468

IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 3, JUNE 2007

Intelligent Control Algorithms for Robotic-Assisted
Beating Heart Surgery
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Abstract—This paper focuses on the development of control al-
gorithms for intelligent robotic tools that assist off-pump coronary
artery bypass graft (CABG) surgery. In the robotic-assisted CABG
surgery, the surgeon operates on the beating heart using intelli-
gent robotic instruments. Robotic tools actively cancel the relative
motion between the surgical instruments and the point of interest
on the beating heart, dynamically stabilizing the heart for the op-
eration. This algorithm is called active relative motion canceling
(ARMC). Here, a model-based intelligent ARMC algorithm em-
ploying biological signals, such as electrocardiogram, to achieve
effective motion cancelation is proposed. Finally, experimental re-
sults of the algorithm on a 3-degree-of-freedom robotic test-bed
system are reported.

Index Terms—Electrocardiogram (ECG), medical robotics,
model predictive control, motion canceling, real-time tracking.

I. INTRODUCTION

LTHOUGH off-pump coronary artery bypass graft

(CABQG) surgery is in a nascent stage and only applicable
to limited cases, it is preferred over on-pump CABG surgery
because of the significant complications resulting from the use
of cardio-pulmonary bypass machine, which include long term
cognitive loss [1], and increased hospitalization time and cost
[2]. On the other hand, off-pump grafting technology is crude
and only applicable to a small portion of the cases because of
the technological limitations, inadequate for all but the largest
diameter target vessels, not effectively applicable to the coro-
nary arteries on the side and the back of the heart, and limited
to small number of bypasses. Off-pump procedures represent
only 15%-20% of all CABG surgeries, at best [3]. Manual
tracking of the complex heartbeat motion can not be achieved
by a human without phase and amplitude errors [4]. Use of
robotics technology will overcome limitations, as it promises
an alternative and superior way of performing off-pump CABG
surgery. In this project, it is aimed to develop telerobotic tools
to actively track and cancel the relative motion between the
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surgical instruments and the heart by active relative motion
canceling (ARMC) algorithms, which will allow CABG surg-
eries to be performed on a stabilized view of the beating heart
with the technical convenience of on-pump procedures.

This paper explains the design and implementation of intelli-
gent ARMC control algorithms for robotic telesurgical systems,
utilizing biological signals in a model-based predictive control
fashion. Effective motion canceling in the model-based intelli-
gent ARMC algorithm is achieved by utilizing biological sig-
nals, such as electrocardiogram (ECG), in the estimation of the
heart motion.

The rest of this section presents the overall system concept
and reviews the related work in the literature. In Section II, anal-
ysis of the experimental heart motion data, the importance of
the ECG signal and the method for ECG wave form detection
are discussed. Details on the ARMC algorithm are provided in
Section III. Section IV describes the estimation and control al-
gorithms used in the tracking problem. In Section V, simula-
tion and experimental results are given. Finally, the discussion
is presented.

A. System Concept for Robotic Telesurgical System for
Off-Pump CABG Surgery

Robotic-assisted surgery concept replaces conventional sur-
gical tools with robotic instruments which are under direct con-
trol of the surgeon through teleoperation, as shown in Fig. 1. The
surgeon views the surgical scene on a video display with images
provided by a camera mounted on a robotic arm that follows the
heart motion, showing a stabilized view. The robotic surgical
instruments also track the heart motion, canceling the relative
motion between the surgical site on the heart and the surgical
instruments. As a result, the surgeon operates on the heart as
if it were stationary, while the robotic system actively compen-
sates for the relative motion of the heart. This is in contrast to
traditional off-pump CABG surgery where the heart is passively
constrained to dampen the beating motion. We call the proposed
control algorithm “Active Relative Motion Canceling (ARMC)”
to emphasize this difference. Since this method does not rely on
passively constraining the heart, it would be possible to operate
on the side and back surfaces of the heart as well as the front
surface using millimeter scale robotic manipulators that can fit
into spaces the surgeon can not reach.

B. Related Work in the Literature

Earlier studies in the literature on canceling biological motion
in robotic-assisted medical interventions focus on canceling
respiratory motion. Sharma et al. and Schweikard ef al. studied
the compensation of the breathing motion in order to reduce the

1042-296X/$25.00 © 2007 IEEE
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Fig. 1. System concept for robotic telesurgical system for off-pump CABG surgery with ARMC. Left: Surgical instruments and camera mounted on a robot
actively tracking heart motion. Right: Surgeon operating on a stabilized view of the heart and teleoperatively controlling robotic surgical instruments to perform

the surgery.

applied radiation dose to irradiate tumors [5], [6]. Both studies
concluded that motion compensation was achievable. In [7],
Riviere et al. looked at the cancelation of respiratory motion
during percutaneous needle insertion. Their results showed
that an adaptive controller was able to model and predict the
breathing motion. Trejos et al. conducted a feasibility study on
the ability to perform tasks on motion-canceled targets, and
demonstrated that tasks could be performed better using motion
canceling [8].

Madhani and Salisbury [9] developed a 6-degree-of-freedom
(DOF) telesurgical robot design for general minimally invasive
surgery, which was later adapted by Intuitive Surgical Inc.,
Palo Alto, CA, for their commercial system, called daVinci.
Computer Motion Inc., Goleta, CA (Computer Motion Inc. was
acquired by Intuitive Surgical Inc., and does not exist anymore),
developed a 5-DOF telesurgical robotic system, called Zeus,
with scaled motions for microsurgery and cardiac surgery.
Both of these systems are currently in use for cardiothoracic
surgery applications. These systems are designed to enable
dexterous minimally invasive cardiac surgery, and they are
neither intended nor suitable for off-pump CABG surgery with
ARMC, because of their size, bandwidth, and lack of motion
tracking capabilities. These systems can only perform on-pump
or off-pump CABG surgery by using passive stabilizers, and,
therefore, have the same limitations as conventional tools
described above.

