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Abstract—Robotic motion planning algorithms used for task au-
tomation in robotic surgical systems rely on the availability of
accurate models of target soft tissue’s deformation. Relying on
generic tissue parameters in constructing the tissue deformation
models is problematic because biological tissues are known to have
very large (inter- and intrasubject) variability. A priori mechani-
cal characterization (e.g., uniaxial bench test) of the target tissues
before a surgical procedure is also not usually practical. In this pa-
per, a method for estimating mechanical parameters of soft tissue
from sensory data collected during robotic surgical manipulation
is presented. The method uses force data collected from a multi-
axial force sensor mounted on the robotic manipulator, and tissue
deformation data collected from a stereo camera system. The tis-
sue parameters are then estimated using an inverse finite element
method. The effects of measurement and modeling uncertainties
on the proposed method are analyzed in simulation. The results of
experimental evaluation of the method are also presented.

Index Terms—Biological materials, biological tissues, elasticity,
finite element methods, imaging phantoms, manipulators, material
properties, materials testing, medical robotics, surgery.

I. INTRODUCTION

ROBOTIC motion planning algorithms being developed to
enable robotic surgical assistants (RSAs) to perform cer-

tain surgical tasks autonomously while minimizing the damage
to the tissue and errors in the operation rely on availability
of accurate models of target tissues’ deformation. As biologi-
cal tissues are known to have very large inter- and intrasubject
variability, the construction of tissue deformation models using
generic tissue parameters is not desirable. However, a priori
mechanical characterization of the target tissues before a sur-
gical procedure is also not practical. In this paper, a method
for estimating the mechanical parameters of manipulated soft
tissue from sensory data collected during robotic surgical ma-
nipulation is presented. The proposed method does not rely on
specialized equipment, sensors, or characterization procedures.
Instead, the method uses data collected during typical surgi-
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cal manipulations, such as, grabbing and retracting the tissue,
from a force sensor mounted on the robotic manipulator and a
stereo camera system to estimate the tissue parameters. Specif-
ically, the method uses an inverse finite element method (FEM)
to estimate the parameters of a nonlinear hyperelastic material
model so as to match the estimated tissue response to measured
data (see Section III). Several challenge scenarios were sim-
ulated to explore the sensitivity of the iterative inverse finite
element scheme and the objective function based on uncertain-
ties resulting from RSAs’ sensing (see Section IV). Results from
experimental evaluation and validation of the method are also
presented (see Section V).

II. BACKGROUND

Research on motion planning algorithms for robotic manip-
ulators has traditionally concentrated on manipulation of rigid
objects. Recently, however, motion planning algorithms for the
manipulation of deformable objects have started to receive at-
tention in the literature (e.g., [2]–[9]).

The robotic motion planning algorithms for the manipulation
of deformable objects use models of tissue deformation to esti-
mate the behavior of the object under constraints resulting from
the manipulation. Nonlinear finite element models based on
continuum mechanics are widely used in many surgery simula-
tions (e.g., [10]–[12]) to estimate large deformations accurately.
In general, FEM give higher accuracy at the cost of increased
computation. To avoid the computational costs of complex non-
linear FEM, Müller et al. [13] proposed a linear FEM with
corotational support to improve the simulation accuracy un-
der large deformations. However, nonlinear FEM are preferred
when accurate outcomes are needed to perform in surgical sim-
ulation [11], [12].

Different tissue models have been used to characterize the
hyperelastic deformable object behavior, such as St. Venant–
Kirchhoff [14], Veronda–Westmann [11], [12], [15], [16],
Arruda–Boyce [17], Neo–Hookean [11], [12], etc.

Traditionally, the parameter sets of different models are ex-
amined by performing uniaxial tests. Researchers find the set
of parameters that match stress–strain relationship from exper-
iments according to their strain energy model [15]. Recently,
iterative parameter identification using inverse finite element
analysis has been proposed to determine the set of parame-
ters. Mehrabian and Samani [16] estimated the set of parame-
ters for tissue modeled using the Veronda–Westmann model by
performing uniaxial compression testing on polyvinyl alcohol
phantom. Sangpradit et al. [17] identified the parameters of the
Arruda–Boyce model by using wheeled probe indentation on a
General Electric RTV6166 silicone phantom.
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One of the differences between this study and the earlier
studies in the literature is that the parameter estimation scheme
presented here does not require any specialized apparatus (such
as those used by [18]–[20]), motions, or procedures (such as the
performance of a uniaxial loading test [16]).

Most parameter estimation studies have been focused on sim-
ple motions such as indentations [17], [21]–[24] and geometrical
tension, compression, and shear test [25], [26]. To the best of
authors’ knowledge, there is a lack of published results for more
complicated motions.

Instead, the proposed estimation scheme uses data collected
during typical surgical manipulation motions of the manipula-
tor (such as during retraction of the tissue by a gripper). Also,
in this study, the deformations of the object surface at multi-
ple points were used in the estimation (similar to [25] which
used movements of multiple points inside the tissue as observed
through magnetic resonance imaging and which fitted nonlinear
material to measured force-displacement samples [22]), unlike
earlier studies in the literature that rely on collocated force-
displacement measurements (e.g., [17], [27]).

III. PARAMETER ESTIMATION SCHEME

The inputs to the parameter estimation algorithm are the initial
geometry of the deformable object (obtained from preoperative
medical imaging), the motion of the robotic end-effector grab-
bing the tissue (given by the joint sensors and kinematics of
the robotic manipulator), the tissue interaction forces measured
at the robotic end-effector (measured by a six-axis force/torque
sensor mounted on the manipulator), and the motions of a set of
fiducials on the surface of the deformable object (measured by a
stereo camera system). The robotic end-effector motions, tissue
interaction forces, and the motion of the fiducials are assumed
to be synchronously recorded trajectories.

A. Algorithm

The operation of the parameter estimation algorithm is sum-
marized in Figs. 1 and 2. The algorithm starts with an initial
estimate of the mechanical parameters of the target tissue be-
ing manipulated (see Fig. 1). Using the estimated mechanical
parameters, the simulation loop calculates the deformations of
the tissue using a finite element model of the tissue subject to
the boundary conditions resulting from specified motion of the
robotic end-effector grabbing the tissue. The simulation loop
then returns the estimates of the interaction forces and the mo-
tions of the fiducials during the manipulation. These estimated
interaction forces and fiducial motion trajectories are then com-
pared with the actual trajectories measured by the sensors by
using an objective function (described in Section III-B), and
checked for convergence. If the objective function has not con-
verged, the estimates of the parameters are updated, and the new
parameters are fed back into the simulation loop.

The nonlinear finite element model is employed in the simu-
lation loop (see Fig. 2). The manipulator’s initial configuration,
the initial tissue geometry and the estimated tissue parameters
are used by the nonlinear finite element simulator to solve for the
deformation of the tissue in quasi-static state. The deformation

Fig. 1. Flowchart describes the proposed iterative parameter determination
scheme.

Fig. 2. Diagram illustrates the simulation loop in Fig. 1.

of the tissue in subsequent time steps is then iteratively calcu-
lated by using the nonlinear finite element model. At each time
step, the configuration of the tissue at the end of the last time
step is used as the initial tissue configuration, and the boundary
conditions are updated based on the corresponding configura-
tion of the end effector. The trajectories of the interaction forces
and the locations of the fiducials on the tissue surface are cal-
culated from the simulation results and are used to evaluate the
objective function.

