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GiPSi: A Framework for Open Source/Open
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Abstract—This paper presents the architectural details of an
evolving open source/open architecture software framework for
developing organ-level surgical simulations. Our goal is to facilitate
shared development of reusable models, to accommodate heteroge-
neous models of computation, and to provide a framework for inter-
facing multiple heterogeneous models. The framework provides an
application programming interface for interfacing dynamic mod-
els defined over spatial domains. It is specifically designed to be
independent of the specifics of the modeling methods used, and
therefore facilitates seamless integration of heterogeneous models
and processes. Furthermore, each model has separate geometries
for visualization, simulation, and interfacing, allowing the model
developer to choose the most natural geometric representation for
each case. Input/output interfaces for visualization and haptics for
real-time interactive applications have also been provided.

Index Terms—Open architecture framework, shared develop-
ment, surgical simulation, virtual environments.

I. INTRODUCTION

COMPUTER simulations have become an important tool
for medical applications such as surgical training, pre-

operative planning, and biomedical research. However, the cur-
rent state of the field of medical simulation is characterized
by scattered research projects using a variety of models that
are neither interoperable nor independently verifiable. Simu-
lators are frequently built from scratch by individual research
groups without input and validation from a larger community.
The challenge of developing useful medical simulations is often
too great for any individual group, since expertise from different
fields is required. The motivation behind this study is our prior
experience in surgical training simulators and physically based
modeling [1]–[4].

The open source/open architecture software development
model provides an attractive framework to address the needs
of interfacing models from multiple research groups, and the
ability to critically examine and validate quantitative biologi-
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cal simulations. Open source models provide means for quality
control, evaluation, and peer review, which are critical for basic
scientific methodology. Furthermore, since subsequent users of
the models and the software code have access to the original
code, this also improves the reusability of the models and in-
terconnectibility of the software modules. On the other hand,
an open architecture simulation framework allows open source
or proprietary third-party development of additional models,
model data, and analysis and computation modules.

In this paper, we describe general interactive physical
simulation interface (GiPSi), an open source/open architecture
framework for developing surgical simulations such as inter-
active surgical training and planning systems. The main goal
of this framework is to facilitate shared model development
and simulation of organ-level processes, as well as data sharing
among multiple research groups. GiPSi focuses on addressing
technical issues in accommodating different levels and types of
model abstractions, supporting heterogeneous models of com-
putation, developing application programming interfaces (APIs)
for interfacing various heterogeneous physical processes, and
achieving modularity. In addition, input/output (I/O) interfaces
for visualization and haptics for real-time interactive appli-
cations have been provided. The latest release of the GiPSi
framework is available as open source at the project web site,
http://gipsi.case.edu/.

An important difference of GiPSi from earlier object-oriented
tools and languages for modeling and simulation of complex
physical systems, such as Modelica [5], Matlab Simulink [6],
and Ptolemy [7], is its focus on representing and enforcing time
dependent spatial relationships between objects, especially in
the form of boundary conditions between interfaced and inter-
acting objects. The APIs in GiPSi are also being designed with
a special emphasis on being general and independent of the
specifics of the implemented modeling methods, unlike ear-
lier dynamic modeling frameworks such as SPRING [8] or
AlaDyn-3D [9], where the underlying models used in these
physical modeling tools are woven into the specifications of the
overall frameworks developed. This allows GiPSi to seamlessly
integrate heterogeneous models and processes, which is not
possible with the earlier dynamic modeling frameworks [10].
SCIRun [11] is a general-purpose problem solving environment
developed for scientific computation. As such, it focuses on
integrating stand-alone modules and programs involved in the
general scientific workflow into a single framework, using a
data-flow architecture to integrate the steps of preparing, exe-
cuting, and visualizing simulations of physical and biological
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systems. It is designed as a problem solving environment, rather
than a framework to construct real-time interactive simulations
like GiPSi. FEMLab [12] (by COMSOL, Inc.) is a commercial
toolset for modeling and simulation of scientific and engineering
problems based on partial differential equations. Notably, it fo-
cuses on models and simulations involving heterogeneous phys-
ical processes. However, as a framework, it is fundamentally
based on a single class of models, namely, finite element models.

