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ÖZKAN BEBEK

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Dissertation Advisor: M. Cenk Çavuşoğlu, Ph.D.
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I am indebted to my advisor Cenk Çavuşoğlu for letting me involved in this research

in the first place; and very thankful for his guidance and support through the years. I

appreciate his considerate, encouraging, and understanding personality as a mentor,

who set realistic goals that always kept me motivated for this research. He always gave

positive feedback and had a good sense of humor while dealing with disappointments

or unforeseen circumstances. I am thankful for his encouragement and help which

enabled me to complete this dissertation.

I am also grateful to the other members of my committee, Wyatt Newman, Wei Lin,

Kenneth Loparo and Roger Quinn. As individuals, they offered encouragement and

constructive criticism for this dissertation to take its current shape.

I would like to thank my labmates for their friendship and for sharing days and nights

with me in the research lab although we worked in a windowless existence and could

not tell the time. Also many thanks to those who gave me the possibility to complete

this dissertation.

I am grateful to my parents for their support throughout my long education life.

Especially, I would like to give my sincere thanks to my wife Ebru whose patience

and love enabled me to complete this work.

This research was done in the Medical Robotics and Computer Integrated Surgery

xiii



Laboratory at Case Western Reserve University; with partial support by the National

Science Foundation Grants CISE IIS-0222743, EIA-0329811, and CNS-0423253, and

by the Department of Commerce grant TOP-39-60-04003.

xiv



Robotic-Assisted Beating Heart Surgery

Abstract

by

ÖZKAN BEBEK

Coronary heart disease is a leading cause of death in the USA. A promising treat-

ment option for this disease is off-pump coronary artery bypass graft (CABG) surgery

as the artery grafting is done without stopping the heart. In the robotic assisted-

surgery concept the surgeon views the surgical scene on a video display and operates

on the heart as if it were stationary while the robotic system actively compensates

for the motion of the heart. With the proposed system concept, the CABG surgery

will be possible without using passive stabilizers, and the hospitalization time and

cost of the operation will be decreased.

In this dissertation intelligent robotic tools for assisting off-pump (beating heart)

CABG surgery are presented. Most important aspects of such a robotic system are

accurately measuring and predicting the heart motion as they are instrumental in

canceling the relative motion between the heart surface and surgical tools attached to

the robotic manipulators. The proposed control algorithm contributes to the field by

using biological signals in the estimation of heart’s future motion for active relative

motion canceling. Also a novel contact position sensor is developed to measure the

position of the beating heart and a preliminary noise characterization for the future

sensor system implementation is presented.



Chapter 1

Introduction

Improving the treatment for coronary heart disease (CHD) should be a priority in

terms of developing relevant treatment options as the statistics of the Centers for

Disease Control and Prevention (CDC) indicate heart disease as a leading cause of

death [1, Table 7]. In the medical field, intelligent robotic tools reshape the surgical

procedures by providing shorter operation times and lower costs. This technology

also promises an enhanced way of performing off-pump coronary artery bypass graft

(CABG) surgery. In the robotic-assisted off-pump CABG surgery, the surgeon oper-

ates on the beating heart using intelligent robotic instruments. Robotic tools actively

cancel the relative motion between the surgical instruments and the point of interest

(POI) on the beating heart, dynamically stabilizing the heart for the operation. This

algorithm is called Active Relative Motion Canceling (ARMC).

Although off-pump CABG surgery is in a nascent stage and only applicable to

limited cases, it is preferred over on-pump CABG surgery because of the significant

complications resulting from the use of cardio-pulmonary bypass machine, which in-

clude long term cognitive loss [2], and increased hospitalization time and cost [3]. On

the other hand off-pump grafting technology is crude and only applicable to a small

portion of the cases because of the technological limitations: inadequacy with all but
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the largest diameter target vessels, ineffectiveness with the coronary arteries on the

side and the back of the heart, and its limitation to small number of bypasses. Off-

pump procedures represent only 15-20% of all CABG surgeries, at best [4]. Manual

tracking of the complex heartbeat motion cannot be achieved by a human without

phase and amplitude errors [5]. Use of robotics technology will overcome limitations

as it promises an alternative and superior way of performing off-pump CABG surgery.