B. Objective Function

Inverse finite element analysis is used to find the set of tis-
sue’s parameters that fits the observations. Two different sets of
observations are collected from the sensory system. The first set
of observations is the interaction forces between the end effector
and tissue during the surgical manipulation. The second set of
observations is the trajectories of the points of interest fiducials
identified on the surface of the tissue. The objective function
then has two terms. The first term is a position sensitive term
(similar to [22]) and the second term is a force sensitive term.
The objective function is then defined as

J(φ) =
N∑

i=1

‖xs(φ, i) − xo(ti)‖2 + C ‖f s(φ, i) − f o(ti)‖2

(1)
where the subscripts s and o denote, respectively, the simulation
and observed outputs, f is the vector representing the forces
exerted on the RSA’s gripper, and x is the vector representing
the trajectories of the points of interest’s positions, C is the
scaling factor used to match the scales of the force and position
variables, i = 1, . . . , N are the time indices, and φ is the vec-
tor representing the set of parameters that specify the tissue’s
mechanical properties.
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Then, the parameter estimation is the minimization of the
objective function J(φ) over the mechanical parameter φ as

argmin
φ

J(φ). (2)

If desired, the scaling factor can be biased to favor one of the
two terms. However, in this study, instead of using a prescribed
set value, the scaling factor is automatically determined for each
estimate problem as

Ce =
maxφ

∑N
i=1 ‖xs − xo‖2 − minφ

∑N
i=1 ‖xs − xo‖2

maxφ

∑N
i=1 ‖f s − f o‖2 − minφ

∑N
i=1 ‖f s − f o‖2

.

(3)
This Ce scales both terms equally in the parameter region of
interest. Assuming that the tissue simulations always have errors
in the force term, the scaling factor is always well-defined.1 In
(3), both of the max terms are estimated by sampling the region
of interest of the parameters while the min terms are determined
by performing numerical minimizations.

C. Tissue Models

In this study, nonlinear finite element models were used to
model the deformation of the soft tissues. Nonlinear finite el-
ement model stated here means the strain tensor as well as
the stress–strain relationship are nonlinear (i.e., both geometric
and material nonlinearities are included). For simplification, the
analyses were performed for the quasi-static case, neglecting
the inertial and damping effects in the tissue dynamics. This is
not a restrictive assumption, since manipulation velocities and
bandwidths are small in typical surgical manipulations.

The strain energy density function (SEDF) W is a function
that relates the Cauchy–Green deformation tensor C of the ma-
terial to the strain energy density, and is used to characterize
nonlinear stress–strain relationship of isotropic hyperelastic ma-
terials. In this study, the Neo–Hookean nonlinear material model
was used as the underlying material types. The Neo–Hookean
model does not have the element inversion problem [28].

The advantage of using a Neo–Hookean material is that it
captures the nonlinear nature of material while its parameters
still have good physical interpretation. However, it is important
to note that the use of the Neo–Hookean material type is not
a requirement to the proposed parameter estimation scheme
introduced in Section III-B. Different material types can be
substituted without any notable change to the method.

The SEDF and stress tensor of the Neo–Hookean material
model are given by

W =
1
2

(
μ(i1 − 3) − μ log(i3) + λ(

√
i3 − 1)2)

)
(4)

and

S = μI − μC−1 + λ(
√

i3 − 1)
√

i3 C−1 (5)

respectively [11], [12].

1Here, the tissue simulations are assumed to always have errors. In low error
cases (such as, for artificial data), it may be desirable to put an upper bound on
the scaling factor.

In here, λ and μ are Lamé’s first and second parameters,
respectively, which can be calculated from Young’s modulus E
and Poisson’s ratio ν of the material by using the relationship

λ =
Eν

(1 + ν)(1 − 2ν)
(6)

μ =
E

2(1 + ν)
. (7)

in is the invariant of the right Cauchy–Green deformation tensor
C where only i1 and i3 used here are defined as

i1 = trace(C) (8)

i3 = det(C). (9)

IV. SIMULATION BASED EVALUATION OF THE PROPOSED

METHOD

A. Simulation Methods

In this section, results of the simulation studies of the pro-
posed method are presented. Several different simulation sce-
narios were used to validate the proposed scheme, and explore
its performance under various types of uncertainties.

A limitation of in vivo tissue manipulation is that it is difficult
to acquire the true state of the tissue to initialize computations
and it has greater uncertainties compared to ex vivo tests.

The first simulation scenario assumed that the tissue and ma-
nipulation geometries were acquired accurately. The second sce-
nario considered the case when the tissue geometry was not
perfectly modeled. The third scenario considered the case when
there were uncertainties in positioning of the end effector on
the target tissue. The fourth scenario considered uncertainties
in the robot’s motion. And finally, the fifth scenario considered
the case when the robot performs nontrivial manipulations.

In the simulations, a tissue model in the shape of a square
patch, shown in Fig. 3, with dimensions of 10 cm × 10 cm ×
1 cm was used. The center of the tissue was (0.0, 0.0, 0.0) in
x–y–z coordinates. The end-effector gripper was assumed to
grasp a 2 cm × 2 cm area on the tissue without any slip. This
was modeled by anchoring the grabbed part of the tissue rigidly
to the gripper by position boundary conditions. The size of the
gripper was 2 cm in width and initially at (0.04, 0.0, 0.0) m. The
tissue was assumed to be anchored on the left side (x = −5 cm)
and the gripper retracted the tissue by pulling in the direction of
the arrow shown in Fig. 3 (+x-direction). The stress and strain
of the tissue are assumed to be in the zero state at the beginning
of the experiment including the effect of gravity.

The Salmon [12] open source finite element modeling and
simulation package was used as the underlying FEM simula-
tion engine, after custom modifications. The Salmon package
offers FEM simulation with geometric and material nonlinear-
ities. The meshing of the geometric models to be used in the
FEM simulations was done by TetGen [29].

The SQP algorithm using the quasi-Newton line search, as
provided by the MATLAB’s fmincon function, was used to find
minimum of the objective function.
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Fig. 3. Setup of the experiment shows the gripper grasping on the right side
of tissue and pulling in the direction of the arrow. Sixteen fiducials apart are
marked on the tissue. Spacing between rows in both direction is 20 mm.

All experiments were conducted on a 2.93 GHz Intel Core
i7 CPU, and 12 GB of RAM. Salmon was implemented in the
C++ language and MATLAB 2010b was used to implement
the optimization scheme.

In the simulation scenarios, all vision and force sensing, i.e.,
the trajectories of the fiducials and the interaction forces were
assumed to have been perfectly measured. The reference values
of the sensing data were computed from simulations of a finite
element model with a higher density mesh, while the estimation
of the set of parameters was performed using a finite element
model with a lower density mesh. Specifically, a mesh with 3122
nodes and 13473 elements was used to generate the sensing data,
while a mesh with 991 nodes and 3595 elements was used in
the estimation process, unless otherwise noted. The reference
parameters were 15 kPa and 0.49 for Young’s modulus and
Poisson’s ratio, respectively.

B. Simulation Results

1) Accurate Tissue and Manipulation Geometry Acquisi-
tions: The first set of simulation studies were conducted to
validate if the proposed algorithm could accurately identify the
tissue parameters under ideal conditions, specifically, when per-
fect information about the geometry of the specimen and the
geometry of manipulation (i.e., motion of the end effector rela-
tive to the target tissue) was available. The effect of the density of
the finite element model mesh used in the estimation algorithm
on the accuracy of the parameter estimation was also evaluated.