It is also important to note several other relevant ongoing
open source efforts in the general area of medical modeling.
3DSlicer [13] is an open source medical visualization and pro-
cessing environment for visualization, registration, segmenta-
tion, and quantification of medical data. The Insight Segmen-
tation and Registration Toolkit (ITK) [14] is an open source
software system for segmentation and registration of (medical)
image datasets, which started as a toolkit for supporting the
Visible Human Project [15].

The rest of the paper starts with a discussion of the techni-
cal issues that need to be considered in the design of an open
architecture simulation framework for medical simulation. This
is followed by an overview of GiPSi, presentation of the core
GiPSi API and other components of GiPSi, and a discussion
of the implementation of a simple heart model composed of
heterogeneous submodels.

II. TECHNICAL ISSUES IN DEVELOPMENT OF AN OPEN

ARCHITECTURE FRAMEWORK FOR MEDICAL SIMULATION

At this point, it valuable to discuss the key technical issues that
need to be addressed in the development of open source/open
architecture medical simulation frameworks.

A. Abstraction

In the context of surgical simulation, model abstraction is an
important consideration. Within a general modeling and simu-
lation framework, different applications and different problems
require different types or levels of abstraction for each of the
processes and components in the model. For example, in a heart
model, the beating of the heart can be modeled as an electro-
chemically activated mechanical process, or it can be modeled
as a finite state machine, with each state corresponding to a
discrete phase of the heart cycle. These are different types of
abstractions for the same process. It is also possible to have
different levels of abstraction: the heart muscle contraction can
be modeled starting at the individual cell level, at the tissue
level, or at the level of the whole organ. In surgical simulations,
it is important to have an accurate model of the mechanical
manipulation of the heart. Hence, when modeling effects of
medications in a heart surgery simulation, it may be sufficient
to use an abstraction that includes the aggregate physiological
effects of different medications used during the procedure to
the extent they affect the electrical and mechanical activity of
the heart, instead of modeling all the processes going on at the
cell or tissue level. However, in a simulation to study the ef-
fects of an experimental drug, it would be necessary to have
a more detailed and accurate model of these processes. There-
fore, the simulation framework developed needs to be able to

accommodate different types and levels of abstraction for each
of the different subcomponents in the model hierarchy, without
artificially limiting the possibilities based on the requirements
of a specific application.

B. Heterogeneous Physical Mechanisms and Models
of Computation

Another issue that arises with the varying types of abstrac-
tions is the requirement on the simulation engine to be able
to handle heterogeneous physical mechanisms (e.g., solid me-
chanics, fluid mechanics, and bioelectricity) and models of com-
putation (e.g., differential equations, finite state machines, and
hybrid systems). The simulator kernel and the application inter-
faces need to have support for hybrid models of computation;
i.e., computation of continuous and discrete deterministic pro-
cesses, and stochastic processes, which can be used to model
basic biological functions.

C. Interfacing Models of Different Physical Processes

In order to simulate a complex biological system, models of
different physical processes, which may even use different mod-
els of computation, need to be coupled together. Therefore, it is
necessary to develop standard model interfaces in the form of
software APIs for interconnection of these models. There are
two key aspects of the API: 1) interfacing multiple physical pro-
cesses at the semantic level and 2) coupling multiple models of
computation at the structural level. The semantic level specifies
how the different physical quantities are coupled at the interface,
including the semantics of the coupling, and the structural level
specifies how the interfacing is achieved at the specifics of the
individual computational models used.

D. Modularity Through Encapsulation and Data Hiding

Maintaining the integrity of the data of the individual models
in an open architecture simulation is an important requirement.
Moreover, the API and the overall framework also need to be
able to support hierarchical models and abstraction of the input-
output behavior of individual layers or subsystems for the level
of detail desired from the simulation model. The object-oriented
programming concepts of encapsulation and data hiding facil-
itate the modularity of the components while maintaining the
data integrity. It also provides mechanisms to interface and em-
bed the constructed models and other computational modules to
a larger, more sophisticated model.

E. Support for Parallel and Distributed Simulation

In a surgical simulation, software modules numerically simu-
late the physics of a target environment. Highly accurate simula-
tions for surgical planning and compelling virtual environments
for training typically require extensive computation available
beyond basic desktop computers or single processor worksta-
tions. It is therefore necessary for the simulation framework to
support parallel and distributed simulations. Beyond just par-
allel processing, development of network-enabled virtual en-
vironments is desirable to extend the accessibility of surgical
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Fig. 1. Architecture of a GiPSi-based simulation system.

simulations, and to allow computation to take place in exist-
ing computing facilities while supporting planning and training
from a variety of locations. This would allow sharing of com-
putational resources and ease the logistical requirements for
deploying virtual environment-based simulators.