In this study, it is aimed to develop telerobotic tools to actively track and cancel

the relative motion between the surgical instruments and the heart by Active Rela-

tive Motion Canceling (ARMC) algorithms, which will allow CABG surgeries to be

performed on a stabilized view of the beating heart with the technical convenience of

on-pump procedures.

Towards this direction, electrocardiogram (ECG) is utilized as a biological signal

in the estimation of the heart motion for an effective motion canceling in the model-

based intelligent ARMC algorithm.

1.1 System Concept for Robotic Telesurgical Sys-

tem for Off-Pump CABG Surgery

Robotic-assisted surgery concept replaces conventional surgical tools with robotic

instruments which are under direct control of the surgeon through teleoperation,

as shown in Figure 1.1. The surgeon views the surgical scene on a video display

with images provided by a camera mounted on a robotic arm that follows the heart

motion, showing a stabilized view. The robotic surgical instruments also track the

heart motion, canceling the relative motion between the surgical site on the heart

and the surgical instruments. As a result, the surgeon operates on the heart as if it

were stationary, while the robotic system actively compensates for the relative motion

of the heart. This is in contrast to traditional off-pump CABG surgery where the
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Figure 1.1: System concept for Robotic Telesurgical System for Off-Pump CABG
Surgery with Active Relative Motion Canceling (ARMC). Left: Surgical instruments
and camera mounted on a robot actively tracking heart motion. Right: Surgeon
operating on a stabilized view of the heart, and teleoperatively controlling robotic
surgical instruments to perform the surgery.

heart is passively constrained to dampen the beating motion. The proposed control

algorithm is called “Active Relative Motion Canceling (ARMC)” to emphasize this

difference. Since this method does not rely on passively constraining the heart, it

is possible to operate on the side and back surfaces of the heart as well as the front

surface using millimeter scale robotic manipulators that can fit into spaces the surgeon

cannot reach.

1.2 Coronary Heart Disease

Coronary heart disease (CHD) [or coronary artery disease (CAD)] occurs when the

arteries that supply blood to the heart muscle (the coronary arteries) become hard-

ened and narrowed due to plaque buildup on their inner walls [6]. As the plaque

increases in size, the insides of the coronary arteries get narrower and less blood can

flow through them. Eventually, blood flow to the heart muscle is reduced, and, be-

cause blood carries much-needed oxygen, the heart muscle is not able to receive the

amount of oxygen it needs. Reduced or cutoff blood flow and oxygen supply to the

3



heart muscle can result in an angina or even a heart attack.

Angina is chest pain or discomfort that occurs when the heart does not get enough

blood. However if there is no blockage, enough blood eventually flow to recover

making the pain mild and temporary. A heart attack, on the other hand, happens

when a blood clot develops at the site of plaque in a coronary artery and suddenly

cuts off most or all blood supply to that part of the heart muscle. Cells in the

heart muscle begin to die if they do not receive enough oxygen-rich blood. This can

cause permanent damage to the heart muscle. Over time, CHD can weaken the heart

muscle and contribute to arrhythmias (changes in the normal beating rhythm) and

even heart failure. Heart failure does not mean that the heart has stopped or is about

to stop. Instead, it means that the heart is failing to pump blood the way that it

should.

About 13 million people in the United States have CHD. It is the leading cause

of death in both men and women. Each year, more than half a million Americans die

from CHD. In United States, estimated direct cost1 of coronary heart disease in 2007

is 164.9 Billion Dollars [7].

Treatment for CHD may include lifestyle changes, medicines, and special proce-

dures like angioplasty and coronary artery bypass surgery. The goals of treatment

are to relieve symptoms, slow or stop plaque buildup by controlling or reducing the

risk factors, lower the risk of having blood clots form, which can cause a heart attack,

and widen or bypass clogged arteries.

Angioplasty opens blocked or narrowed coronary arteries. It can improve blood

flow to the heart, relieve chest pain, and possibly prevent a heart attack. Sometimes

a device called a stent is placed in the artery to keep the artery propped open after

the procedure.