In case 1, the tissue model in the estimator was discretized
using the higher density mesh (same as the reference). In case
2, the tissue model in the estimator was discretized using the
lower density mesh.

The results in Table I show that the proposed method can
accurately estimate the tissue parameters under low uncertainty
conditions, and the accuracy of the method does not depend
heavily on the mesh density (at least, at the range considered
here).2 The parameters estimated in case 2 were reasonably close
to the actual values while the complexity is tremendously lower.
Therefore, in the subsequent studies (Section IV-B2–IV-B5), the

2The nonzero error value in case 1 is due to the finite tolerance value used in
numerical minimization.

TABLE I
ESTIMATION RESULTS WHEN ACCURATE TISSUE AND MANIPULATION

GEOMETRY MEASUREMENTS ARE AVAILABLE

TABLE II
EVALUATIONS OF THE METHOD AT DIFFERENT FRACTAL SCALE LEVELS

Fig. 4. Unknown parameter tissue with rough surface generated using the
ridged multifractal terrain algorithm [30]. (a) Fractal maximum height scale of
2% of the tissue’s original thickness. (b) Fractal maximum height scale of 4%
of the tissue’s original thickness. (c) Fractal maximum height scale of 8% of the
tissue’s original thickness.

low density mesh was used in estimation while the high-density
mesh was used to generate the simulated measurement data.

2) Uncertainties in Tissue Geometry: The second set of sim-
ulations was conducted to evaluate the effectiveness of the
method when the tissue geometry was not perfectly modeled.
This was evaluated by using reference meshes which were per-
turbed from the original shape, while using the original mesh
with the smooth surface in the estimation algorithm. The high
density mesh was used to generate the test data while the
low density mesh (described earlier) was used in parameter
estimation.

The rough surfaces in this study were generated using the
ridged multifractal terrain algorithm [30] in MeshLab [31] to
represent uncertainties in tissue geometry. The results reported
in Table II shows the sensitivity of the scheme to the size of the
perturbations, at varying 2%, 4%, and 8% of the tissue’s original
thickness, as can be seen in Fig. 4.

The results demonstrated that the proposed algorithm still
handled the problem quite well. Only the Young’s modulus was
estimated by the method was slightly off when the fractal was
higher.

The algorithm that was used to generate fractal in the experi-
ment also grew the tissue. That is the reason why Young’s mod-
ulus estimated from the scheme increased as the perturbation
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TABLE III
EVALUATIONS OF THE SCHEME AT ASSUMING INCORRECT GRASPING POINTS

TABLE IV
RESULTS WHEN THE GRIPPER POSITION CONTROL SIGNAL WAS CORRUPTED

WITH DIFFERENT NOISE LEVELS

Fig. 5. Different types of complex end-effector motion used to evaluate the
parameter estimation in Section IV-B5. (a) “Pull.” (b) “Gradual Tangent Pull.”
(c) “Twist and Pull.”

level increased. It is difficult to model the tissue geometry per-
fectly in simulation; however, the algorithm is robust to small
variation shown earlier.

3) Uncertainties in the Position of the Robot’s Target: The
third set of simulations was conducted to evaluate the effec-
tiveness of the method when there were uncertainties in the
positioning of the end effector on the target tissue.

The simulations were done by randomly changing the center
of the robot’s target (the grasping point) with standard deviation
of 5, 10, and 20 mm (see Table III).

The algorithm results are acceptable as shown here.
4) Uncertainties from the Robot’s Motion: This set of simu-

lations was conducted to evaluate the effectiveness of the method
when there were uncertainties in robot motions. The additive
Gaussian noise was generated to study the effect of uncertain-
ties at 10%, 20%, and 50% noise levels (standard deviation of
the Gaussian noise as a percent of the magnitude of the position
control signal). The results are shown in Table IV.

TABLE V
PARAMETER ESTIMATION UNDER COMPLEX MOTIONS

Fig. 6. Setup of the experiments with the ABB IRB 140.

Fig. 7. Robot performing “Gradual Tangent Pull” to retract the Ecoflex 0030
tissue with mixture ratio 1:1:2 anchored two adjacent sides (on the left and at
the bottom from the figure) as seen from the right camera.

Noise from the control signal appears not to cause a signifi-
cant effect on the parameter estimation if the noise level is not
extremely high.

5) Parameter Estimation Under Complex Motions: The
merit of this multiaxial estimation framework over uniaxial es-
timation is the ability to estimate the tissue parameters under
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TABLE VI
PARAMETER VALUES ESTIMATED BY PERFORMING DIFFERENT ROBOT MANIPULATIONS FOR DIFFERENT TISSUE PHANTOM MATERIALS WHEN ONE SIDE

OF THE PHANTOM ARE CONSTRAINED

TABLE VII
PARAMETER VALUES ESTIMATED BY PERFORMING DIFFERENT ROBOT MANIPULATIONS FOR DIFFERENT TISSUE PHANTOM MATERIALS WHEN TWO ADJACENT

SIDES OF THE PHANTOM ARE CONSTRAINED

complex surgical manipulations. This set of simulations was
conducted to evaluate the effectiveness of the method when the
robot had nontrivial motions during a surgical manipulation.
Fig. 5 shows the two more different motions used in the simula-
tions. In the first test motion, the gripper horizontally pulled the
tissue by simultaneously rotating the gripper. And in the second
case, the gripper pulled the tissue horizontally in the tissue plane
while rotating the tissue to twist it.

The results in Table V show that the method can still estimate
the parameters with good accuracy under such complex motions.

V. EXPERIMENTAL VALIDATION OF THE PROPOSED METHOD

A. Experimental Method

In order to validate the proposed method, hardware experi-
ments were conducted. In the experiments, we used a soft tis-
sue phantom created using Ecoflex 0030, a two-part silicone
rubber with Silicone Thinner (nonreactive silicone fluid), from
Smooth–On Inc., which was used in [32]. The silicone phan-
toms with three different consistencies of Silicone Thinner were
used in order to cover a wide range of parameter values. ABB
IRB 140, a 6-DOF robot equipped with the Gamma SI-130-10
force sensor (ATI Industrial Automation, Inc., Apex, NC) with
resolution of 1/20 N was used to collect the manipulation tra-
jectories and force sensing data. The repeatability of the robot
is 0.03 mm. The setup of the experiments is shown in Fig. 6.

The tissue phantoms used in the experiments were similar in
shape and size to the models used in the simulation studies de-
scribed in Section IV-A. Specifically, the tissue phantoms were
square in shape, with dimensions of 10 cm × 10 cm × 1 cm. The
tissue phantoms were placed horizontally while being grabbed
and retracted by a gripper toward right. We considered two
cases where the phantoms were anchored to a wall on one side

(left) and two adjacent sides (left and back). The retraction
actions were achieved by moving the gripper in 1–2 mm in-
crements, toward right, producing about 10% elongation of the
tissue phantom as shown in Fig. 5. The “Pull” trajectory was
performed in 10 steps with 2 mm increments; the “Gradual Tan-
gent Pull” trajectory was performed in 20 steps with ∼1 mm
increments; and the “Twist and Pull” trajectory was performed
in 10 steps with ∼2 mm increments. Sixteen artificial fiducials
were marked on the top surface of the tissue and were tracked
by a calibrated stereo camera pair to measure their deformations
during retraction.