F. Validation

Validation of the models and the underlying empirical data
is a basic requirement for reusability of the models. It is also
important to have mechanisms to track the assumptions of the
individual models and model data within a complex simulation
environment, to ensure that the aggregate assumptions behind
the models and the abstractions satisfy the requirements of the
application at hand.

G. Customization to Patient-Specific Physiology

In surgical planning and preoperational rehearsals, it is neces-
sary to use patient-specific models during simulation. Therefore,
the models in the simulation need to be customizable. This ties
to the open architecture design of the simulation framework. The
open architecture approach should allow loading and working
with custom data sets generated by third parties.

The main goal of the GiPSi framework is to facilitate shared
model development and simulation of organ-level processes,
as well as data sharing among multiple research groups. In
addressing these, we explicitly focused on the first four of the
technical aspects mentioned above: model abstraction, support
for heterogeneous models of computation, APIs for interfacing
various heterogeneous physical processes, and modularity.
Basic support for parallel simulations has been included in the
form of support for separating main computation, visualization,
and haptics as separate threads, as discussed in Section V,

on a multiprocessor computer using the open source pthreads
libraries. Including further support for parallel and distributed
simulations into GiPSi is part of our ongoing and future work,
as discussed in Section VIII. Issues of model validation have not
been explicitly addressed in GiPSi, and are left to the application
developer, which is possible, as GiPSi is an open source frame-
work. Customization of the simulations with patient-specific
data is implicitly supported by the GiPSi architecture (Fig. 1),
and explicit support depends on the specifics of the models used.

III. GIPSI OVERVIEW

One of the major goals of GiPSi is to provide a framework
that facilitates shared development that would encourage the ex-
tensibility of the simulation framework and the generality of the
interfaces, allowing components built by different groups and
individuals to interoperate and be reused. Therefore, modularity
through encapsulation and data hiding between the components
are enforced. In addition, a standard interfacing API facilitating
communication among these components is provided.

We developed our tools in the context of a specific test bed
application: the construction of a heart model for simulation
of heart surgery. This test bed model captures the most impor-
tant aspects of the general problem we are trying to address: 1)
multiple heterogeneous processes that need to be modeled and
interfaced and 2) different levels of abstraction possible for the
different processes. In the heart surgery simulation, several dif-
ferent processes, namely physiology, bioelectrical activity, mus-
cle mechanics, and blood dynamics, need to be modeled. Phys-
iological processes regulate the bioelectrical activity, which, in
turn, drives the mechanical activity of the heart muscle. Muscle
dynamics, coupled with the fluid dynamics of the blood, deter-
mine the resulting motion of the heart [16]. Models for all these
processes need to be intimately coupled: the mechanical and
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Fig. 2. (a) Simulation Object. (b) Examples of modeling tool and user-defined objects. (c) Heart object.

fluid models through a boundary interaction, and the electro-
chemical and mechanical models through a volume interaction.

The overall system architecture of GiPSi is shown in Fig. 1.
The models of physical processes such as muscle mechanics
of the heart are represented as Simulation Objects (Section
IV). Each simulation object can be derived from a specific
computational model contained in Modeling Tools such as finite
elements, finite differences, lumped elements, etc. (Section VI-
A2). The Computational Tools provide a library of numerical
methods for low-level computation of the object’s dynamics
(Section VI-A1). These tools include explicit/implicit ordinary
differential equation (ODE) solvers, linear and nonlinear alge-
braic system solvers, and linear algebra support. The objects
are created and maintained by the Simulation Kernel which
arbitrates their communication to other objects and components
of the system (Section VI-B2). One such component is the I/O
Subsystem which provides basic user input provided through
the haptic interface tools and basic output through visualization
tools (Section V). There are also Auxiliary Functions that
provide application-dependent support to the system, such as
collision detection and collision response tools that are widely
used in interactive applications (Section VI-B1). The class
hierarchy of GiPSi is shown in Fig. 7. The implementation of the
framework is done using C++ and it is platform-independent.