In CABG surgery, arteries or veins from other areas in the body are used to bypass

1Cost of hospitals, nursing homes, physicians and other professions, drugs, and medical durables.
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the narrowed coronary arteries. Bypass surgery can improve blood flow to the heart,

relieve chest pain, and possibly prevent a heart attack.

1.3 Medical Approaches to Coronary Artery By-

pass Graft Surgery

Coronary artery bypass graft surgery (CABG) reroutes, or bypasses, blood around

clogged arteries to improve blood flow and oxygen to the heart.

The arteries that bring blood to the heart muscle (coronary arteries) can become

clogged by plaque (a buildup of fat, cholesterol and other substances). This can slow

or stop blood flow through the heart’s blood vessels, leading to chest pain or a heart

attack. Increasing blood flow to the heart muscle can relieve chest pain and reduce

the risk of heart attack.

In CABG surgery, surgeons take a segment of a healthy blood vessel from another

part of the body and make a detour around the blocked part of the coronary artery.

After the surgery, full recovery may take a few months or more.

Open Chest On-pump Coronary Artery Bypass Graft Surgery

Open-heart surgery (Figure 1.2) is done while the bloodstream is diverted through a

pump oxygenator (heart-lung machine). In most coronary bypass graft operations,

cardiopulmonary bypass (CPB) with a heart-lung machine is used. This means that

besides the surgeon, a cardiac anesthesiologist, a surgical nurse, and a competent

perfusionist (blood flow specialist) are required.

CPB has some deleterious effects that are primarily related to a systemic inflam-

matory response, which results when blood comes into contact with the surface of the

extracorporeal circuit of the heart-lung machine [9].

In 2004, 646,000 open-heart procedures were performed in the United States.
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Figure 1.2: Open chest on-pump coronary artery bypass graft surgery. Close-up shot
of the patient’s heart and chest cavity. In this shot one can see a tube leading into
the heart as well as the chest spreaders used to keep the chest cavity open [8].

Among these were 427,000 bypass surgeries performed on 249,000 patients [10].

Off-Pump Coronary Artery Bypass Graft Surgery Using Stabilizers

During the past several years, more surgeons have started performing off-pump coro-

nary artery bypass graft surgery (OPCABG), where the heart continues beating while

the bypass graft is sewn in place.

In these operations, a region of the heart is stabilized to provide a (almost) still

work area using passive mechanical stabilizers. Motion of the target tissues is inhib-

ited sufficiently so that operator can treat the area. Application of the stabilizer is

limited to the front surface of the heart and significant residual motion is observed

during stabilization [11]. Three different mechanical stabilizers were tested by Lemma

et al. and average residual motion of left anterior descending artery (LAD) between
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1.5-2.1 mm was reported. Without mechanical stabilizers, LAD exhibit an excursion

of 12.5 mm, whereas its diameter is about 0.5-2.0 mm and the accuracy needed for

suturing these coronary arteries is in the order of 0.1 mm.

This approach results in fewer post-operative complications since cardiopulmonary

bypass (CPB) machine is avoided.

Minimally Invasive Heart Surgery

Minimally invasive coronary artery surgery is also called limited access coronary artery

surgery. It is being evaluated in several medical centers as an alternative to the

standard methods for CABG. Like CABG, the surgery is done to reroute, or bypass,

blood around coronary arteries clogged by fatty buildups of plaque and improve the

supply of blood and oxygen to the heart.

Port-access coronary artery bypass (PortCAB) or minimally invasive direct visu-

alization coronary artery bypass (MIDCAB) are commonly used.

In PortCAB, heart is stopped and blood is pumped through a heart-lung machine

to receive oxygen during the surgery. Then small incisions (ports) are made in the

chest. Chest arteries or veins from a leg are attached to the heart to bypass the

clogged coronary artery or arteries. The surgical team passes instruments through

the ports to perform the bypasses. In the meantime, the heart surgeon views these

operations on the video monitors.

MIDCAB is used to avoid the heart-lung machine. It is done while the heart is

still beating and is intended for use when only one or two arteries will be bypassed.