The silicone surface was labeled with rubber beads 1 mm
in diameter which were used as the fiducials. The stereo vision
system employed two of identical FL2G-13S2C 1.2MP cameras
(Point Gray Research, Richmond, BC, Canada). The cameras
were placed at a distance of 30 cm. The cameras were pro-
grammed using the Flycapture library (Point Gray Research,
Richmond, BC, Canada) and OpenCV. Once the fiducials were
detected, each individual fiducial location was calculated by dis-
tinguishing each fiducial in the image. After the fiducials were
detected in the stereo image pair (see Fig. 7), the actual locations
of the fiducials were triangulated using the camera calibration
information.

One important concern regarding experimental validation
of the proposed methods is the availability of baseline ma-
terial parameters (Young’s modulus and Poisson’s ratio) for
the silicone rubber used in constructing the phantoms. The
only material property that the authors could identify in the
literature for Ecoflex 0030 was for the 1:1:0 mixture propor-
tions [32].3 Hollenstein has reported a Young’s modulus of
29.5 kPa, while a Poission ratio of 0.5 was assumed. In order

3To the best of our effort, these were the only parameter values that we were
able to find in the literature for the Ecoflex silicone.
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TABLE VIII
ACTUAL (SHOWN IN SOLID) AND THE PREDICTED (SHOWN IN DASH) INTERACTION FORCE PROFILES IN TISSUE COORDINATE FRAME (X -, Y -, AND Z -AXES ARE

SHOWN IN BLUE, GREEN, AND RED, RESPECTIVELY) AND THE ACTUAL (BLACK/DARK) AND PREDICTED (RED/BRIGHT) TRAJECTORIES OF THE FIDUCIAL

MARKERS WHEN TWO ADJACENT SIDES OF THE PHANTOM ARE CONSTRAINED
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Fig. 8. (a) Undeformed and (b) deformed liver models. The model was an-
chored on the left side while being grasped and pulled on the right side.

to obtain the necessary baseline material property data, we con-
ducted standard uniaxial loading tests. Specifically, hourglass-
shaped specimens of the silicone rubber material were con-
structed and they were tested on a universal testing machine
(Instron 1026). Young’s moduli estimated by the uniaxial test-
ing of Ecoflex 0030 for the mixture proportions 1:1:0, 1:1:1, and
1:1:2 were, respectively, 36.21 ± 2.62 kPa, 10.91 ± 1.54 kPa,
and 5.29 ± 1.92 kPa. A Poisson’s ratio of 0.5 was assumed.

The stress and strain of the tissue are assumed to be in zero
state at the beginning of the experiment. Here, we do not neglect
the effect of gravity.

B. Experimental Results

Different tissue consistencies were obtained by using dif-
ferent silicone rubber and silicone thinner proportions during
the preparation of the phantoms. The parameter estimates for
the three different tissue phantoms are reported in Tables VI
and VII. The values estimated here using the proposed method
are very close to the reported parameter values for the Ecoflex
0030 mixture ratio of 1:1:0 from the literature [32] and the re-
sults from the universal testing machine for the mixture ratio of
1:1:1 and 1:1:2 in Section V-A. Note that, using the proposed
method, we estimated both Young’s moduli and Poisson’s ratios
simultaneously instead of assuming Poisson’s ratios to be 0.5.
Estimating the parameters simultaneously helps us to have a
better prediction in geometric configurations of the tissue.

In order to save space, the figures showing the trajectories of
the fiducials and the force profiles for the cases in Table VI are
omitted. The trajectories of fiducials and the force profiles for
the cases in Table VII are shown in Table VIII. The figures in
Table VIII show that the fiducial trajectories and force profiles
start to deviate from the actual trajectories for large deforma-
tions, even though there is a good agreement between the esti-
mated and actual trajectories for relatively smaller deformations.
Note that in constrast to some literatures (for example [32]),
Poisson’s ratio was actually estimated from the algorithm in-
stead of assuming the value to 0.5. Doing this way, we found
that the estimated tissue responses and the real physical data
are in a better agreement than the response assuming Poisson’s
ratio to such a number. We believe this deviations are due to

the material type used, as Neo–Hookean might not be the best
choice for highly nonlinear materials.

VI. EXAMPLE: PARAMETER ESTIMATION WITH MORE

COMPLEX OBJECT GEOMETRIES

The parameter estimation examples presented earlier in this
paper primarily used regular shapes for object geometry in order
to allow easier interpretation of the results. The proposed method
is also applicable to more complex object shape, such as those
that would be encountered in practical applications.

In order to evaluate the performance of the proposed method
for nonregular object geometries, a simulation study was con-
ducted. In this simulation, a tissue model in the shape of liver,
shown in Fig. 8(a), was used [33]. The liver model was assumed
to be anchored on one side while being grasped and pulled on
the opposite side, as shown in Fig. 8(b). The reference defor-
mation and force trajectories were generated using a 2803 node
and 13737 element mesh model, using Young’s modulus value
of 15 kPa and Poisson’s ratio of 0.35. The parameter estima-
tion was performed using a 1033 node and 4095 element mesh
model.

The parameters estimated using the presented algorithm were
13.36 kPa and 0.30 for Young’s modulus and Poisson’s ratio,
respectively. The mean error of fiducial trajectories estimated
from the the estimated parameters was less than 0.9 mm and was
less than 0.46% of the total trajectory. The maximum force error
was 1.5 N and that was 2.2% of the total force. It is demonstrative
that the algorithm may also be used for parameter estimation
for nonregular object shapes.

VII. DISCUSSION AND CONCLUSION

This paper presented a new inverse nonlinear finite element-
based scheme to estimate the mechanical parameters of soft
tissues using data collected during regular manipulation of the
tissue in robotic surgery. The method uses a hyperelastic ma-
terial model for the tissue. Several challenge scenarios and dif-
ferent types of complex motions were considered to test the
sensitivity of the proposed scheme. Results of the method are
evaluated and validated experimentally as well. The simulation
and experimental results indicated that the proposed scheme is
effective in estimating the parameters in general.

Typical surgical manipulation motions are relatively slow.
Therefore, the tissue deformations and interactions forces were
approximated as quasi-static, ignoring the viscous and inertial
effects.

It is important to note that the proposed approach assumed ho-
mogeneous material. Although the proposed approach could be
applicable for moderate nonhomogeneities, the identification of
a very detailed inhomogeneous model (e.g., objects with lots of
embedded fine structures), where identifications of the material
parameters of the embedded fine structures are sought, would
require a more data-rich method, such as magnetic resonance
elastography [25], [34]–[37] and ultrasound elastometry [38].

Uncertainty in boundary conditions, including complex
boundary conditions, such as frictional sliding contact resulting
from an object sliding over another object, has been considered
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in this study to some extent. The aspect of the problem needs to
be further studied.