In [10], Nakamura et al. performed experiments to track the
heart motion with a 4-DOF robot using a vision system to mea-
sure heart motion. The tracking error due to the camera feedback
system was relatively large (error on the order of few millime-
ters in the normal direction) to perform beating heart surgery.
There are also other studies in the literature on measuring heart
motion. Thakor ef al. used a laser range finder system to mea-
sure 1-D motion of a rat’s heart [11]. Groeger et al. used a
two-camera computer vision system to measure local motion
of heart and performed analysis of measured trajectories [12],
and Koransky et al. studied the stabilization of coronary artery

motion afforded by passive cardiac stabilizers using 3-D digital
sonomicrometry [13].

In [14] and [15], Ortmaier et al. used an ECG signal
in the visual measurement of heart motion using a camera
system, for estimation of the motion when the surgical tools
occluded the view. They reported significant correlations be-
tween heart surface trajectory and ECG signals, which implies
these inputs can be used interchangeably. Therefore, these two
independent components were considered as inputs to the esti-
mation algorithm. In their study, heart motion estimation was
not based on a heart motion model and it was completely de-
pendent on previously recorded position data. Actual tracking
of the heart motion using a robotic system was planned as a
future work.

More recently, in a pair of independent parallel studies by
Ginhoux et al. [16] and Rotella [17], motion canceling through
prediction of future heart motion was demonstrated. In both
studies, model predictive controllers were used to get higher
precision tracking. In the former, a high-speed camera was used
to measure heart motion. Their results indicated a tracking error
variance on the order of 6-7 pixels (approximately 1.5-1.75 mm
calculated from the 40 pixel/cm resolution reported in [16]) in
each direction of a 3-DOF tracking task. Although it yielded
better results than earlier studies using vision systems, the error
was still very large to perform heart surgery, as operation tar-
gets to be manipulated using the robotic systems in a CABG
surgery are blood vessels with 2 mm or less diameter. In [17],
by a 1-DOF test bed system accuracy very close to the desired
error specifications for heart surgery was achieved, and Rotella
concluded that there still was a need for better prediction of heart
motion.

A heart model was proposed by Cuvillon et al. in [18], based
on the extraction of the respiration motion from the heartbeat
motion using the QRS wave form of the ECG and lung airflow
information as sensory inputs. They concluded that heartbeat
motion is not the product of two independent components, in
fact the heartbeat motion is modulated by the lung volume.
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II. ANALYSIS OF HEART DATA

In this section of the paper, the experimentally collected heart
motion data used in this study are described. The data were col-
lected from an animal model (an adult porcine), and all study
was done with this prerecorded data. Here, first the collection
of heart motion data will be explained. The requirements for
the tracking will be calculated in the data analysis section. Next,
ECG, the biological signal employed, and its use in this research
will be explained. Last, a short description of the real-time ECG
wave form detection will be given.

A. Experimental Setup for Measurement of Heart Motion

A sonomicrometry system manufactured by Sonometrics,
Inc. (London, ON, Canada) was used to collect the heart mo-
tion data used in this study. A sonomicrometer measures the
distances within the soft tissue via ultrasound signals. A set of
small piezoelectric crystals embedded, sutured, or otherwise
fixed to the tissue are used to transmit and receive short pulses
of ultrasound signal, and the “time of flight” of the sound wave
as it travels between the transmitting and receiving crystals are
measured. Using these data, the 3-D configuration of all the
crystals can be calculated [19]. No analog conversion process
is involved in these measurements, which eliminates the need
to calibrate the system. Crystal operation frequency of 64 MHz
provides resolution of 24 pm in the measurement of intertrans-
ducer distances [20]. Absolute accuracy of the sonomicrometry
system is 250 pm (approximately 1/4 wavelength of the ultra-
sound) [21].

The sonomicrometry system has an important advantage
over using a vision system, which is the sensor of choice in the
earlier works in the literature, for measuring heart motion for
robotic ARMC. A stand-alone vision system is not suitable for
use during surgical manipulation because the surgical instru-
ments (including the robotic tools) will occlude the point of
interest (POI) rendering the vision system practically useless,
whereas the sonomicrometry system does not have this short-
coming. Although an algorithm was developed by Ortmaier in
[14] to estimate the heart motion, when the view is occluded, it
is only applicable to brief occlusions.

In the experimental setup, one crystal of the sonomicrometric
system was sutured next to the left anterior descending artery
(LAD) located on the front surface of the left ventricle of the an-
imal heart, at a point one third of the way from the starting point
of the LAD. Six other crystals were asymmetrically mounted
on a rigid plastic base of diameter 56 mm, on a circle of diam-
eter 50 mm, forming a reference coordinate frame. This rigid
plastic sensor base was inserted behind the heart, inside the
pericardial sac, and the motion of the POI on the LAD was
measured relative to this coordinate frame. The pericardial sac
had been filled with a saline solution, completely immersing
the sensor base, which enabled the continuous contact of so-
nomicrometric sensor system with the heart and proper oper-
ation. Data were processed offline using the proprietary soft-
ware provided with the system to calculate the 3-D motion of
the POIL. The only filtering performed on the data produced by
the sonomicrometry system was the (very limited) removal of
the outliers, which occasionally occur as a result of ultrasound
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Fig. 2. PSD of the motion of the POI is shown in two different scales. Observ-
able dominant modes are at 0.37 and 2.0 Hz, which correspond to breathing and
heartbeat motions, respectively. Peak at the 4.0 Hz is the first harmonic of the
heartbeat motion.

echoing effects. Although the sonomicrometry system can op-
erate at 2-kHz sampling rate for measuring the location of the
POI crystal relative to the fixed base, in our test experiments,
we have collected data at a sampling rate of 257-Hz collecting
redundant measurements.