MIDCAB uses a combination of small holes or ports in the chest and a small incision

made directly over the coronary artery to be bypassed. The surgeon usually detaches

an artery from inside the chest wall and re-attaches it to the clogged coronary artery

farthest from the occlusion. The surgeon views and performs the attachment directly-

rather than using a video monitor-so the artery must be right under the incision.
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1.4 Contributions

This thesis discusses the design and implementation of model-based intelligent ARMC

algorithms, and a sensing system formulation for robust measurement of the heart

motion.

With the proposed system, off-pump beating heart surgery will be possible with-

out using passive stabilizers, and the surgery can be performed with the technical

convenience of on-pump procedures. Establishing this will decrease the hospitaliza-

tion time and the cost of the operations. The proposed control algorithm uses ECG as

the biological signal to provide a better estimate of the heart motion during tracking.

In this work a novel contact-type position sensor is developed to measure the beat-

ing heart position. Using complementary and redundant sensors with the proposed

control loop for active tracking of the heart will provide superior performance and

safety during the beating heart bypass surgery. A preliminary noise characterization

for the future sensor system implementation and optimal placement of the sensors to

decrease the measurement uncertainty is given.

Although, some of the system concepts in the literature are similar to the proposed

scheme in this study, there are significant differences including their lack of intelli-

gent model-based predictive control using biological signals, and multi-sensor fusion

with complementary and redundant sensors, which form the core of the proposed

architecture.

With the architecture proposed in this thesis, the degree of awareness is increased

by utilizing a heart motion model in reference signal estimation. Inclusion of biological

signals in a model-based predictive control algorithm increases the estimation quality,

and such a scheme will provide better safety with more precise detection of anomalies

and switching to a safer mode of tracking.
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1.5 Thesis Outline

In Chapter 2, related work in the literature and analysis of the experimental heart

motion data used in this work are given. Control architecture for ARMC is proposed

in Chapter 3. Chapter 4 describes the control algorithms used in the tracking prob-

lem, and discusses the importance of the ECG signal and ECG wave forms’ detection.

In Chapter 5, simulation and experimental results of the control algorithms are pre-

sented. The whisker position sensor system developed for measuring heart motion is

described in Chapter 6. An analytical formulation for the fusion of sensing systems

to be used in the future systems is given in Chapter 7. Finally, the conclusions are

presented and future directions are proposed.
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Chapter 2

Related Work in the Literature

2.1 Motion Canceling in Medical Interventions

The earlier studies in the literature on canceling biological motion in robotic-assisted

medical interventions focus on canceling respiratory motion. Sharma et al. [12] and

Schweikard et al. [13] studied the compensation of the breathing motion in order to

reduce the applied radiation dose to irradiate tumors. Both studies concluded that

motion compensation was achievable. Riviere et al. [14] looked at the cancelation of

respiratory motion during percutaneous needle insertion. Their results showed that

an adaptive controller was able to model and predict the breathing motion. Trejos

et al. [15] conducted a feasibility study on the ability to perform tasks on motion-

canceled targets, and demonstrated that tasks could be performed better using motion

canceling.

Madhani and Salisbury [16] developed a 6-DOF telesurgical robot design for gen-

eral minimally invasive surgery, which was later adapted by Intuitive Surgical Inc.,

Palo Alto, CA, for their commercial system, called daVinci. Computer Motion Inc.,

Goleta, CA2, developed a 5-DOF telesurgical robotic system, called Zeus, with scaled

motions for microsurgery and cardiac surgery. Both of these systems are currently

2Computer Motion Inc. was acquired by Intuitive Surgical Inc., and does not exist anymore
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in use for cardiothoracic surgery applications. These systems are designed to enable

dexterous minimally invasive cardiac surgery, and they are neither intended nor suit-

able for off-pump CABG surgery with active relative motion canceling, due to their

size, bandwidth, and lack of motion tracking capabilities. These systems can only

perform on-pump or off-pump CABG surgery using passive stabilizers, therefore have

the same limitations as conventional tools described above.

Gilhuly et al. [17] tested suturing on a beating heart model using optical stabi-

lization through strobing. They found that participants’ reaction times were too slow

to adjust to the changing light conditions, and concluded that stabilization methods

should not rely on surgeons’ reaction times.