It is important to note that GiPSi is intended to be a general
software development framework rather than a complete simu-
lation engine. The framework consists of the Simulation Object
API, which includes the Simulation API and the Object Inter-
facing API, the Visualization API, and the Haptics API. The
implemented Modeling Tools and Computational Tools form an
initial set of GiPSi compliant libraries to support development
of GiPSi-based simulations. The Auxiliary Functions and the

Simulation Kernel are completely application-dependent, and
cannot be specified as part of the API. The specific models
discussed in the paper are for illustration of the APIs and the
framework architecture, and are not intended to be sophisticated
or comprehensive.

IV. SIMULATION OBJECT API

In this framework, organs and the physical processes asso-
ciated with them are represented as Simulation Objects. These
objects define the basic API for simulation, interfacing, visual-
ization, and haptics [see Fig. 2(a)].

Each Simulation Object can be a single-level object imple-
menting a specific physical process, or can be an aggregate of
other objects creating a hierarchy of models, depending on the
level of abstraction desired. For example, if one were interested
only in a muscle model of a beating heart, then one would define
the heart as a single object that simulates the muscle mechanics.
However, if one were to model a more sophisticated heart with
both muscle and blood models, then the heart object would be
an aggregate of two objects, one implementing the muscle me-
chanics and the other implementing the blood dynamics. The
specific coupling of these muscle and blood objects would be
implemented at their aggregate heart object [see Fig. 2(c)].

The majority of the models in organ-level simulations involve
solving multiple time-varying partial differential equations
(PDEs) that are defined over spatial domains and are coupled via
boundary conditions; e.g., a structural model representing the
heart muscles coupled with a fluid model representing the blood
which share the inner surface of the heart wall as their common
boundary. Our goal is to design a flexible API that facilitates the
shared development and reuse of models based on these PDEs.
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Therefore it is necessary to provide: 1) a Simulation API and 2)
an Interfacing API.

A. Simulation API

There are many different techniques for simulating a given
physical process, each of which impose different requirements
on the simulation API. In its most general form, the simulation
API can only be abstracted to a single method, named,
Simulate().

Instead of enumerating through each of the techniques and
defining a special API for it, we focused on providing one that
facilitates development of the most challenging and widely used
class of models, namely systems of differential equations, in
particular PDEs.

1) Simulation of PDE-Based Models: The first step in solv-
ing a continuous PDE is to discretize the spatial domain it is
defined on. Therefore, every object must contain a proper ge-
ometry that describes its discretized domain, called the Domain
Geometry. The definition of this geometry is flexible enough
to accommodate the traditional mesh-based methods as well as
point-based (mesh free) formulations. GiPSi defines a set of ge-
ometries that can be used as a domain, including, but not limited
to, polygonal surface and polyhedral volume meshes. The model
developer can also define new geometry, derived from the base
geometry class, if desired. In our current implementation geome-
tries for triangular and tetrahedral meshes, and point clouds are
predefined. Second, a method for solving a PDE should be em-
ployed such as finite element methods (FEMs), finite difference
methods (FDM), or lumped element [e.g., mass-spring-damper
(MSD)] methods. This numerical computation is performed in-
side the Simulate() method. In the current implementation, basic
general purpose objects that implement some of these methods
are provided as modeling tools (Section VI-A2); e.g., there is a
general customizable FEM object that implements a basic non-
linear finite element method for solid mechanics [see Fig. 2(b)].
GiPSi also provides a library of numerical analysis tools in the
Computational Tools (Section VI-A1) that can be used to solve
these discretized equations. Our current implementation pro-
vides a collection of explicit integrators, some popular direct
and iterative linear system solvers, and C++ wrappers around a
subset of BLAS and LAPACK functions [17].

Existence of separate geometries for display, computation do-
main, and boundaries is an important feature of the GiPSi frame-
work. This allows the framework to be model-independent; i.e.,
not be tied to a specific class of models such as spring-based
models or, more generally, mesh-based models. Different rep-
resentations of the same object can, therefore, be used for com-
putation, display, and interfacing (including collision detection)
purposes. Performance considerations have not been ignored in
the design. Our object-oriented design approach allows a single
data structure to be used for all these purposes, eliminating data
translation overhead, if different geometric representations are
not needed.