B. Analysis of Heart Motion Data

During the 60-s data collection period, the average heart rate
of the animal model was 120 beats per minute, as calculated
from the ECG signal recorded simultaneously with the motion
data. The peak displacement of the POI from its mean location
was 12.1 mm, with a root-mean-square (RMS) value of 5.1 mm.
Fig. 2 shows the power spectral density (PSD) of the motion of
the POI in the y- and z-directions at different scales.

Two observable dominant modes of motion are visible in
Fig. 2. The first mode is at 0.37 Hz, which corresponds to the
breathing motion. The second dominant mode is at 2.0 Hz which
corresponds to the main mode of motion due to heart beating,
as it matches the frequency observed from the ECG signal. The
peak at the 4.0 Hz is the first harmonic of the heartbeat motion.
The component of motion corresponding to breathing motion,
which is estimated by filtering the motion data using a lowpass
Equiripple FIR filter of cutoff frequency 1.0 Hz, has a RMS
magnitude of 2.86 mm. The remainder of motion, which is due
to the beating of the heart, has a RMS magnitude of 4.18 mm.
The POI motion can be approximated with an error less than
140-pm RMS with frequency components up to 26 Hz. This
gives the specifications for the robotic mechanism and ARMC
control algorithm design. These results are consistent with the
heart motion measurements reported by Groeger in [12]. The
data in that study were collected using a stereo vision system.
The results of our study confirm the reported results by an ex-
perimental setup using an alternate sensory modality, i.e., the
sonomicrometry system.
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Fig. 3. Separation of breathing motion and heartbeat motion using a low-pass
filter with cutoff frequency 1.0 Hz. (A) Motion of the measured POI on the heart
in the y-direction. (B) Heartbeat motion and breathing motion separated using
a low-pass filter.

The control algorithm proposed (detailed in Section III-B) is
based on the premise that the heart motion is quasiperiodic and
the motion during the previous beats can be used, to some extent,
as a feedforward signal during the control of the robotic tool for
ARMC. Here, our main concern is with the moderate-to-high
frequency components of the motion since they are the most
demanding for the mechanism and the ARMC control algo-
rithm. As described above, the low-frequency components of
motion typically result from breathing (bandwidth of 1.0 Hz,
including the main mode of the breathing frequency) and can
easily be canceled using a feedback controller. The feedfor-
ward controller is needed to cancel the high frequency compo-
nents of motion. After the breathing motion is filtered out, the
PSD of the motion signal is composed of very narrow peaks at
the harmonics of the heartbeat frequency (Fig. 3). This shows
that the moderate-to-high frequency component of the motion
is quasiperiodic, with frequency equal to heartbeat rate, sup-
porting the feasibility of the ARMC algorithm.

C. ECG as the Biological Signal

The human body acts as a giant conductor of electrical
currents. Connecting electrical “leads” to any two points on
the body may be used to register an ECG. Thus, ECG contains
records for the electrical activity of the heart. The ECG of heart
forms a series of waves and complexes that have been labeled
in alphabetical order, the P wave, the QRS complex, the T
wave and the U wave (Fig. 4) [22]. Depolarization of the atria
produces the P wave; depolarization of the ventricles produces
the QRS complex; and repolarization of the ventricles causes
the T wave. The significance of the U wave is uncertain [23].
Each of these electrical stimulations results in a mechanical
muscle twitch. This is called the electrical excitation-mechan-
ical contraction coupling of the heart. Thus, the identification of
such waves and complexes can help determine the timing of the
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Fig. 4. Typical scalar ECG, showing significant intervals and deflections.
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Fig. 5. Time relationship between action potential and mechanical force de-
veloped by ventricular muscle. Rapid depolarization of a cardiac muscle fiber
is followed by force development in the muscle. The lag between the excitation
and the peak force is about 200 ms long.

heart muscle contractions. Using ECG in the control algorithm
can improve the performance of the position estimation because
these wave forms are results of physiological processes that
causally precede the heart motion and also because ECG is
significantly correlated with heartbeat motion [15]. The time
relationship between action potential and mechanical force
developed by ventricular muscle is shown in Fig. 5 [24], [25].
Rapid depolarization of a cardiac muscle fiber is followed by
force development in the muscle. The completion of repo-
larization coincides approximately with the peak force, and
the duration of contraction parallels the duration of the action
potential, which is about 150 to 200 ms long. The lag between
these two formations enables the prediction of future heart
activity. Although this time lag is about 200 ms, it is sufficient
for real-time detection of the waves and complexes of the
ECG. Average detection time for the test data was 174 ms (see
Section II-D for test database details).

The ECG signal employed in this research was collected with
the analog data acquisition part of the sonomicrometry system
used. The ECG data were recorded simultaneously with the col-
lection of the heart motion data at the same sampling rate of
257 Hz.
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D. ECG Wave Form Detection

There is a substantial literature on detecting the ECG charac-
teristic points with high detection accuracies (e.g., [26]-[29]).
However, most of these algorithms are designed for offline pro-
cessing of ECG signals and only a few of them are for real-time
detection of ECG signal complexes [30], [31]. The difficulty in
detection arises from the diversity of complex wave forms and
the noise and artifacts accompanying the ECG signals. In this
work, the significant ECG wave forms and points, such as P,
QRS, and T, were detected in hard real time! by an algorithm
adapted from [31]. This one was selected among other available
algorithms because it employs signal localization both in time
and frequency using wavelet analysis, characterization of the
local regularity of the signal and separation of the ECG waves
from serious noise, artifacts, and baseline drifts in real time.