It is also important to note that the choice of the Neo–Hookean
material type is not fundamental to the proposed method. The
same overall tissue parameter estimation method can also be
applied by using different underlying material types. However,
whether the sufficient accuracy is obtainable or not for different
material types needs to be verified. A detailed analysis and
comparison of different material types is outside the scope of
this paper.
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Estimation of Soft Tissue Mechanical Parameters
From Robotic Manipulation Data

Pasu Boonvisut, Student Member, IEEE, and M. Cenk Çavuşoğlu, Senior Member, IEEE

Abstract—Robotic motion planning algorithms used for task au-
tomation in robotic surgical systems rely on the availability of
accurate models of target soft tissue’s deformation. Relying on
generic tissue parameters in constructing the tissue deformation
models is problematic because biological tissues are known to have
very large (inter- and intrasubject) variability. A priori mechani-
cal characterization (e.g., uniaxial bench test) of the target tissues
before a surgical procedure is also not usually practical. In this pa-
per, a method for estimating mechanical parameters of soft tissue
from sensory data collected during robotic surgical manipulation
is presented. The method uses force data collected from a multi-
axial force sensor mounted on the robotic manipulator, and tissue
deformation data collected from a stereo camera system. The tis-
sue parameters are then estimated using an inverse finite element
method. The effects of measurement and modeling uncertainties
on the proposed method are analyzed in simulation. The results of
experimental evaluation of the method are also presented.

Index Terms—Biological materials, biological tissues, elasticity,
finite element methods, imaging phantoms, manipulators, material
properties, materials testing, medical robotics, surgery.

I. INTRODUCTION

ROBOTIC motion planning algorithms being developed to
enable robotic surgical assistants (RSAs) to perform cer-

tain surgical tasks autonomously while minimizing the damage
to the tissue and errors in the operation rely on availability
of accurate models of target tissues’ deformation. As biologi-
cal tissues are known to have very large inter- and intrasubject
variability, the construction of tissue deformation models using
generic tissue parameters is not desirable. However, a priori
mechanical characterization of the target tissues before a sur-
gical procedure is also not practical. In this paper, a method
for estimating the mechanical parameters of manipulated soft
tissue from sensory data collected during robotic surgical ma-
nipulation is presented. The proposed method does not rely on
specialized equipment, sensors, or characterization procedures.
Instead, the method uses data collected during typical surgi-
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cal manipulations, such as, grabbing and retracting the tissue,
from a force sensor mounted on the robotic manipulator and a
stereo camera system to estimate the tissue parameters. Specif-
ically, the method uses an inverse finite element method (FEM)
to estimate the parameters of a nonlinear hyperelastic material
model so as to match the estimated tissue response to measured
data (see Section III). Several challenge scenarios were sim-
ulated to explore the sensitivity of the iterative inverse finite
element scheme and the objective function based on uncertain-
ties resulting from RSAs’ sensing (see Section IV). Results from
experimental evaluation and validation of the method are also
presented (see Section V).

II. BACKGROUND

Research on motion planning algorithms for robotic manip-
ulators has traditionally concentrated on manipulation of rigid
objects. Recently, however, motion planning algorithms for the
manipulation of deformable objects have started to receive at-
tention in the literature (e.g., [2]–[9]).

The robotic motion planning algorithms for the manipulation
of deformable objects use models of tissue deformation to esti-
mate the behavior of the object under constraints resulting from
the manipulation. Nonlinear finite element models based on
continuum mechanics are widely used in many surgery simula-
tions (e.g., [10]–[12]) to estimate large deformations accurately.
In general, FEM give higher accuracy at the cost of increased
computation. To avoid the computational costs of complex non-
linear FEM, Müller et al. [13] proposed a linear FEM with
corotational support to improve the simulation accuracy un-
der large deformations. However, nonlinear FEM are preferred
when accurate outcomes are needed to perform in surgical sim-
ulation [11], [12].

Different tissue models have been used to characterize the
hyperelastic deformable object behavior, such as St. Venant–
Kirchhoff [14], Veronda–Westmann [11], [12], [15], [16],
Arruda–Boyce [17], Neo–Hookean [11], [12], etc.

Traditionally, the parameter sets of different models are ex-
amined by performing uniaxial tests. Researchers find the set
of parameters that match stress–strain relationship from exper-
iments according to their strain energy model [15]. Recently,
iterative parameter identification using inverse finite element
analysis has been proposed to determine the set of parame-
ters. Mehrabian and Samani [16] estimated the set of parame-
ters for tissue modeled using the Veronda–Westmann model by
performing uniaxial compression testing on polyvinyl alcohol
phantom. Sangpradit et al. [17] identified the parameters of the
Arruda–Boyce model by using wheeled probe indentation on a
General Electric RTV6166 silicone phantom.

1083-4435/$31.00 © 2012 IEEE
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One of the differences between this study and the earlier
studies in the literature is that the parameter estimation scheme
presented here does not require any specialized apparatus (such
as those used by [18]–[20]), motions, or procedures (such as the
performance of a uniaxial loading test [16]).

Most parameter estimation studies have been focused on sim-
ple motions such as indentations [17], [21]–[24] and geometrical
tension, compression, and shear test [25], [26]. To the best of
authors’ knowledge, there is a lack of published results for more
complicated motions.

Instead, the proposed estimation scheme uses data collected
during typical surgical manipulation motions of the manipula-
tor (such as during retraction of the tissue by a gripper). Also,
in this study, the deformations of the object surface at multi-
ple points were used in the estimation (similar to [25] which
used movements of multiple points inside the tissue as observed
through magnetic resonance imaging and which fitted nonlinear
material to measured force-displacement samples [22]), unlike
earlier studies in the literature that rely on collocated force-
displacement measurements (e.g., [17], [27]).

III. PARAMETER ESTIMATION SCHEME

The inputs to the parameter estimation algorithm are the initial
geometry of the deformable object (obtained from preoperative
medical imaging), the motion of the robotic end-effector grab-
bing the tissue (given by the joint sensors and kinematics of
the robotic manipulator), the tissue interaction forces measured
at the robotic end-effector (measured by a six-axis force/torque
sensor mounted on the manipulator), and the motions of a set of
fiducials on the surface of the deformable object (measured by a
stereo camera system). The robotic end-effector motions, tissue
interaction forces, and the motion of the fiducials are assumed
to be synchronously recorded trajectories.

A. Algorithm

The operation of the parameter estimation algorithm is sum-
marized in Figs. 1 and 2. The algorithm starts with an initial
estimate of the mechanical parameters of the target tissue be-
ing manipulated (see Fig. 1). Using the estimated mechanical
parameters, the simulation loop calculates the deformations of
the tissue using a finite element model of the tissue subject to
the boundary conditions resulting from specified motion of the
robotic end-effector grabbing the tissue. The simulation loop
then returns the estimates of the interaction forces and the mo-
tions of the fiducials during the manipulation. These estimated
interaction forces and fiducial motion trajectories are then com-
pared with the actual trajectories measured by the sensors by
using an objective function (described in Section III-B), and
checked for convergence. If the objective function has not con-
verged, the estimates of the parameters are updated, and the new
parameters are fed back into the simulation loop.

The nonlinear finite element model is employed in the simu-
lation loop (see Fig. 2). The manipulator’s initial configuration,
the initial tissue geometry and the estimated tissue parameters
are used by the nonlinear finite element simulator to solve for the
deformation of the tissue in quasi-static state. The deformation

Fig. 1. Flowchart describes the proposed iterative parameter determination
scheme.

Fig. 2. Diagram illustrates the simulation loop in Fig. 1.

of the tissue in subsequent time steps is then iteratively calcu-
lated by using the nonlinear finite element model. At each time
step, the configuration of the tissue at the end of the last time
step is used as the initial tissue configuration, and the boundary
conditions are updated based on the corresponding configura-
tion of the end effector. The trajectories of the interaction forces
and the locations of the fiducials on the tissue surface are cal-
culated from the simulation results and are used to evaluate the
objective function.