B. Object Interfacing API

The simulation object API also needs to provide a standard
mechanism to interface multiple objects. In the models men-

tioned above, the basic coupling of two objects is defined via
the boundary conditions between them. Therefore, we need to
provide an API to facilitate the passing of boundary conditions
between different models. First, we need a common definition of
the boundary; i.e., each object needs to have a specific Boundary
Geometry. In our current implementation, we chose triangular
surfaces as our standard boundary geometry. Even though the
type of the boundary geometry is fixed for every object, the
values that can be set at the boundary and their semantics are up
to the model developer and should be well documented. Based
on this documentation, it is the application developer’s task to
interface two objects with different semantics on the boundary.
For example, a generic fluid object can compute velocities and
pressures on its boundary. In order to interface it with a structural
object that requires forces on its boundary as boundary condi-
tions, the application developer needs to convert the boundary
pressure values to boundary forces by integrating the pressure
on the boundary.

Use of boundary conditions is not the only interfacing scheme
for objects. For example, the coupling between the electrochem-
ical and mechanical models (excitation-contraction coupling)
in the heart is done through the commonly occupied volume
rather than a shared boundary. Therefore, for this case, we need
to communicate through the Domain Geometry. A more gen-
eral information passing over the domain is provided by a sim-
ple point and element-wise Get/Set scheme; i.e., an object can
read and write values inside another object by simply using
Get(value) and Set(value) methods provided by the object, re-
spectively. The set of values that can be get and set by other
objects and their semantics are again left to the model devel-
oper. In the preceding example, the electrochemical model sets
the internal stress values of the mechanical model based on the
excitation level which, in turn, result in the contraction of the
muscles.

In the definition of the interfacing API, point-based geome-
try was chosen for its generality, and triangle based polygonal
surfaces were chosen for their popularity. It is true that using
point clouds or surface triangulations for interfacing multiple
implicit surface based models is not optimal. However, we be-
lieve that the overhead is not prohibitive and does not outweigh
the flexibility. On a practical note, almost every type of geomet-
ric representation (e.g., implicit, parametric, etc.) needs to be
triangulated for fast display on conventional graphics hardware.
Therefore, many applications already perform the conversion,
but perhaps not as frequently.

Both interfacing through a surface via boundary conditions
and interfacing through a volume (domain) via the Get/Set
scheme are achieved by the use of the Connector classes. Since
the connection of two arbitrary models is application-dependent,
it is the application developer’s task to construct these connec-
tors. Fig. 3 shows two connector classes that interface three
basic models contained in the aggregate heart model. The first
connector class provides basic communication between the bio-
electrical and muscle models through their volumetric domain.
It gets the excitation levels from the bioelectric models (Domain
1), converts them to stress, and sets the stress tensor values in
the muscle model (Domain 2). The second connector interfaces
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Fig. 3. Connector class example.

the lumped fluid blood model with the muscle model through
their surfaces via boundary conditions. In this example the com-
munication is in both directions. The connector class reads the
displacement values on the muscle boundary (Boundary 1), con-
verts them into velocities and passes the velocities to the fluid
model (Boundary 2) as boundary conditions. Similarly, it re-
ceives the boundary pressure values from Boundary 2, converts
them into forces, and passes them to Boundary 1 as traction
values on the boundary.

For most natural and flexible interfacing functionality, the
fundamental solid mechanics boundary conditions have been
used as the boundary interfacing semantics for deformable
solid objects. As part of the deformable solid object API,
displacement (Dirichlet), force (Neumann), and mixed force-
displacement type boundary conditions have been used, and the
mechanisms to specify them have been defined.

V. INPUT/OUTPUT SUBSYSTEM

The Input/Output subsystem provides basic tools for visual-
izing and interacting with the objects. Currently, GiPSi provides
haptics tools for input and visualization tools for output. These
tools provide modularity and encapsulation of data, and define
a standard API for model developers.

A. Visualization API

Visualization of an object involves displaying the geometry
of the object on the screen using a visualization library such
as OpenGL, VTK, DirectX, etc. The key requirement is de-
velopment of an API such that the actual mechanics of the
display specific to a given visualization library are transparent
to the model developer. Therefore, the API needs to separate

the specifics of what needs to be displayed, which is determined
by the model developer, from the specifics of how the actual
display happens.