A short description of the ECG wave form detection algo-
rithm, included here to make the paper self contained, is as fol-
lows. Wavelet transform of the ECG data at the sampling fre-
quency was calculated at scales 27, j = 1...5. These energy
levels cover the power spectra of ECG signal. The energy of the
QRS complex is typically placed in the levels 22 and 2*. The
energies of P and T waves are located at levels 2% and 2°. To
detect peaks, threshold filters and decision making rules were
used in every energy level. First, QRS complexes were detected
by locating any peak pairs on the wavelet transforms. Since both
QRS and T peak pairs can appear on the same energy levels, un-
marked peaks on levels 2¢ and 2° were marked as T waves after
the possible QRS complexes were identified. P wave detection
was done similarly by detecting peak pairs at the energy scale
24 which corresponded to neither a QRS complex nor a T wave.

Bahoura et al. evaluated the original algorithm in real time
with the MIT-BIH Arrythmia Database [32]. This database con-
tains 48 half-hour excerpts of two-channel ambulatory ECG
recordings. They reported a 0.26% false detection rate (126 false
positive beats and 180 false negative beats out of 116 137 beats),
showing the algorithms capability in detecting QRS complexes.
We used constant detection parameters instead of adaptive ones,
and obtained a 1.49% false detection rate using the same data-
base (408 false positive beats and 709 false negative beats out
of 75010 healthy beats).

With this method, QRS-T-P waves were detected in real time
for the collected 56-s ECG data with 100% QRS complex and T
wave detection rates, and 97.3% P wave detection rate (Fig. 6).
Missed waves were decided according to the ECG state transi-
tions shown in Fig. 8. Detected signals were used to estimate
the reference signal as described in Section IV (Fig. 11).

III. MODEL-BASED ACTIVE RELATIVE MOTION CANCELATION

A. Motivation and Methodology

The control algorithm is the core of the robotic tools for
tracking heart motion during CABG surgery. The tools need
to track and manipulate a fast moving target with very high
precision. During free beating, individual points on the heart

ITn hard real time, no corrections are allowed to be performed to the past data
after the operation deadline expires.
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Fig. 6. Detection of ECG wave forms. ¢: Detected QRS complex. B: Detected
T wave. A: Detected P wave. Note that the marked times correspond to when
features are detected, which is delayed from the actual temporal location of the
waveform about 170 ms due to the time taken by the detection algorithm.

move as much as 7-10 mm. Although the dominant mode of
heart motion is on the order of 1-2 Hz, if we look at measured
motion of individual points on the heart during normal beating,
there is significant energy at frequencies up to 26 Hz. The
coronary arteries that are operated on during CABG surgery
range from 2 mm in diameter down to smaller than 0.5 mm,
which means the system needs to have a tracking precision
in the order of 100 pum. This corresponds to a less than 1%
dynamic tracking error up to a bandwidth of about 20 to 30 Hz.

The specifications for tracking heart motion are very de-
manding. These stringent requirements could not be achieved
using traditional algorithms in earlier attempts reported in
the literature [10], [11]. Traditional algorithms rely purely
on feedback signal from measurement of heart motion using
external sensors, and they do not use any physiological model
of the heart motion.

Using a basic model of heart motion can significantly improve
tracking performance since heart motion is quasiperiodic [16].
It is also possible to use the information from the biological
signals, such as ECG activity, and aortic, atrial, and ventricular
blood pressures, to control the robotic tools tracking the heart
motion.

The control architecture we are proposing in this research is
shown in Fig. 7. In this architecture, the control algorithm uti-
lizes the biological signals in a model-based predictive control
fashion. Using biological signals in the control algorithm im-
proves the performance of the system since these signals are
results of physiological processes which causally precede the
heart motion. A heart motion model can be formed by com-
bining motion data and biological signal data.

In this paper, the ECG signal is used in the heart model. ECG
contains records for the electrical activity of the heart. Electrical
signals, which stimulate the contraction of the heart muscles,
precede the actual contraction by about 150-200 ms, and these
signals can be observed in the ECG measurements. Because of
this, ECG signal is very suitable for period-to-period synchro-
nization with sufficient lead time for feedforward control, and
identification of arrhythmias.
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during the course of the surgery, as well as handling occasional
arrhythmias which may have natural causes or may be due to
the manipulation of the heart during surgery.

The two dominant modes of the motion of POI are separated
by using a pair of complementary filters (Section II-B). The con-
trol path for tracking of the heartbeat component of the motion
has significantly more demanding requirements in terms of the
bandwidth of the motion that needs to be tracked. That is why a
more sophisticated feedforward algorithm is employed for this
part. Respiratory motion has significantly lower frequency, and
it is canceled by a purely feedback based controller. In the pro-
posed architecture (Fig. 7), the robot motion control signal is
computed by combining these two parts. The feedforward part
is calculated with the signal provided by the heart motion model
and the feedback signal is calculated with the direct measure-
ments of heartbeat and respiratory motions. The feedforward
controller was designed using the model predictive control [33]
and optimal control [34], [35] methodology of modern control
theory, as described in Section IV.

The confidence level reported by the heart motion model is
used as a safety switching signal to turn off the feedforward
component of the controller if an arrhythmia is detected, and
switch to a further fail-safe mode if necessary. This confidence
level will also be used to adaptively weigh the amount of
feedforward and feedback components used in the final control
signal. These safety features will be an important component
of the final system. Therefore, the best design strategies for
developing feedforward motion control was aimed.

In Fig. 8, a finite-state model for the cardiac cycle is shown.
The model involves primary states of the heart’s physiological

Mitral Valve Closes

Fig. 8. State model of the beating heart. Transition between the states are de-
picted using ECG waves and the motion of the heart valves, which can be in-
ferred from blood pressure measurements. States forming the cardiac cycle are:
(A) isovolumic contraction; (B) ejection; (C) isovolumic relaxation; (D) ven-
tricular filling; (E) atrial systole; (F) irregularity in the cardiac cycle.

activity. Transitions between the states are depicted using the
states of the mitral and aortic valves of heart and P, R, and
T waves of the ECG. During the ECG wave form detection
process, QRS complex is detected and used in substitute to R
wave. Any out of sequence or abnormal states in the cycle can be
identified as irregularity. Using this model, rhythm abnormali-
ties and arrhythmias can be spotted and system can be switched
to a safer mode of operation.