B. Objective Function

Inverse finite element analysis is used to find the set of tis-
sue’s parameters that fits the observations. Two different sets of
observations are collected from the sensory system. The first set
of observations is the interaction forces between the end effector
and tissue during the surgical manipulation. The second set of
observations is the trajectories of the points of interest fiducials
identified on the surface of the tissue. The objective function
then has two terms. The first term is a position sensitive term
(similar to [22]) and the second term is a force sensitive term.
The objective function is then defined as

J(φ) =
N∑

i=1

‖xs(φ, i) − xo(ti)‖2 + C ‖f s(φ, i) − f o(ti)‖2

(1)
where the subscripts s and o denote, respectively, the simulation
and observed outputs, f is the vector representing the forces
exerted on the RSA’s gripper, and x is the vector representing
the trajectories of the points of interest’s positions, C is the
scaling factor used to match the scales of the force and position
variables, i = 1, . . . , N are the time indices, and φ is the vec-
tor representing the set of parameters that specify the tissue’s
mechanical properties.
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Then, the parameter estimation is the minimization of the
objective function J(φ) over the mechanical parameter φ as

argmin
φ

J(φ). (2)

If desired, the scaling factor can be biased to favor one of the
two terms. However, in this study, instead of using a prescribed
set value, the scaling factor is automatically determined for each
estimate problem as

Ce =
maxφ

∑N
i=1 ‖xs − xo‖2 − minφ

∑N
i=1 ‖xs − xo‖2

maxφ

∑N
i=1 ‖f s − f o‖2 − minφ

∑N
i=1 ‖f s − f o‖2

.

(3)
This Ce scales both terms equally in the parameter region of
interest. Assuming that the tissue simulations always have errors
in the force term, the scaling factor is always well-defined.1 In
(3), both of the max terms are estimated by sampling the region
of interest of the parameters while the min terms are determined
by performing numerical minimizations.

C. Tissue Models

In this study, nonlinear finite element models were used to
model the deformation of the soft tissues. Nonlinear finite el-
ement model stated here means the strain tensor as well as
the stress–strain relationship are nonlinear (i.e., both geometric
and material nonlinearities are included). For simplification, the
analyses were performed for the quasi-static case, neglecting
the inertial and damping effects in the tissue dynamics. This is
not a restrictive assumption, since manipulation velocities and
bandwidths are small in typical surgical manipulations.

The strain energy density function (SEDF) W is a function
that relates the Cauchy–Green deformation tensor C of the ma-
terial to the strain energy density, and is used to characterize
nonlinear stress–strain relationship of isotropic hyperelastic ma-
terials. In this study, the Neo–Hookean nonlinear material model
was used as the underlying material types. The Neo–Hookean
model does not have the element inversion problem [28].

The advantage of using a Neo–Hookean material is that it
captures the nonlinear nature of material while its parameters
still have good physical interpretation. However, it is important
to note that the use of the Neo–Hookean material type is not
a requirement to the proposed parameter estimation scheme
introduced in Section III-B. Different material types can be
substituted without any notable change to the method.

The SEDF and stress tensor of the Neo–Hookean material
model are given by

W =
1
2

(
μ(i1 − 3) − μ log(i3) + λ(

√
i3 − 1)2)

)
(4)

and

S = μI − μC−1 + λ(
√

i3 − 1)
√

i3 C−1 (5)

respectively [11], [12].

1Here, the tissue simulations are assumed to always have errors. In low error
cases (such as, for artificial data), it may be desirable to put an upper bound on
the scaling factor.

In here, λ and μ are Lamé’s first and second parameters,
respectively, which can be calculated from Young’s modulus E
and Poisson’s ratio ν of the material by using the relationship

λ =
Eν

(1 + ν)(1 − 2ν)
(6)

μ =
E

2(1 + ν)
. (7)

in is the invariant of the right Cauchy–Green deformation tensor
C where only i1 and i3 used here are defined as

i1 = trace(C) (8)

i3 = det(C). (9)

IV. SIMULATION BASED EVALUATION OF THE PROPOSED

METHOD

A. Simulation Methods

In this section, results of the simulation studies of the pro-
posed method are presented. Several different simulation sce-
narios were used to validate the proposed scheme, and explore
its performance under various types of uncertainties.

A limitation of in vivo tissue manipulation is that it is difficult
to acquire the true state of the tissue to initialize computations
and it has greater uncertainties compared to ex vivo tests.

The first simulation scenario assumed that the tissue and ma-
nipulation geometries were acquired accurately. The second sce-
nario considered the case when the tissue geometry was not
perfectly modeled. The third scenario considered the case when
there were uncertainties in positioning of the end effector on
the target tissue. The fourth scenario considered uncertainties
in the robot’s motion. And finally, the fifth scenario considered
the case when the robot performs nontrivial manipulations.

In the simulations, a tissue model in the shape of a square
patch, shown in Fig. 3, with dimensions of 10 cm × 10 cm ×
1 cm was used. The center of the tissue was (0.0, 0.0, 0.0) in
x–y–z coordinates. The end-effector gripper was assumed to
grasp a 2 cm × 2 cm area on the tissue without any slip. This
was modeled by anchoring the grabbed part of the tissue rigidly
to the gripper by position boundary conditions. The size of the
gripper was 2 cm in width and initially at (0.04, 0.0, 0.0) m. The
tissue was assumed to be anchored on the left side (x = −5 cm)
and the gripper retracted the tissue by pulling in the direction of
the arrow shown in Fig. 3 (+x-direction). The stress and strain
of the tissue are assumed to be in the zero state at the beginning
of the experiment including the effect of gravity.

The Salmon [12] open source finite element modeling and
simulation package was used as the underlying FEM simula-
tion engine, after custom modifications. The Salmon package
offers FEM simulation with geometric and material nonlinear-
ities. The meshing of the geometric models to be used in the
FEM simulations was done by TetGen [29].

The SQP algorithm using the quasi-Newton line search, as
provided by the MATLAB’s fmincon function, was used to find
minimum of the objective function.
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Fig. 3. Setup of the experiment shows the gripper grasping on the right side
of tissue and pulling in the direction of the arrow. Sixteen fiducials apart are
marked on the tissue. Spacing between rows in both direction is 20 mm.

All experiments were conducted on a 2.93 GHz Intel Core
i7 CPU, and 12 GB of RAM. Salmon was implemented in the
C++ language and MATLAB 2010b was used to implement
the optimization scheme.

In the simulation scenarios, all vision and force sensing, i.e.,
the trajectories of the fiducials and the interaction forces were
assumed to have been perfectly measured. The reference values
of the sensing data were computed from simulations of a finite
element model with a higher density mesh, while the estimation
of the set of parameters was performed using a finite element
model with a lower density mesh. Specifically, a mesh with 3122
nodes and 13473 elements was used to generate the sensing data,
while a mesh with 991 nodes and 3595 elements was used in
the estimation process, unless otherwise noted. The reference
parameters were 15 kPa and 0.49 for Young’s modulus and
Poisson’s ratio, respectively.

B. Simulation Results

1) Accurate Tissue and Manipulation Geometry Acquisi-
tions: The first set of simulation studies were conducted to
validate if the proposed algorithm could accurately identify the
tissue parameters under ideal conditions, specifically, when per-
fect information about the geometry of the specimen and the
geometry of manipulation (i.e., motion of the end effector rela-
tive to the target tissue) was available. The effect of the density of
the finite element model mesh used in the estimation algorithm
on the accuracy of the parameter estimation was also evaluated.