In order to display an object, we need a geometry dedicated
for visualization. This geometry is called the Display Geometry
and can be of any type of geometry defined in GiPSi. However,
for modularity, these geometries need to be converted into a
standard form. This is done by the Display Managers associated
with each display geometry. Display managers convert the data
in geometries into a standard format used by the visualization
module where the actual display takes place. Then the visualiza-
tion tool accesses this data through the object pool maintained
by the simulation kernel and displays it. This makes the de-
velopment of visualization tools and development of models
mutually exclusive, and ensures the modularity and the flexi-
bility of the system. In our current design, the standard format
used is simply the list of vertex positions, vertex normals, vertex
colors, and connectivity information. In our current implemen-
tation we use a visualization engine based on OpenGL for actual
display.

B. Haptics API

Haptic interfaces require significantly higher update rates,
usually in the order of 1 kHz, than are possible for the rest of
the physical models, which are typically run at update rates in the
order of 10 Hz. It is not feasible to increase the update rate of the
physical models to the haptic rate with their full complexity due
to computational limitations, or to decrease the haptic update
rate to physical model update rates due to stability limitations.
GiPSi handles these conflicting requirements using a multirate
simulation scheme proposed by Çavuşoğlu [18]. In this method,
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each simulation object in haptic interaction provides local dy-
namic and geometric models for the haptic interface. The local
dynamic model is a low-order linear approximation of the full
deformable object model, constructed by the simulation object
from the full model at its update intervals, and the local geo-
metric model is a planar approximation of the local geometry
of the simulation object at the haptic interfacing location. These
local models are used by the haptic interface, running at a sig-
nificantly higher update rate than the dynamic simulations, for
estimating the intersample interaction forces and intersample
collisions.

The Haptic I/O module completely encapsulates the haptic
interface and its real-time update rate requirements, and pro-
vides a standard API for all of the simulation objects which
will be haptically interactive. The interface between the hap-
tic I/O module and the simulation objects is through the local
dynamic and geometric models provided by the simulation ob-
jects, and the haptic instrument location and interaction forces
provided by the haptic I/O module. The instrument-object in-
teraction forces are applied to the objects through the object
boundary conditions, and the instrument–object collision detec-
tions are handled no differently than the regular object–object
collisions.

VI. OTHER COMPONENTS OF GiPSi

A. GiPSi Toolset

1) Computational Tools: The GiPSi implementation pro-
vides a set of computational tools to support the simulation of
algebraic and differential equation-based models. The compu-
tational tools include basic linear algebra operations on vectors
and matrices, explicit numerical integrators, some popular direct
and iterative linear system solvers, and C++ wrappers around a
subset of BLAS and LAPACK functions [17].

Basic vector and matrix operations are the backbone of
any simulation framework. GiPSi provides a C++-based ma-
trix and vector operations toolbox. In this toolbox, basic vector
and matrix classes implement the vector-scalar, vector-vector,
vector-matrix, matrix-scalar, and matrix-matrix algebraic op-
erations, basic matrix inversions, and simple I/O functions.
Other important enabling tools required for the development
of numerical simulations are linear algebraic system solvers.
Pseudoinverse and LU decomposition techniques are provided
as direct linear system solvers by means of C++ wrappers
around LAPACK functions. Conjugate gradient, Jacobi, and
successive over-relaxation algorithms are the iterative linear
solvers implemented. Finally, GiPSi also provides a suite of
numerical integrators. Featuring a number of popular single and
multistep explicit methods, including Runge–Kutta and Adams–
Bashford algorithms.

2) Modeling Tools: GiPSi provides two sample modeling
tools in the current implementation: a nonlinear finite element-
based solid mechanics model (FEM Object), and a lumped
element solid mechanics model (MSD Object). These mod-
els are derived from a common deformable solid object API,
which is, in turn, derived from the simulation object class, as
shown in Fig. 7(c). The FEM Object is a basic geometrically

nonlinear FEM model which uses linear tetrahedral elements
to model linear viscoelastic solid materials. The MSD Object
is a simple mass-spring-damper-based geometrically nonlinear
lumped element model which can be used to model deformable
solids.

a) FEM Object: For the FEMObject we followed the for-
mulation in [19], which uses an explicit discretization of a geo-
metrically nonlinear, linear elasticity model.

b) MSD Object: Lumped element models are meshes
of mass, spring, and damper elements. Lumped masses at
the nodes of the mesh are interconnected by spring and
damper elements. The equations of motion are the collec-
tion of Newton’s equations written for the individual nodal
masses.