Although some of the system concepts in the literature are
similar to this scheme at the most basic level, there are signif-
icant differences including the lack of intelligent model-based
predictive control using biological signals, and multisensor fu-
sion with complementary and redundant sensors, which form
the core of our proposed architecture. The system by Naka-
mura et al. [10] used purely position feedback obtained from a
two-camera computer vision system. Neither biological signals
were used in the system, nor was a feedforward control compo-
nent present. The system by Ginhoux ez al. [16] utilized a feed-
forward control algorithm, based on model predictive control
and adaptive observers; however, it did not utilize any biolog-
ical signals. Ortmaier et al. [15] utilized ECG using a “model
free” method, i.e., without using a heart model in the process.
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With the architecture proposed in this paper, the degree of
awareness is increased by utilizing a heart motion model in ref-
erence signal estimation. Inclusion of biological signals in a
model-based predictive control algorithm increases the estima-
tion quality, and such a scheme provides better safety with more
precise detection of anomalies and switching to a safer mode of
tracking.

IV. CONTROL ALGORITHMS

The control algorithm is the core of the robotic tools for
tracking heart motion during CABG surgery. The robotic tools
should have high precision to satisfy the tracking requirements
[more than 97% motion cancelation (details in Section II-B)].
During free beating, individual points on the heart move as
much as 10 mm. Although the dominant mode of heart motion
is on the order of 1-2 Hz, if we look at measured motion of
individual points on the heart during normal beating, there is
significant energy at frequencies up to 20 Hz.

As mentioned earlier, the heart motion is quasiperiodic and
previous beats can be used as a feedforward signal during the
control of the robotic tool for ARMC. In [17], a model-based
predictive controller, which used the estimation of the heart mo-
tion, and feedback based controllers were compared on a 1-DOF
robotic test-bed system. The model-based predictive controller
outperformed the feedback based controllers both in terms of the
RMS error and in terms of the control action used. In this paper,
we will exclusively focus on model-based predictive controllers.

A key component of the ARMC algorithm, when a predictive
controller is used, is estimation of the reference motion of the
heart which is provided to the feedforward path. If the feedfor-
ward controller has high enough precision to perform the nec-
essary tracking, then the tracking problem can be reduced to
predicting the estimated reference signal effectively.

Ginhoux et al. [16] used an adaptive observer, which iden-
tifies the Fourier components of the past motion at the base
heart rate frequency and its several harmonics to estimate the
future motion. This approach assumes that the heartbeat rate
stays constant. Ortmaier et al. [15] estimated the heart motion
by matching the current heart position and ECG signals of suf-
ficient length with recorded past signals, assuming that, with
similar inputs, the heart would create outputs similar to the ones
detected in the past.

In the next two sections (Sections IV-A and I'V-B), reference
signal estimation schemes used for the ARMC algorithm are
described. Then the control problem and its solution are given
in Section IV-C.

A. Reference Signal Estimation

A simple prediction scheme that assumes constant heartbeat
rate can be used for reference signal estimation. Heartbeat is
a quasiperiodic motion with small variations in every beating
cycle. If the past heartbeat motion cycle is known, it can be used
as an estimate reference signal for the next cycle. Any measured
heart position value can be approximated forward one cycle as
long as the heartbeat period for that cycle is known. In this case,
a constant heartbeat period (0.5 s) was used to store one period
length of the heartbeat signal. The motion of the heart from the
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Fig. 9. Reference signal estimation block diagram: Buffered past heart posi-
tion data were used for estimation with approximated constant heartbeat period.
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Fig. 10. Reference signal estimation during control action. Observe the horizon
signal where the offset between the current position and estimated signal is
added gradually starting from current time to horizon steps ahead.

previous cycle was used as a prediction of the next cycle (Fig. 9).
The stored beating cycle was used as the approximate future
reference beating signal in the ARMC algorithm.

Using the last heartbeat cycle exactly as the future reference
would result in large errors due to the quasiperiodic character-
istics of the heart motion and other irregularities of the signal.
Therefore, instead of using the past beating cycle directly, ref-
erence signal was processed online.

Any position offset between starting point of the past cycle,
Yhrt,pr> and starting point the next cycle (i.e., current position in
time), yn,t, were lined up by subtracting the difference, ye,, (1).
However, the added offset was gradually decreased over a con-
stant length of time (hereafter, this length will be referred to as
horizon, T) using a high-order error correction function defined
by (2). This calculation was carried out 7" steps ahead (3). So,
only some percentage of the current error was added to the fu-
ture signals, and no error was added to the signals T steps ahead
(Fig. 10). This maintained the continuity of the signal estimate
and converges it onto the actual signal within the horizon ahead

Yerr [k] = Ynhrt [k] — Yhrt,pr [k] (1)
m\P
fim=1- (%) @
Yest [k + m] = yhrt,pr[k + m] + f(m) Yerr [k]
(m=0,1,....T) (3

where yp,¢ 1S the measured motion of the POI on the
heart, yp,¢pr 1S the measured motion of the previous cycle
(Ynrt,pr[k] = Ynet[k — N], with N being the heartbeat period),
Yest 18 the desired reference estimate, k is the current time step,
m is the number of steps ahead that the signal is calculated,
p is the order of the error correction function, and f[m] is the
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Fig. 11. Simplified finite state model of the reference signal estimation using ECG algorithm. Detected ECG Wave forms were used in the estimation of reference,

with the buffered past heart position data.

polynomial weighting function used. In Fig. 10, the actual and
the estimated motions can be seen as the control executes.

