed in Section IV-A.

Fig. 6 shows the results of the feasibility test of the TDPO, as
described in Section III-B. For the given TDPO, the architectures
that have a force sensor on the human side (FBOTH and FMAS-
TER) are of type 1 (feasible) for gear ratios 0.4 ≤ Ns ≤ 10 and
of type 2 for gear ratios 0.1 ≤ Ns ≤ 0.4 (see Section III-B). The
architectures without a force sensor on the human side (FSLAVE
and FNONE) are of type 1 for gear ratios 0.6 ≤ Nm ≤ 6 and
0.4 ≤ Ns ≤ 10, and of type 3, for gear ratios 0.1 ≤ Nm ≤ 0.3,
and of type 2 otherwise.

For the cases that pass the feasibility test, we can proceed
with the QC.
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Fig. 8. Qβ2 with the silicon gel environment. Upper left is for architec-
ture FSLAVE, upper right for architecture FBOTH, lower left for architecture
FNONE, and lower right for architecture FMASTER, as given in Section IV-A.

Fig. 9. Normalized Qβ1 with the silicon gel environment. Upper left is for
architecture FSLAVE, upper right for architecture FBOTH, lower left for ar-
chitecture FNONE, and lower right for architecture FMASTER, as given in
Section IV-A.

Figs. 7 and 8 show Qβ1(Nm, Ns) and Qβ2(Nm, Ns) for
the four sensory configurations when the first priority is force-
tracking performance. Guidelines to design a BTS for the given
TDPO can be identified from the results. For example, from
Fig. 7, we can conclude that the force-tracking performance of
a BTS with force sensors on both sides improves with lower
gear ratios on the human side, while the gear ratio on the slave
side does not affect the force-tracking performance, as observed
in the upper right figure. For a BTS with a force sensor on the
human side, the optimal gear ratio on the slave side, Ns = 2,
maximizes the force-tracking performance, as observed in Fig.
7(lower right). The force-tracking performance improves with
lower gear ratio on the human side. From Fig. 8, we conclude that
the position-tracking performance, as a second priority TDPO
parameters, gets better at higher gear ratios on both human and
slave sides for all BTS architectures.

Fig. 9 shows the normalized Qβ1(Nm, Ns) of each archi-
tecture with respect to the Qβ1(Nm, Ns) of the architecture

that has force sensors on both sides. From the results, we can
compare the performances of BTSs with various gear ratio and
sensory configurations quantitatively. For example, for the best
force-tracking performance, a BTS with force sensors at both
sides should have gear ratio Nm = 0.1 and 0.4 ≤ Ns ≤ 10. For
that system, the achievable minimum force-tracking error will
be 0.02 N. When only one force sensor is allowed, it is more
desirable to attach the sensor to the master device since that
architecture has a wider region of type 1 (Fig. 6), and 10 to 100
times better force-tracking performance is guaranteed compared
to the architecture with a force sensor only on the slave side. If
there is a force sensor only on the slave side, the force tracking
performance is not much different from that of the architecture
without any force sensors, especially when Ns > 1 in the region
of type 1. The achievable minimum force-tracking errors of the
architectures with a single force sensor located on the slave and
without any force sensors are 0.744 N and 0.853 N, respectively,
and are achieved at Nm = 2 and Ns = 4. The achievable mini-
mum force-tracking errors of the architecture with a force sensor
only on the master side are 0.62 N, for gear ratio Nm = 0.1 and
Ns = 0.4, and 0.67 N, for gear ratio Nm = 10 and Ns = 0.4.
The achievable minimum force-tracking errors of the architec-
ture with force sensors on both sides are 0.02 N, for gear ratio
Nm = 0.1 and Ns = 0.4, and 0.47 N, for gear ratio Nm = 10
and Ns = 0.4. This observation suggests that the advantage of
the architecture with force sensors on both sides decreases in
comparison to the architecture with a force sensor only on the
master side for high gear ratios of the master device, as ob-
served in Fig. 9 (lower right). At this point, we would like to
note that the observations made earlier are specific to the BTSs
and TDPO considered in the analysis.