Nakamura et al. [18] performed experiments to track the heart motion with a

4-DOF robot using a vision system to measure heart motion. The tracking error

due to the camera feedback system was relatively large (error on the order of few

millimeters in the normal direction) to perform beating heart surgery. There are also

other studies in the literature on measuring heart motion. Thakor et al. [19] used a

laser range finder system to measure one-dimensional motion of a rat’s heart. Groeger

et al. [20] used a two-camera computer vision system to measure local motion of heart

and performed analysis of measured trajectories, and Koransky et al. [21] studied the

stabilization of coronary artery motion afforded by passive cardiac stabilizers using

3-D digital sonomicrometer.

Ortmaier et al. [22, 23] used ECG signal in visual measurement of heart motion

using a camera system for estimation of the motion when the surgical tools occluded

the view. They reported significant correlations between heart surface trajectory and

ECG signals, which implies these inputs can be used interchangeably. Therefore, these

two independent components were considered as inputs to the estimation algorithm.

In their study, heart motion estimation was not based on a heart motion model and

it was completely dependent on previously recorded position data. Actual tracking
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of the heart motion using a robotic system was planned as future work.

More recently, in a pair of independent parallel studies by Ginhoux et al. [24]

and Rotella [25], motion canceling through prediction of future heart motion was

demonstrated. In both studies, model predictive controllers were used to get higher

precision tracking. In the former, a high-speed camera was used to measure heart

motion. Their results indicated a tracking error variance on the order of 6-7 pixels

(approximately 1.50-1.75 mm calculated from the 40 pixel/cm resolution reported

in [24]) in each direction of a 3-DOF tracking task. Although it yielded better results

than earlier studies using vision systems, the error was still too large to perform heart

surgery, as operation targets to be manipulated using the robotic systems in a CABG

surgery are blood vessels with 2 mm or less in diameter. In Rotella’s study [25], using

a 1-DOF test bed system, accuracy very close to the desired error specifications for

heart surgery was achieved, and it was concluded that there still was a need for better

prediction of heart motion.

A heart model was proposed by Cuvillon et al. [26], based on the extraction of

the respiration motion from the heartbeat motion using the QRS wave form of the

ECG and lung airflow information as sensory inputs. They concluded that heartbeat

motion is not the product of two independent components, rather the heartbeat

motion is modulated by the lung volume.

Duindam and Sastry [27] proposed a method to separate 3-D quasiperiodic heart

motion data into its two periodic components using ECG and respiratory information.

Future heart surface motion was estimated using the separated periodic components;

and an explicit model based controller was proposed to asymptotically cancel the

relative motion between surgical tools and a region on the heart surface.
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2.2 Analysis of Heart Data

In this section, the experimentally collected heart motion data used in this study are

described. The data were collected from an animal model (an adult porcine), and

all study was done based on this prerecorded data. Here, first the collection of heart

motion data will be explained. The requirements for the tracking will be calculated

in the data analysis section. Then, ECG, the biological signal employed, and its use

in this research will be explained. Finally, a short description of the real-time ECG

wave form detection will be given.

Experimental Setup for Measurement of Heart Motion

A sonomicrometry system manufactured by Sonometrics Inc. (London, Ontario,

Canada) was used to collect the heart motion data used in this study. The collection

was carried out by M. Cenk Cavusoglu. A sonomicrometer measures the distances

within the soft tissue via ultrasound signals. A set of small piezoelectric crystals

embedded, sutured, or otherwise fixed to the tissue are used to transmit and receive

short pulses of ultrasound signal (Figure 2.1), and the “time of flight” of the sound

wave as it travels between the transmitting and receiving crystals are measured. Us-

ing these data, the 3-D configuration of all the crystals can be calculated [28]. No

analog conversion process is involved in these measurements, which eliminates the

need to calibrate the system. Crystal operation frequency of 64 MHz provides res-

olution of 24 μm in the measurement of intertransducer distances [29]. Absolute

accuracy of the sonomicrometry system is 250 μm (approximately 1/4 wavelength of

the ultrasound) [30].