B. Reference Signal Estimation Using Biological Signals

Although the position offset between the previous and current
beating cycles can be eliminated gradually using the technique
above, the error due to changes in heartbeat period remains.
Because heartbeat is a quasiperiodic motion with small period
variations in every beating cycle, these period changes could re-
sult in large offsets in the estimated signal, and can cause jumps
during the tracking.

As mentioned earlier in the Section II-C, ECG signal is very
suitable for period-to-period synchronization. In this reference
signal estimation scheme, rather than using a constant heartbeat
period, a variable period calculated using ECG was used. QRS,
P, and T waves were used as check points for detecting heart-
beat period. In Fig. 11, the block diagram for reference signal
estimation using ECG is illustrated.

Here, past heart position data were stored on the fly into a
FIFO buffer which was 1300 elements long (650 ms of data,
and note that average heartbeat period is about 500 ms long).
The most recently stored part of the heart position buffer, in the
length of updated heartbeat period using ECG, was used in the
estimation.

The current heartbeat period was calculated by averaging the
periods of the three ECG wave forms. The period was updated
continuously as new wave forms were detected. If detection of
any ECG wave form was missed, the period of the missed signal
was doubled to compensate for the missing signal. Some upper
and lower period boundaries were imposed in order to eliminate
any misses by the detection algorithm.

In Fig. 12, the estimated signals just before and after the de-
tection of a new wave form are shown. In Fig. 12(B), observe
that after the T wave was detected, the past heartbeat period time

mark was shifted back in time as a result of the increase in the
heartbeat period. In the example shown with Fig. 12(A) and (B),
RMS estimation error for one heartbeat period ahead decreased
from 0.887 to 0.456 mm after the shift. With the use of ECG
in ARMC algorithm, heartbeat period in the estimation of ref-
erence signal can be adjusted online.

C. Receding Horizon Model Predictive Control

Having the estimated trajectory of the next cycle in hand,
the following control problem arises: Tracking of heart motion
where there is some knowledge of the future motion. Then, this
optimal tracking problem can be stated as follows.

Suppose the dynamics of the robotic surgical manipulator is
given by an n-dimensional linear system having state equations

zlk + 1] = ®z[k] + Tulk]
y[k] = Halk].

“
)

Here, if the dimensions of ®, T, and H are nxn,nxm and
Ixn, respectively; then, the n-vector z[k] denotes the system
state at time k where z[ko] is given for some time kg such that
the ko <k; m-vector u[k] denotes system control at time k; and
the [-vector y[k] denotes the system output at time k where r
entries of y are linearly independent or, equivalently, the matrix
H has rank 7. Suppose we are also given an r-vector yes[k] for
all k£ in the range kg < k < ko + T for some times ko and 7T'.
The optimal tracking problem is then to find the optimal control
u for the system (4)—(5), such that the output ¥ tracks the signal
Yest, Minimizing the index (6)

ko+T
Tk = 3" ((@[k] = zest[K)T Q(alk] — mest[K])
k=kq
+u” [k|Rulk]) (6)
Test — Lyost (7)
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Fig. 12. Reference estimation with biological signal. (A) Just before T wave was detected: Estimated heart signal did not fit well with the actual heart signal.

T wave detection was shown with

W markers. (B) T wave has been detected: Heart period and estimated signal were adjusted. Observe that the beginning of

the previous heartbeat period marker [- — - — - [(tas13.22 s) was shifted back in time (ta213.21 s) as a result of the increase in the heartbeat period. Accordingly,
estimated heart signal was changed to adjust with the new period. RMS estimation error was decreased from 0.887 to 0.456 mm with the shift.

where Q) is a non-negative definite symmetric matrix and R is
a positive definite symmetric matrix, and L and Q are

L=H"HH")! (8)

Q=(I-LH)"Q,(I-LH)+H"QH )
where Q1 and Q2 are non-negative definite symmetric ma-
trices.

The solution to this problem was derived using the method
given in [34], and the control is

ulk] = — (T7S[k + 1T + R) ™ T7(S[k + 1]®[k]

+M[k +1]) (10)
where S and M are given by the iterative equations
S[k] = &7 (S[k + 1]
— S[k+ 1(CTS[k + 1)T
+R)7ITISE+1)® +Q (11)

M[k] = (2" + K"[K]TT) M[k + 1] — QLyex[k] (12)
and K is

K[k = — (TTS[k+ )T + R) ' T7S[k+ 1]®.  (13)

The resulting control algorithm is composed of feedback and
feedforward parts which are identified, respectively, as follows:

ug[k] = — (TTS[k + 1T + R) ' T S[k + 1]®[k]

(14)

uglk] = — (CTS[k+ )T+ R) " T"M[k+1]  (I5)
such that

ulk] = um[k] + uglk]. (16)

Parameters S and M are calculated iteratively backwards
with final conditions S[T] = Q and MJ[T] = 0. The iterations
are carried out for horizon, T, times. Every iteration corre-
sponds to one control cycle set of gains. In effect, calculating
T iterations is like calculating time varying gains up to 7" steps
ahead even though only the gain for the current time is used.
This type of control is also known as receding horizon control
[34], and in this framework, we call the control defined in (10)
as the receding horizon model predictive control (RHMPC).
With every new control cycle, a new point on the desired signal
is used and an old point is dropped in the gain calculation.
The calculation is then repeated at every control cycle. The
prediction horizon recedes as time progresses such that the



BEBEK AND (;AVUSOGLU: INTELLIGENT CONTROL ALGORITHMS FOR ROBOTIC-ASSISTED BEATING HEART SURGERY 477

furthermost point ahead of the horizon is considered to be
moving one step for every control cycle.