The QC method proposed in this paper can suggest guidelines
to design a relevant BTS, particularly when there are constraints
in choosing a sensory configuration and a drive mechanism.

V. EXPERIMENTAL VALIDATION

In this section, the validity of the proposed QC methodology
is experimentally confirmed by comparing the predicted and
experimentally determined performances a 2-DOF BTS tested
with 24 different sensor and actuator configurations (six differ-
ent actuator configurations and four different sensory config-
urations). The BTSs used in this experiment are described in
Section V-A. The models of the BTSs and the TDPO used in
the analysis are presented in Section V-C. Following these, the
performances predicted using the proposed QC framework and
observed through the experiments are presented and compared
in Section V-D, to confirm the validity of QC framework.

A. Experimental Setup

Two kinematically similar 2-DOF planar master and slave
manipulators [Fig. 10(a) and (b)] were used in the experiments.
Each of the manipulators were equipped with force/torque sen-
sors (MINI 45, ATI Industrial Automation, Inc., Apex, NC)
attached to their end points to measure the interaction forces
between the human operator and the master device, and be-
tween the environment and the slave robot (Fig. 10). Using the
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Fig. 10. (a) Two DOF master device. (b) Two DOF slave manipulator.

same mechanisms, 24 different actuator and sensor configura-
tions, which were combinations of six actuator and four sensory
configurations available, were tested. The six different actuator
configurations, which are shown in Table IV, were constructed
by choosing combinations of actuators for the master and slave
manipulators from three available pairs of actuators. Table V
shows the specifications of the actuator pairs. The actuator pairs
1, 2, and 3, respectively, consist of Maxon Co. RE 90, EC 45, and
RE-max 24 DC motors, with gear heads, as shown in Table V.
The backlashes of the actuators are less than 1◦. At each case, the
same actuator type was used for the both DOFs of a manipulator.
The four sensory configurations used were distinguished based
on the availability of force sensor information in the controller,
where in case 1), a force sensor was only available at the slave
side; in case 2), force sensors were available at both master and
slave sides; in case 3), no force sensors were available; and in
case 4), a force sensor was only available at the master side. In
all cases, position sensors in the form of quadrature encoders
were available at both master and slave sides.

A soft gel mold made from dielectric silicone gel (DSE7310,
Dong Yang Silicone Company, Korea) was used to model a
soft environment, which is suitable to evaluate the performance
of both force tracking and position tracking, simultaneously.
Soft contact tasks are rather common in medical robotics ap-
plications. The mechanical properties of this material is very
close to that of human soft tissue, so as to represent an environ-
ment for a typical probing task encountered in medical robotics
applications.

TABLE IV
ACTUATOR CONFIGURATIONS USED IN THE EXPERIMENTAL SETS

TABLE V
ACTUATORS USED IN THE EXPERIMENTAL SETS

B. Experimental Task

In the experiments conducted, the operator was instructed to
perform a force following task, i.e., applying a force to the en-
vironment matching in magnitude and direction to an indicator
shown on a computer screen. The force vector corresponding
to the actual interaction force between the end effector and the
environment, measured using a force sensor, was also shown
on the screen. During the experiment, the desired force vector
shown on the screen smoothly increased in magnitude from 0 N
to about 4 N, while maintaining its direction. In order to keep
the operator from adapting to the task, the direction of the force
vector was changed randomly between trials. During the exper-
iments, the operator was seated such that the operator’s arm was
aligned with x-axis of the master device, and was instructed to
use the thumb and the index fingertips for gripping the master
manipulator.

C. Models and TDPO Used in the QC

In order to compare the performances of the BTSs with the
six different set of actuator configurations and the four dif-
ferent sensory cases using the proposed QC methodology, the
manipulator models in the form of linear nominal models and
uncertainties were calculated. The nominal manipulator models
for the different actuation cases were experimentally determined
using black box system identification. It was also empirically
determined that the uncertainty margin of the master and slave
manipulator is 20% under 5 Hz and 40% above 10 Hz, i.e.,

∆pm = ∆ps = 0.2
(

1
10π

s + 1
) (

1
20π

s + 1
)

(26)

nominal models and uncertainties can represent real nonlinear
manipulators including actuator pairs of experimental sets.