The sonomicrometry system has an important advantage over using a vision

system-which is the sensor of choice in the earlier works in the literature-for mea-

suring heart motion for robotic ARMC. A stand-alone vision system is not suitable
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Figure 2.1: Piezoelectric crystals (courtesy of Sonometrics Corporation). Left: Stan-
dard piezoelectric crystal in 2 mm diameter that were used on the base plate. Right:
Piezoelectric crystal with suture loops embedded to the crystal head. Loops are used
to suture the crystal onto muscle.

for use during surgical manipulation because the surgical instruments (including the

robotic tools) will occlude the point of interest (POI) rendering the vision system

practically useless, whereas the sonomicrometry system does not have this shortcom-

ing. Although an algorithm was developed by Ortmaier [22] to estimate the heart

motion when the view is occluded, it is only applicable to brief occlusions.

In the experimental set-up one crystal of the sonomicrometric system was sutured

next to the left anterior descending artery (LAD) located on the front surface of the

left ventricle of the animal heart, at a point one third of the way from the start-

ing point of the LAD. Six other crystals were asymmetrically mounted on a rigid

plastic base of 56 mm in diameter, on a circle of diameter 50 mm, forming a refer-

ence coordinate frame. This rigid plastic sensor base was inserted behind the heart,

inside the pericardial sac, and the motion of the POI on the LAD was measured

relative to this coordinate frame. The pericardial sac had been filled with a saline

solution, completely immersing the sensor base, which enabled the continuous contact

of sonomicrometric sensor system with the heart and proper operation. Data were

processed offline using the proprietary software provided with the system to calculate

the 3-D motion of the POI. The only filtering performed on the data produced by the

sonomicrometry system was the (very limited) removal of the outliers, which occa-
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sionally occur as a result of ultrasound echoing effects. Although the sonomicrometry

system can operate at 2 kHz sampling rate for measuring the location of the POI

crystal relative to the fixed base, in the test experiments, data were collected at a

sampling rate of 257 Hz collecting redundant measurements.

Analysis of Heart Motion Data

During the 60 seconds data collection period, the average heart rate of the animal

model was 120 beats per minute, as calculated from the ECG signal recorded simul-

taneously with the motion data. The peak displacement of the POI from its mean

location was 12.1 mm, with a root-mean-square (RMS) value of 5.1 mm. Figure 2.2

shows the Power Spectral Density (PSD) of the motion of the POI in the y and z

directions at different scales.

Two observable dominant modes of motion are visible in Figure 2.2. The first

mode is at 0.37 Hz which corresponds to the breathing motion. The second dominant

mode is at 2.0 Hz which corresponds to the main mode of motion due to heart

beating, as it matches the frequency observed from the ECG signal. The peak at the

4.0 Hz is the first harmonic of the heartbeat motion. The component of motion data

corresponding to breathing motion, which is estimated by filter has a RMS magnitude

of 2.86 mm. The remainder of motion, which is due to the beating of the heart, has

a RMS magnitude of 4.18 mm. The POI motion can be approximated with an error

less than 273 μm RMS with frequency components up to 26 Hz. This gives the

specifications for the robotic mechanism and ARMC control algorithm design. These

results are consistent with the heart motion measurements reported by Groeger [20].

The data in that study were collected using a stereo vision system. The results of

our study confirm the reported results by an experimental setup using an alternate

sensory modality, i.e., the sonomicrometry system.

The proposed control algorithm (details in Section 3.2) is based on the premise
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Figure 2.2: Power Spectral Density (PSD) of the motion of the point of interest
(POI) is shown in two different scales. Observable dominant modes are at 0.37 Hz
and 2.0 Hz, which correspond to breathing and heartbeat motions respectively. Peak
at the 4.0 Hz is the first harmonic of the heartbeat motion.

that the heart motion is quasiperiodic and the motion during the previous beats can be

used, to some extent, as a feedforward signal during the control of the robotic tool for

ARMC. Here, our main concern is with the moderate-to-high frequency components

of the motion since they are the most demanding for the mechanism and the ARMC

control algorithm. As described above, the low frequency components of motion

typically results from breathing (bandwidth of 1.0 Hz including the main mode of

the breathing frequency), and can easily be canceled using a feedback controller.