In case 1, the tissue model in the estimator was discretized
using the higher density mesh (same as the reference). In case
2, the tissue model in the estimator was discretized using the
lower density mesh.

The results in Table I show that the proposed method can
accurately estimate the tissue parameters under low uncertainty
conditions, and the accuracy of the method does not depend
heavily on the mesh density (at least, at the range considered
here).2 The parameters estimated in case 2 were reasonably close
to the actual values while the complexity is tremendously lower.
Therefore, in the subsequent studies (Section IV-B2–IV-B5), the

2The nonzero error value in case 1 is due to the finite tolerance value used in
numerical minimization.

TABLE I
ESTIMATION RESULTS WHEN ACCURATE TISSUE AND MANIPULATION

GEOMETRY MEASUREMENTS ARE AVAILABLE

TABLE II
EVALUATIONS OF THE METHOD AT DIFFERENT FRACTAL SCALE LEVELS

Fig. 4. Unknown parameter tissue with rough surface generated using the
ridged multifractal terrain algorithm [30]. (a) Fractal maximum height scale of
2% of the tissue’s original thickness. (b) Fractal maximum height scale of 4%
of the tissue’s original thickness. (c) Fractal maximum height scale of 8% of the
tissue’s original thickness.

low density mesh was used in estimation while the high-density
mesh was used to generate the simulated measurement data.

2) Uncertainties in Tissue Geometry: The second set of sim-
ulations was conducted to evaluate the effectiveness of the
method when the tissue geometry was not perfectly modeled.
This was evaluated by using reference meshes which were per-
turbed from the original shape, while using the original mesh
with the smooth surface in the estimation algorithm. The high
density mesh was used to generate the test data while the
low density mesh (described earlier) was used in parameter
estimation.

The rough surfaces in this study were generated using the
ridged multifractal terrain algorithm [30] in MeshLab [31] to
represent uncertainties in tissue geometry. The results reported
in Table II shows the sensitivity of the scheme to the size of the
perturbations, at varying 2%, 4%, and 8% of the tissue’s original
thickness, as can be seen in Fig. 4.

The results demonstrated that the proposed algorithm still
handled the problem quite well. Only the Young’s modulus was
estimated by the method was slightly off when the fractal was
higher.

The algorithm that was used to generate fractal in the experi-
ment also grew the tissue. That is the reason why Young’s mod-
ulus estimated from the scheme increased as the perturbation



BOONVISUT AND ÇAVUŞOĞLU: ESTIMATION OF SOFT TISSUE MECHANICAL PARAMETERS FROM ROBOTIC MANIPULATION DATA 5

TABLE III
EVALUATIONS OF THE SCHEME AT ASSUMING INCORRECT GRASPING POINTS

TABLE IV
RESULTS WHEN THE GRIPPER POSITION CONTROL SIGNAL WAS CORRUPTED

WITH DIFFERENT NOISE LEVELS

Fig. 5. Different types of complex end-effector motion used to evaluate the
parameter estimation in Section IV-B5. (a) “Pull.” (b) “Gradual Tangent Pull.”
(c) “Twist and Pull.”

level increased. It is difficult to model the tissue geometry per-
fectly in simulation; however, the algorithm is robust to small
variation shown earlier.

3) Uncertainties in the Position of the Robot’s Target: The
third set of simulations was conducted to evaluate the effec-
tiveness of the method when there were uncertainties in the
positioning of the end effector on the target tissue.

The simulations were done by randomly changing the center
of the robot’s target (the grasping point) with standard deviation
of 5, 10, and 20 mm (see Table III).

The algorithm results are acceptable as shown here.
4) Uncertainties from the Robot’s Motion: This set of simu-

lations was conducted to evaluate the effectiveness of the method
when there were uncertainties in robot motions. The additive
Gaussian noise was generated to study the effect of uncertain-
ties at 10%, 20%, and 50% noise levels (standard deviation of
the Gaussian noise as a percent of the magnitude of the position
control signal). The results are shown in Table IV.

TABLE V
PARAMETER ESTIMATION UNDER COMPLEX MOTIONS

Fig. 6. Setup of the experiments with the ABB IRB 140.

Fig. 7. Robot performing “Gradual Tangent Pull” to retract the Ecoflex 0030
tissue with mixture ratio 1:1:2 anchored two adjacent sides (on the left and at
the bottom from the figure) as seen from the right camera.

Noise from the control signal appears not to cause a signifi-
cant effect on the parameter estimation if the noise level is not
extremely high.

5) Parameter Estimation Under Complex Motions: The
merit of this multiaxial estimation framework over uniaxial es-
timation is the ability to estimate the tissue parameters under
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TABLE VI
PARAMETER VALUES ESTIMATED BY PERFORMING DIFFERENT ROBOT MANIPULATIONS FOR DIFFERENT TISSUE PHANTOM MATERIALS WHEN ONE SIDE

OF THE PHANTOM ARE CONSTRAINED

TABLE VII
PARAMETER VALUES ESTIMATED BY PERFORMING DIFFERENT ROBOT MANIPULATIONS FOR DIFFERENT TISSUE PHANTOM MATERIALS WHEN TWO ADJACENT

SIDES OF THE PHANTOM ARE CONSTRAINED

complex surgical manipulations. This set of simulations was
conducted to evaluate the effectiveness of the method when the
robot had nontrivial motions during a surgical manipulation.
Fig. 5 shows the two more different motions used in the simula-
tions. In the first test motion, the gripper horizontally pulled the
tissue by simultaneously rotating the gripper. And in the second
case, the gripper pulled the tissue horizontally in the tissue plane
while rotating the tissue to twist it.

The results in Table V show that the method can still estimate
the parameters with good accuracy under such complex motions.

V. EXPERIMENTAL VALIDATION OF THE PROPOSED METHOD

A. Experimental Method

In order to validate the proposed method, hardware experi-
ments were conducted. In the experiments, we used a soft tis-
sue phantom created using Ecoflex 0030, a two-part silicone
rubber with Silicone Thinner (nonreactive silicone fluid), from
Smooth–On Inc., which was used in [32]. The silicone phan-
toms with three different consistencies of Silicone Thinner were
used in order to cover a wide range of parameter values. ABB
IRB 140, a 6-DOF robot equipped with the Gamma SI-130-10
force sensor (ATI Industrial Automation, Inc., Apex, NC) with
resolution of 1/20 N was used to collect the manipulation tra-
jectories and force sensing data. The repeatability of the robot
is 0.03 mm. The setup of the experiments is shown in Fig. 6.

The tissue phantoms used in the experiments were similar in
shape and size to the models used in the simulation studies de-
scribed in Section IV-A. Specifically, the tissue phantoms were
square in shape, with dimensions of 10 cm × 10 cm × 1 cm. The
tissue phantoms were placed horizontally while being grabbed
and retracted by a gripper toward right. We considered two
cases where the phantoms were anchored to a wall on one side

(left) and two adjacent sides (left and back). The retraction
actions were achieved by moving the gripper in 1–2 mm in-
crements, toward right, producing about 10% elongation of the
tissue phantom as shown in Fig. 5. The “Pull” trajectory was
performed in 10 steps with 2 mm increments; the “Gradual Tan-
gent Pull” trajectory was performed in 20 steps with ∼1 mm
increments; and the “Twist and Pull” trajectory was performed
in 10 steps with ∼2 mm increments. Sixteen artificial fiducials
were marked on the top surface of the tissue and were tracked
by a calibrated stereo camera pair to measure their deformations
during retraction.