Similarly, the nominal model and uncertainty margins for
human operator and environment were also experimentally
determined using black box system identification using a
technique similar to that in [8]. The x-axis and y-axis nominal
models of human and environment used are given in Table VI.
A 50% uncertainty margin over the whole frequency range
was determined to cover the real nonlinear human operator and
environment; therefore, ∆zh = ∆ze = 0.5. For the task in this
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TABLE VI
LINEAR NOMINAL MODELS OF HUMAN OPERATOR AND ENVIRONMENT USED

IN THE EXPERIMENTAL SETS

experiment, the human active force is assumed to be less than
5 N and under 3 Hz.

The following performance objective functions were used to
define the TDPO for these experimental sets. In this experiment,
the force-tracking performance has higher priority than that of
the position tracking, as the subjects are asked to perform a
force-tracking task. The minimum performance for force track-
ing and position tracking were chosen as 5 N under 5 Hz and
5 mm under 5 Hz, respectively. In order to compare the exper-
imental sets fairly, the control input was constrained by 10 N
under 5 Hz and 0.1 N above 50 Hz at the gear end. The resulting
TDPO for performance output can be represented as follows:

W 1 = 0.2

[
1000π3

(s+10π)3 0

0 1000π3

(s+10π)3

]
(27)

W 2 = 0.2

[
1000π3

(s+10π)3 0

0 1000π3

(s+10π)3

]
(28)

W 3 = 0.1Nm

[
(1/100πs+1)3

(1/10πs+1)3 0

0 (1/100πs+1)3

(1/10πs+1)3

]
(29)

W 4 = 0.1Ns

[
(1/100πs+1)3

(1/10πs+1)3 0

0 (1/100πs+1)3

(1/100πs+1)3

]
(30)

In this experiment, force sensor noise and position sensor noise
will be represented as disturbances with magnitude 0.25 N
and 1 mm over the whole frequency range, i.e., dth = dte =
[ 0.25 0.25 ]T and d2 = d4 = [ 0.001 0.001 ]T .

D. QC Results Compared With the Experimental Results

The goal of the experiment was to confirm the validity of
the proposed QC framework through a comparison of QC re-
sults and experimental results. In the previous section, the lin-
ear models, uncertainties, and TDPOs for 24 experimental sets
were described. Using the QC framework via the developed
QC MATLAB toolbox, the QC results were calculated for the
various sensory configurations and experimental sets. As de-
scribed in Section III, the proposed QC method has two main
steps: testing the feasibility of a given TDPO and evaluating the
performance measures. The experiments were performed using
controllers obtained by model reduction from the H∞ subopti-
mal controllers generated by the µ-synthesis algorithm used in
the second step of the QC.

At this point, it is important to note that the results of the
QC and the experiments can be compared only indirectly. The
QC calculations optimize the worst case performance of the
system under the specified uncertainties and disturbances. As
an exhaustive experiment that tests all possible human operator,
environment, and system uncertainties, and user inputs is not
possible, the experiments can only test specific instances. The
experimental results reported are the tracking performance of
each of the systems, calculated as the ratio of the L2 norms
of the tracking error and user input forces, for those specific
instances of the user input, human operator, environment, and
other uncertainties, etc., captured in the experiments. Therefore,
the performance values given by the QC analysis are expected
to be the upper bounds of the actual tracking error values of the
system observed during the experiments.

Figs. 11 and 12 show the results of the QC and the experi-
ments. The experimental force and position tracking errors are
less than the performance values predicted by QC analysis, as
expected. Furthermore, the performance trends observed from
the experimental results match those predicted by the QC anal-
ysis. Therefore, the experimental results validate the proposed
QC method.