B. Other Functionality Needed for Interactive Simulation
System Development

1) Collision Detection/Collision Response: In interactive
surgical simulations, one needs to detect collisions to prevent
penetration between objects in the system, such as organ mod-
els and tools used during surgery. Therefore, collision detection
(CD) and collision response (CR) play an important role. In
our framework, the CD module detects the collisions between
boundary geometries of different models, and the CR module
computes the required response to resolve these collisions in
terms of displacements and/or penalty forces, and communi-
cates the result to the models as displacement or force-based
boundary conditions. The models process these boundary con-
ditions if necessary, and iterates. As a result, the mechanics
of contact detection and resolution is done by the application
developer, and therefore becomes transparent to the model de-
veloper. Hence, the framework is flexible enough to accommo-
date a wide variety of CD/CR schemes. There are no preim-
plemented CD/CR modules included in the current release of
GiPSi.

2) Simulation Kernel: The simulation kernel acts as the
central core where everything described previously comes
together. Since the simulation kernel completely represents
the application itself, it needs to be specified entirely by the
application developer. Its tasks include the management of the
top level object pool, coordination of the object interactions,
and arbitration of the communication between the components.
This involves establishing the execution order of the models and
the specific interfacing between them, allowing the application
developer to properly specify the semantics of the individual
top level objects and the interfacing between them, based on
the specific application for which the simulation is being devel-
oped. The simulation kernel of a typical interactive simulator
implemented using GiPSi would have the functionality shown
in Fig. 4.

The simulation kernel encapsulates an important aspect of the
simulation; namely, the model and interconnection semantics.
The execution order and the synchronization of the individual
models and connectors within the simulation have not been ex-
plicitly specified as part of GiPSi, since this requires knowledge
of the semantics of the models, and the context in which they
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Fig. 4. Simulation kernel state diagram for a typical interactive simulator
implemented using GiPSi.

are integrated; i.e., the application. As the specifics of these
are application dependent, it is not desirable to constrain the
model and connector semantics as part of the simulation frame-
work. Within GiPSi, the specification of the execution order
of the individual models and connectors inside the simulation
kernel are left to the application developer, in order to pro-
vide a general purpose framework, and give flexibility to the
application developer in determining the model and intercon-
nection semantics in the context of the specific simulation being
developed.

The sample simulation kernel diagrammatically shown in
Fig. 4 demonstrates the range of functionality that needs to
be implemented inside the simulation kernel of a typical sim-
ulation. The specifics of the execution order of the individual
models and connectors are application dependent and needs to
be explicitly specified.

VII. CASE STUDY

We implemented a double chamber heart model as a test-bed
model to evaluate the functionality of the API [Fig. 5]. The
model is composed of three independent heterogeneous models
[Fig. 2(c)] coupled together using the APIs and mechanisms
provided by GiPSi, as shown in Fig. 3. The first is a three-
dimensional nonlinear geometry linear viscoelastic-material fi-
nite element model of the cardiac muscle. The second model is
a lumped fluid model of the blood dynamics, which can option-
ally be coupled to a simplified Windkessel model of the systemic
circulation. The third model is a simplified discrete event model
of cardiac bioelectricity.

Fig. 5. Simulation of the double-chamber heart model implemented in GiPSi.
The opaque core is the surface of the fluid, and the translucent volume is the
heart muscle. The wireframe mesh corresponds to the undeformed shape of the
heart muscle, with the bright areas corresponding to the part of the muscle being
excited by the bioelectrical model.

The blood and muscle models are coupled through their
shared boundary, the inner surface of the chamber. The interac-
tion between the two models is obtained with a connector class
which accesses the boundary interface API of the two models.
This connector handles the structure and semantic interfacing
between the models by converting the boundary displacements
of the muscle model to velocity boundary conditions to the
blood fluid model, and converting the pressure on the surface of
the blood to force (Neumann-type) boundary conditions on the
muscle surface.

The muscle and bioelectricity models are coupled through a
cooccupied volume. The interaction between the two models
is obtained with a connector class which accesses the domain
interface API of the two models. This connector mainly imple-
ments a basic excitation-contraction coupling by converting the
excitation level at a given element of the bioelectricity model
to an internal stress in the corresponding element of the finite
element model of the heart muscle.