The feedforward controller is needed to cancel the high frequency components of

motion. After the breathing motion is filtered out, the PSD of the motion signal is

composed of very narrow peaks at the harmonics of the heartbeat frequency (Figure

2.3). This shows that the moderate-to-high frequency component of the motion is
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Figure 2.3: Separation of Breathing Motion and Heartbeat Motion using a low-pass
filter with cutoff frequency 1.0 Hz. (A) Motion of the measured point of interest
(POI) on the heart in y-direction. (B) Heartbeat Motion and Breathing Motion
separated using a low-pass-filter.

quasiperiodic, with frequency equal to heartbeat rate, supporting the feasibility of

the ARMC algorithm.
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Chapter 3

Model-Based Active Relative

Motion Cancelation

3.1 Motivation and Methodology

The control algorithm is the core of the robotic tools for tracking heart motion during

coronary artery bypass graft (CABG) surgery. The tools need to track and manipulate

a fast moving target with very high precision. During free beating, individual points

on the heart move as much as 7-10 mm. Although the dominant mode of heart motion

is on the order of 1-2 Hz, measured motion of individual points on the heart during

normal beating exhibit significant energy at frequencies up to 26 Hz. The coronary

arteries that are operated on during CABG surgery range from 2 mm in diameter

down to smaller than 0.5 mm, which means the system needs to have a tracking

precision in the order of 100 μm. This corresponds to a less than 1% dynamic tracking

error up to a bandwidth of about 20 to 30 Hz.

The specifications for tracking heart motion are very demanding. These stringent

requirements could not be achieved using traditional algorithms in earlier attempts

reported in the literature [18,19], as they rely solely on feedback signal from measure-
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ment of heart motion using external sensors, and do not use any physiological model

of the heart motion.

Using a basic model of heart motion can significantly improve tracking perfor-

mance since heart motion is quasiperiodic [24]. It is also possible to use the in-

formation from the biological signals, such as ECG activity, and aortic, atrial and

ventricular blood pressures, to control the robotic tools tracking the heart motion.

The proposed control architecture is shown in Figure 3.1. In this architecture, the

control algorithm utilizes the biological signals in a model-based predictive control

fashion. Using biological signals in the control algorithm improves the performance of

the system since these signals are products of physiological processes which causally

precede the heart motion. Therefore a heart motion model can be formed by com-

bining motion data and biological signal data.

In this study, ECG signal is used in the heart model. ECG contains records for

the electrical activity of the heart. Electrical signals, which stimulate the contraction

of the heart muscles, precede the actual contraction by about 150-200 ms, and these

signals can be observed in the ECG measurements. Because of this, ECG signal is very

suitable for period-to-period synchronization with sufficient lead time for feedforward

control, and identification of arrhythmias.

3.2 Intelligent Control Algorithms for Model-Based

ARMC

In the Model-Based ARMC Algorithm architecture, shown in Figure 3.1, the control

algorithm uses information from multiple sources: mechanical motion sensors which

measure the heart motion, and sensors measuring biological signals. The control algo-

rithm identifies the salient features of the biological signals and uses this information

to predict the feedforward reference signal.
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Figure 3.1: Proposed control architecture for designing Intelligent Control Algorithms
for Active Relative Motion Canceling on the beating heart surgery.

The control algorithm also handles the changes in the heart motion, including

adapting to slow variations in heart rhythm during the course of the surgery, as well

as handling occasional arrhythmias which may have natural causes or may be due to

the manipulation of the heart during surgery.

The two dominant modes of the motion of POI are separated by using a pair of

complementary filters (Section 2.2). The control path for tracking of the heartbeat

component of the motion has significantly more demanding requirements in terms

of the bandwidth of the motion that needs to be tracked. That is why a more

sophisticated feedforward algorithm is employed for this part. Respiratory motion has

significantly lower frequency, and it is canceled by a purely feedback based controller.

In the proposed architecture (Figure 3.1), the robot motion control signal is computed

by combining these two parts. The feedforward part is calculated with the signal

provided by the heart motion model, and the feedback signal is calculated with the

direct measurements of heartbeat and respiratory motions. The feedforward controller

was designed using the model predictive control [31] and optimal control [32, 33]

methodology of modern control theory, as described in Chapter 4.