VI. CONCLUDING REMARKS

In this paper, we have proposed a quantitative method to
evaluate teleoperation system based on a given TDPO, using
µ-synthesis. Our approach is distinguished from the previous
works in the literature as our focus is to evaluate and guide
the design of the overall system, not just to design a controller
for a given system. In order to compare BTSs quantitatively, we
employ a TDPO. Using µ-framework, performance and stability
margin, which form the TDPO, can be evaluated quantitatively
while modeling uncertainties and noise. From the result, we can
compare BTSs quantitatively, and quantitative design guidelines
can be determined, which optimize the BTS for the given TDPO.

The most important benefit of the proposed framework is
that it makes possible the design of a BTS considering its task
and environment from a systems point of view. It can be used
effectively as a design guideline when there are constraints in
choosing drive mechanisms and the sensory configuration for a
BTS, especially the one designed to be operated in constrained
conditions.

It is interesting to note that the design choices that would be
based on the results of the QC would be potentially different
from those that would be based on the results of a limited set
of experiments, such as those reported in Section V, as it is not
feasible to perform an exhaustive set of experiments covering
all the possible cases of inputs, environments, operators, etc.
A design based on such a limited set of experiments would,
by no means, be optimal, and could potentially lead to pitfalls.
This is actually one of the main reasons behind developing an
analytical and quantitative design framework, such as the one
we have proposed here.

The tradeoff between system performance and uncertainty in
the system is a fundamental constraint in the design of control
systems. Instead of always using an infinitely large uncertainty
term (corresponding to all possible passive human operators
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Fig. 11. Force-tracking errors predicted by the QC framework and observed in the experiments. (a) Sensory configuration (FSLAVE). (b) Sensory configuration
(FBOTH). (c) Sensory configuration (FNONE). (d) Sensory configuration (FMASTER). QC results are the predicted H∞ norms of the transfer functions from the
user inputs to tracking error outputs. The experimental results are the ratios of the L2 norms of the tracking errors and user input forces.

Fig. 12. Position-tracking error predicted by the QC framework and observed in the experiments for each experimental set. (a) Sensory configuration (FSLAVE).
(b) Sensory configuration (FBOTH). (c) Sensory configuration (FNONE). (d) Sensory configuration (FMASTER).

and environments), in the proposed approach, it is possible to
explicitly select the size of the uncertainty terms, ranging from
no uncertainty, to all passive systems, and in between, based on
the specific task under consideration. This provides an important
flexibility in the analysis.

At this point, it would be informative to note the differences
between the QC methodology developed in this paper and the
approach proposed by the coauthor Çavuşoğlu in [7]. Although
the goal of the two papers are similar, the basic formulation, the
way the uncertainties are modeled, the quantitative performance
measure used, the TDPOs used, and the overall comparison
method are all different between the two approaches. Table VII
summarizes the differences between the two approaches. Specif-
ically, the formulation and the QC method presented in the

current manuscript are significantly more extensive in scope in
terms of expressive capabilities and the design variables that can
be analyzed.

Time delay is one of the important issues for teleoperation
systems. The constant time delay case has already been
treated through µ-synthesis by Leung et al. [10]. We have not
specifically focused on time delay effects in our presentation,
as Leung et al.’s method can be applied to our methodology if
evaluation of time delay effects is desired. Time-varying delay
and data loss in the communication channel are major unsolved
problems in the field of teleoperation, and therefore, outside
the scope of our paper.

An interesting QC case is the evaluation of BTSs in tasks
that involve contact with rigid environments. In such a case,



788 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 4, AUGUST 2007

TABLE VII
COMPARISON OF THE QC METHOD DEVELOPED IN THIS PAPER AND THE

APPROACH PROPOSED IN [7]

if desired, the transition behavior can be modeled using the
proposed uncertainty formulation using an uncertainty bound
ranging from free space to constrained space (which may go to
infinity if infinitely rigid contact is considered). However, this is
not necessarily an effective method of evaluating a BTS design.
Specifically, the proposed QC method uses, in determining the
performance of the system, a single H∞ suboptimal controller
designed using the whole uncertainty set specified. However, in
practical application involving such contact tasks, a switching
control strategy is typically used for separately handling free
space, contact transition, and contact cases. Therefore, a better
comparison strategy would be to consider each of these cases
separately, each of which would then have a smaller uncertainty
set.
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