V. SIMULATION AND EXPERIMENTAL RESULTS

Simulations and experiments were carried out for the estima-
tion algorithms with Receding horizon model predictive con-
trollers as presented in the previous section.

In order to find a baseline performance of the estimation algo-
rithms, a RHMPC with known future reference signal was also
tested. Knowing the future reference signal for the RHMPC al-
gorithm is close to perfect tracking. However, using the future
reference signal in heart tracking is not feasible as this makes
the algorithm acasual. In this case, it was used to show the base
line performance.

The horizon value, T', is one of the parameters that can be
used to tune the algorithm. Even though tuned intuitively, the
horizon does make a difference in the results whenever altered.
A longer horizon generally results in more accuracy of the feed-
forward term, primarily because of greater foresight into the fu-
ture and more iterations to calculate gains. As the horizon in-
creases the tracking error decays exponentially. On the other
hand, parameter calculations take longer. Therefore, a horizon
must be chosen such that the gains can be iteratively calculated
within one cycle of the control loop.

This RHMPC can handle time-varying systems and
weighting matrices. For the applications used herein, con-
stant weighting matrices, Q1,Q2, and R, and a constant
horizon value, T', were used along with constant state-space
models. The only true time-varying gain matrix within the al-
gorithm was M, which was calculated from the heartbeat data.
As a result, feedforward control term (15) was time-varying,
and M was calculated iteratively on the fly every control cycle.

Feedback term (14) was not dependent on any time-varying
values. Consequently, calculated gains were constant for a given
horizon. Once the horizon value was set, there was no need to
calculate the feedback gains in every control cycle.

Another parameter that can be used to tune the algorithm is
the error correction function order, p of (2). p plays a good
role in the performance of the algorithm along with the horizon
value, T'. For the optimum error/performance ratio, a sixth-order
polynomial error correction function and a horizon value of 50
were selected.

Although using past heart cycle as estimate of future refer-
ence signals would cause large errors in extended estimates, it
was not a deterministic issue in this approach, since the horizon
used in the RHMPC algorithm (25 ms) was relatively short com-
pared to the heartbeat period (=500 ms).

The robot was made to follow the combined motion of heart-
beat and breathing as described in Section III. Separating the
respiratory motion enabled better heart motion estimation. In
terms of control performance, controlling the respiratory mo-
tion separately did not affect the heart tracking accuracy when
we compared the results of the combined motion tracking with
the pure heartbeat motion tracking results. This validates our
earlier observation that heartbeat motion tracking will be the
bottleneck in motion tracking and the breathing motion can be
easily tracked using a pure feedback controller.

A. Test Bed System

In order to develop and test the algorithms, a hardware test
bed system, PHANToM Premium 1.5A, was used and mod-
eled. In modeling, experimental transfer function models for the
three principle axes were determined. The specific models used
and the details of the modeling methodology, and the mechan-
ical properties of the manipulator (i.e., zero configuration, de-
grees of freedom) can be found in [36]. Also, the friction forces
acting on the joints were modeled experimentally according to
a Coulomb friction model.

The dynamic equation of the PHANTOM is in the form

M(0)6 + C(6,0)0 + N(§) = 7 (17)
where 6 = [0 6 93]T € R3 M is the inertia matrix, C is
the Coriolis matrix of the manipulator, N includes the gravita-
tional and other forces—such as friction—that acts on the joints,
and 7 is the vector of actuator torques. The nonlinearities of the
system were overcome by adding the torque that was required
against the gravitational effects, N, and Coriolis and centrifugal
forces, C(G.7 0)9 according to the derived dynamics. The added
C(é, 0)0 term was considerably smaller than the applied torque,
which is due to the quadratic dependence of this term on the joint
velocities.

The PHANToM robot possesses characteristics similar to the
actual surgical robot we are designing. Its lightweight links,
low inertia design and low friction actuation system allows
sufficient motion and speed abilities for tracking the heartbeat
signal. In the experimental setup, the control algorithms were
executed on a 2.6-MHz Intel Pentium 4 PC running MATLAB
xPC Target v2.8 real-time kernel with a sampling time of
0.5 ms. PHANToM Premium does not come with a built-in
homing option. In order to improve the accuracy of the exper-
iments, before every experiment, the robot was brought to a
selected home position, in this case the zero configuration of
the manipulator, where the tracking was started. In the experi-
ments, prerecorded heart motion signal and ECG signal were
used. Raw heart position and ECG data were resampled from
257 Hz to 2 kHz by cubic interpolation, in order to use them in
the control algorithms and experiments with PHANToM.

B. Experimental Results

In both simulations and experiments, the same methods and
reference data were used. Some slight differences in parameters
were observed due to the mathematical modeling of the robot.
To validate the algorithms effectiveness, first 10 s of the 56-s
data was used to tune the control parameters. Then the experi-
ments were carried out using the 56-s-long heart data.

Matrix weighting parameters of the optimal index were tuned
to minimize RMS tracking error. Parameters were selected in
order to accentuate the states and, hence, regulate more quickly,
with higher control efforts. Tuning was performed to avoid the
high frequency resonances so that no vibration would be re-
flected to the structure.