The simulation was tested and benchmarked on a Microsoft
Windows XP-based workstation with a single 2.8-GHz Intel



320 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 10, NO. 2, APRIL 2006

Xeon Processor, 1 GB of RAM, and a PCI-express NVidia
Quadro FX 1300 Graphics Card to collect performance bench-
marks. The finite element-based heart muscle model was com-
posed of 1415 nodes and 4237 tetrahedral elements, which re-
sulted in a 8490th-order ordinary differential equation system.
The lumped fluid model of the blood was a 611th-order model,
with 610 states for tracking the fluid surface, and 1 state for
lumped blood quantity. The bioelectrical model was a second-
order nonlinear oscillator driving a discrete event model. All
the models were updated with the same update rate. A third-
order Heun predictor-corrector numerical integration algorithm,
which is a three-step explicit integration algorithm (requiring
three accumulations and three computations of the integrand for
every time step), was employed in the numerical simulation of
all the models. The resulting simulation executed a single sim-
ulation time step, updating all the models, in 246 ms (average
value with standard deviation 1.3 ms). The graphics display in-
side the visualization engine was simultaneously operating at
60 frames/s in a separate thread.

A detailed profiling of the simulation using the Intel VTune
performance analyzer was used to measure the sources of over-
head resulting from using the GiPSi API, which are the data
translations between the model state and the display, bound-
ary, and domain geometries, and the data translations occurring
inside the connectors. The profiling analysis was performed us-
ing the call graph profiling functionality provided by VTune,
measuring the total time spent inside the functions perform-
ing the core computations and functions responsible for API
overhead operations mentioned previously. The profiling anal-
ysis revealed that the overhead accounted for less than 7% of
the overall computation in the main simulation thread. There is
no overhead inside the visualization engine resulting from the
GiPSi API, as the data translation from state to display geometry
occurs inside the main simulation thread.

VIII. CONCLUSION

We presented the architectural details of GiPSi, an evolving
open source/open architecture software framework for devel-
oping organ-level surgical simulations. In this framework we
provide a Simulation Object API to encapsulate the organs and
the physical processes associated with them. This API enables
the shared development and reusability of these models. A hier-
archy of different Simulation Objects can be created to facilitate
different levels of abstraction. The framework also provides a
Simulation API which supports a set of Modeling Tools in order
to accommodate heterogeneous models of computation. Finally,
we provide an Object Interfacing API for interfacing dynamic
models defined over spatial domains through boundary condi-
tions and more general Get/Set mechanisms.

We used a virtual single-chamber heart simulation as a test
application. In order to support interactive applications, we also
developed APIs for visualization and haptics. To test the model-
ing API to its full extent, we modeled the heart as a composition
of three closely coupled heterogeneous models including car-
diac muscle, cardiac bioelectricity, and blood.

Fig. 6. Snapshot from the virtual environment-based endoscopic neurosurgery
training simulator testbed being developed using the GiPSi framework.

The GiPSi framework is also being used in house as the
main development framework in an ongoing project (at Case
Western Reserve University) to develop and validate a virtual
environment-based simulator for skill and task training for endo-
scopic neurosurgery, demonstrating the general purpose nature
of the framework. As part of this project, an endoscopic third
ventriculostomy simulator testbed is being constructed (Fig. 6).
The virtual environment used in the simulation is based on geo-
metric models of the anatomy constructed from patient-specific
medical imaging data. Heterogeneous physical models are used
for simulation of the deformable tissue and cerebrospinal fluid
present in the surgical site, and heterogeneous models of compu-
tation are employed to manage computational complexity while
maintaining realism.

Our future work on GiPSi will focus on development of
more modeling tools, including a fully nonlinear solid FEM
implementation and a finite differences-based fluid model im-
plementation, and implementation of more detailed models
of biological systems. Another ongoing research track we
are pursuing is the development of network middleware for
GiPSi to enable seamless development of networked virtual
environments for simulation. We are also planning to port
the multigrid finite element model of deformable solids de-
veloped by Wu and Tendick [20], and its parallel imple-
mentation developed by Wu et al. [21], in order to be able
to more effectively simulate larger scale deformable solid
models.

APPENDIX

CLASS HIERARCHY

The class hierarchy of GiPSi is shown in Fig. 7(a)–(g).
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Fig. 7. GiPSi class hierarchies.
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