The silicone surface was labeled with rubber beads 1 mm
in diameter which were used as the fiducials. The stereo vision
system employed two of identical FL2G-13S2C 1.2MP cameras
(Point Gray Research, Richmond, BC, Canada). The cameras
were placed at a distance of 30 cm. The cameras were pro-
grammed using the Flycapture library (Point Gray Research,
Richmond, BC, Canada) and OpenCV. Once the fiducials were
detected, each individual fiducial location was calculated by dis-
tinguishing each fiducial in the image. After the fiducials were
detected in the stereo image pair (see Fig. 7), the actual locations
of the fiducials were triangulated using the camera calibration
information.

One important concern regarding experimental validation
of the proposed methods is the availability of baseline ma-
terial parameters (Young’s modulus and Poisson’s ratio) for
the silicone rubber used in constructing the phantoms. The
only material property that the authors could identify in the
literature for Ecoflex 0030 was for the 1:1:0 mixture propor-
tions [32].3 Hollenstein has reported a Young’s modulus of
29.5 kPa, while a Poission ratio of 0.5 was assumed. In order

3To the best of our effort, these were the only parameter values that we were
able to find in the literature for the Ecoflex silicone.
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TABLE VIII
ACTUAL (SHOWN IN SOLID) AND THE PREDICTED (SHOWN IN DASH) INTERACTION FORCE PROFILES IN TISSUE COORDINATE FRAME (X -, Y -, AND Z -AXES ARE

SHOWN IN BLUE, GREEN, AND RED, RESPECTIVELY) AND THE ACTUAL (BLACK/DARK) AND PREDICTED (RED/BRIGHT) TRAJECTORIES OF THE FIDUCIAL

MARKERS WHEN TWO ADJACENT SIDES OF THE PHANTOM ARE CONSTRAINED
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Fig. 8. (a) Undeformed and (b) deformed liver models. The model was an-
chored on the left side while being grasped and pulled on the right side.

to obtain the necessary baseline material property data, we con-
ducted standard uniaxial loading tests. Specifically, hourglass-
shaped specimens of the silicone rubber material were con-
structed and they were tested on a universal testing machine
(Instron 1026). Young’s moduli estimated by the uniaxial test-
ing of Ecoflex 0030 for the mixture proportions 1:1:0, 1:1:1, and
1:1:2 were, respectively, 36.21 ± 2.62 kPa, 10.91 ± 1.54 kPa,
and 5.29 ± 1.92 kPa. A Poisson’s ratio of 0.5 was assumed.

The stress and strain of the tissue are assumed to be in zero
state at the beginning of the experiment. Here, we do not neglect
the effect of gravity.

B. Experimental Results

Different tissue consistencies were obtained by using dif-
ferent silicone rubber and silicone thinner proportions during
the preparation of the phantoms. The parameter estimates for
the three different tissue phantoms are reported in Tables VI
and VII. The values estimated here using the proposed method
are very close to the reported parameter values for the Ecoflex
0030 mixture ratio of 1:1:0 from the literature [32] and the re-
sults from the universal testing machine for the mixture ratio of
1:1:1 and 1:1:2 in Section V-A. Note that, using the proposed
method, we estimated both Young’s moduli and Poisson’s ratios
simultaneously instead of assuming Poisson’s ratios to be 0.5.
Estimating the parameters simultaneously helps us to have a
better prediction in geometric configurations of the tissue.

In order to save space, the figures showing the trajectories of
the fiducials and the force profiles for the cases in Table VI are
omitted. The trajectories of fiducials and the force profiles for
the cases in Table VII are shown in Table VIII. The figures in
Table VIII show that the fiducial trajectories and force profiles
start to deviate from the actual trajectories for large deforma-
tions, even though there is a good agreement between the esti-
mated and actual trajectories for relatively smaller deformations.
Note that in constrast to some literatures (for example [32]),
Poisson’s ratio was actually estimated from the algorithm in-
stead of assuming the value to 0.5. Doing this way, we found
that the estimated tissue responses and the real physical data
are in a better agreement than the response assuming Poisson’s
ratio to such a number. We believe this deviations are due to

the material type used, as Neo–Hookean might not be the best
choice for highly nonlinear materials.

VI. EXAMPLE: PARAMETER ESTIMATION WITH MORE

COMPLEX OBJECT GEOMETRIES

The parameter estimation examples presented earlier in this
paper primarily used regular shapes for object geometry in order
to allow easier interpretation of the results. The proposed method
is also applicable to more complex object shape, such as those
that would be encountered in practical applications.

In order to evaluate the performance of the proposed method
for nonregular object geometries, a simulation study was con-
ducted. In this simulation, a tissue model in the shape of liver,
shown in Fig. 8(a), was used [33]. The liver model was assumed
to be anchored on one side while being grasped and pulled on
the opposite side, as shown in Fig. 8(b). The reference defor-
mation and force trajectories were generated using a 2803 node
and 13737 element mesh model, using Young’s modulus value
of 15 kPa and Poisson’s ratio of 0.35. The parameter estima-
tion was performed using a 1033 node and 4095 element mesh
model.

The parameters estimated using the presented algorithm were
13.36 kPa and 0.30 for Young’s modulus and Poisson’s ratio,
respectively. The mean error of fiducial trajectories estimated
from the the estimated parameters was less than 0.9 mm and was
less than 0.46% of the total trajectory. The maximum force error
was 1.5 N and that was 2.2% of the total force. It is demonstrative
that the algorithm may also be used for parameter estimation
for nonregular object shapes.

VII. DISCUSSION AND CONCLUSION

This paper presented a new inverse nonlinear finite element-
based scheme to estimate the mechanical parameters of soft
tissues using data collected during regular manipulation of the
tissue in robotic surgery. The method uses a hyperelastic ma-
terial model for the tissue. Several challenge scenarios and dif-
ferent types of complex motions were considered to test the
sensitivity of the proposed scheme. Results of the method are
evaluated and validated experimentally as well. The simulation
and experimental results indicated that the proposed scheme is
effective in estimating the parameters in general.

Typical surgical manipulation motions are relatively slow.
Therefore, the tissue deformations and interactions forces were
approximated as quasi-static, ignoring the viscous and inertial
effects.

It is important to note that the proposed approach assumed ho-
mogeneous material. Although the proposed approach could be
applicable for moderate nonhomogeneities, the identification of
a very detailed inhomogeneous model (e.g., objects with lots of
embedded fine structures), where identifications of the material
parameters of the embedded fine structures are sought, would
require a more data-rich method, such as magnetic resonance
elastography [25], [34]–[37] and ultrasound elastometry [38].

Uncertainty in boundary conditions, including complex
boundary conditions, such as frictional sliding contact resulting
from an object sliding over another object, has been considered
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in this study to some extent. The aspect of the problem needs to
be further studied.

It is also important to note that the choice of the Neo–Hookean
material type is not fundamental to the proposed method. The
same overall tissue parameter estimation method can also be
applied by using different underlying material types. However,
whether the sufficient accuracy is obtainable or not for different
material types needs to be verified. A detailed analysis and
comparison of different material types is outside the scope of
this paper.
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