For each case, experiments on PHANToM robot were re-
peated ten times. It was noted that the deviation between the
trials are very small. Among these results, the maximum values
for the end-effector RMS and maximum position errors in 3-D
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TABLE I
END-EFFECTOR SIMULATION AND EXPERIMENTAL RESULTS: SUMMARY OF THE END-EFFECTOR RMS POSITION ERROR, MAX POSITION ERROR (IN PARENTHESIS),
AND RMS CONTROL EFFORT VALUES FOR THE CONTROL ALGORITHMS USED WITH 10- AND 56-S DATA. SOME OF THE EXPERIMENTAL RESULTS ARE
UNDERLINED TO POINT OUT THE EFFECT OF BIOLOGICAL SIGNAL ON THE ESTIMATION. THERE WAS A NOTICEABLE IMPROVEMENT WITH 56-S DATA BECAUSE
THE HEARTBEAT PERIOD CHANGE WAS LARGER IN THE FIRST 10-S SEGMENT OF THE DATA

RMS Position Error [mm]
(Max Position Error) [mm]

RMS Control Effort [mNm]

End-effector Tracking Results

10 s 56's 10s 56 s
Simulation PHANToM Simulation PHANToM Simulation PHANToM Simulation PHANToM

Receding Horizon MPC vrrlth Exact 0.302 0.284 0.295 0.277 144 48.6 14.8 46.9
Reference Information (1.539) (1.945) (1.732) (2.066)

Receding Herizon MI.JC With 0.718 0.909 0.726 0.906 185 748 17.6 66.5
Reference Signal Estimation (2.828) (4.394) (3.826) (5.958)
Receding Horizon MPC with Reference 0.524 0.669 0.533 0.682

- o . . 16.5 56.9 16.3 55.9
Signal Estimation using ECG Signal (2.761) (4.308) (3.066) (4.921)
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Fig. 13. PHANToM first axis results for receding horizon MPC with refer-
ence estimation using ECG signal. (A) Reference and position signals of axis 1.
(B) Position error, RMS ,osition error = 0.306 mm. (C) Model predictive con-
trol effort signal, RMS,, = 94.7 mNm.

and RMS control efforts are summarized in Table I to project the
Wworst cases.

Results of the receding horizon model predictive control with
reference signal estimation using ECG signal for each axis are
shown in Figs. 13-15. Low-frequency respiratory motion is no-
ticeable at the Figs. 13(A), 14(A), and 15(A). All three axes of
the PHANToM demonstrated similar performance. We believe
that, the maximum error values are affected from the noise in the
data collected by sonomicrometric sensor. Although high-fre-
quency parts of the raw data were filtered out, relatively low
“high frequency” components stayed intact. It is unlikely that
the POI on the heart is capable of moving 5 mm in a few mil-
liseconds. The measured data has velocity peaks that are over
13 times faster than the maximum LAD velocity measurements
reported in [37]. Heavy filtering should have been performed
to delete the high frequency motions, but they were kept as cur-
rently we do not have an independent set of sensor measurement
(such as from a vision sensor) that would validate this conjec-
ture. This also gives a conservative measurement of the perfor-
mance of the system.
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ence estimation using ECG Signal. (A) Reference and position signals of axis 2.
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C. Discussion of the Results

The parameters were tuned using the first 10 s of the data and
validated with the 56-s data. There was less improvement in the
RMS error when the 56-s data was used (see the underlined ele-
ments in Table I). This is because the heartbeat period variability
was larger in the first 10-s segment of the data. The mean of the
heartbeat period change was 9.3 s for the first 10-s segment of
the data and 1.6 us for the overall data. As a result, the effect of
the biological signal on the signal estimation, therefore, on the
tracking error, was more pronounced in the first 10 s of the data.

If we compare the results of the algorithms with each other,
as expected, the RHMPC with reference signal estimation
using biological signals algorithm outperformed the RHMPC
with the reference signal estimation algorithm. Results proved
that by using ECG signal in the motion estimation, heart po-
sition tracking was not only improved but also became more
robust. The system was more responsive to sudden changes
in the heart motion with the addition of ECG signal, accord-
ingly the variance of the error distribution decreased by half.
One way ANOVA was used to test statistical significance of
the results and they were found to be significantly different
(F(1,38) = 6809,p < 0.001). These tracking results are 2.5
times better than the best results reported in the literature [16].
Comparing the results of the predictive algorithms with the
baseline performance results shows that, there is still room for
improving the estimation algorithm. It is important to note that
the results also need to be validated in vivo, which was the case
in [16].

VI. DISCUSSION

In this paper, the use of biological signals in the model-based
intelligent ARMC algorithm to achieve better motion canceling
was presented. The tracking problem was reduced to a reference
signal estimation problem with the help of a model predictive
controller. The estimated signal was created by using the last
heartbeat cycle with cancelation of the position offset. Due to
the quasiperiodic nature of the heart motion, heartbeat period
could change in time. In order to reduce the error resulting from
heart rate variations, ECG wave forms were detected and used to
adjust heartbeat period during the tracking. Experimental results
showed that using ECG signal in ARMC algorithm improved
the reference signal estimation. It is important to note that, for
patients with severe rhythm abnormalities, the detection of the
ECG waveforms would present a challenge for the proposed
method.

Biological signals other than ECG that can be used to assist
the tracking of heart motion include aortic, atrial and ventricular
blood pressures. Similar to the ECG signal, these blood pres-
sures are significant indicatives of the heart motion as they can
be used to predict when the heart valves will be opening and
closing, which in turn helps us determine the distinct phases of
the heart cycle. These distinct phases correspond to qualitatively
different mechanical properties of the heart tissue, changing the
local deformation model. The blood pressure signals also give
additional independent information, which can be used in con-
junction with ECG signal to improve noise robustness and to
reliably detect unexpected rhythm abnormalities and arrhyth-

mias, which will be a challenging part for the realization of the
ARMC algorithm.

Image stabilization in addition to tracking the heart mo-
tion with the surgical tools is an important requirement for
successful performance of off-pump bypass surgery without
passive stabilization. The developed ARMC algorithm can be
to be applied to camera control to achieve image stabilization.

In this study, the controller parameters were selected empiri-
cally. To the best of our knowledge, automatic selection of these
parameters is still an open problem in the control literature. Al-
though the weighting parameters were well tuned to minimize
RMS error, a more comprehensive study can be conducted to
automate the process and find the optimum gains.
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