The confidence level reported by the heart motion model is used as a safety switch-
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ing signal to turn off the feedforward component of the controller if an arrhythmia is

detected, and switch to a further fail-safe mode if necessary. This confidence level will

also be used to adaptively weigh the amount of feedforward and feedback components

used in the final control signal. These safety features will be an important component

of the final system. Therefore, the best design strategies for developing feedforward

motion control was aimed.

In Figure 3.2, a finite-state model for the cardiac cycle is shown. The model

involves primary states of the heart’s physiological activity. Transitions between the

states are depicted using the states of the mitral and aortic valves of heart and P, R

and T waves of the ECG. During the ECG wave form detection process, QRS complex

is detected and used in substitute to R wave. Any out of sequence or abnormal states

in the cycle can be identified as irregularity. Using this model, rhythm abnormalities

and arrhythmias can be spotted and system can be switched to a safer mode of

operation.

Although, some of the system concepts in the literature are similar to this scheme

at the most basic level, there are significant differences including their lack of intelli-
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gent model-based predictive control using biological signals, and multi-sensor fusion

with complementary and redundant sensors, which form the core of our proposed

architecture. The system by Nakamura et al. [18] used purely position feedback ob-

tained from a two-camera computer vision system. Neither biological signals were

used in the system, nor was a feedforward control component present. The system by

Ginhoux et al. [24] utilized a feedforward control algorithm based on model predic-

tive control and adaptive observers; however, it did not utilize any biological signals.

Ortmaier et al. [23] utilized ECG using a “model free” method, i.e., without using a

heart model in the process.

With the architecture proposed, the degree of awareness is increased by utilizing

a heart motion model in reference signal estimation. Inclusion of biological signals

in a model-based predictive control algorithm increases the estimation quality, and

such a scheme provides better safety with more precise detection of anomalies and

switching to a safer mode of tracking.
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Chapter 4

Control Algorithms

The control algorithm is the core of the robotic tools for tracking heart motion during

coronary artery bypass graft (CABG) surgery. The robotic tools should have high

precision to satisfy the tracking requirements [more than 97% motion cancelation

(details in Section 3.2)]. During free beating, individual points on the heart move

as much as 10 mm. Although the dominant mode of heart motion is in the order

of 1-2 Hz, measured motion of individual points on the heart during normal beating

exhibit significant energy at frequencies up to 26 Hz.

As mentioned earlier, the heart motion is quasiperiodic and previous beats can

be used as a feedforward signal during the control of the robotic tool for ARMC.

Rotella [25] compared a model-based predictive controller, using the estimation of the

heart motion, with feedback based controllers on a 1-DOF robotic test-bed system.

The model-based predictive controller outperformed the feedback based controllers

both in terms of the RMS error and the control action applied. In Appendix A,

the comparison of model-based predictive controller and feedback based controllers is

extended to 3-D case with a 3-DOF robotic test-bed system. The results show that

model-based predictive controller is more robust and effective than the traditional

controllers in tracking the heart motion. Therefore, in this thesis, the focus will be
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on the model-based predictive controllers.

A key component of the ARMC algorithm, when a predictive controller is used, is

estimation of the reference motion of the heart which is provided to the feedforward

path. If the feedforward controller has high enough precision to perform the necessary

tracking, the tracking problem can be reduced to predicting the estimated reference

signal effectively.

Ginhoux et al. [24] used an adaptive observer, which identifies the Fourier compo-

nents of the past motion at the base heart rate frequency and its several harmonics

to estimate the future motion. This approach assumes that the heartbeat rate stays

constant. Ortmaier et al. [23] estimated the heart motion by matching the current

heart position and ECG signals of sufficient length with recorded past signals, assum-

ing that with similar inputs, heart would create outputs similar to the ones detected

in the past.

In Sections 4.1 and 4.4, reference signal estimation schemes used for the ARMC

algorithm are described. Sections 4.2 and 4.3 explain the Electrocardiogram (ECG)

and ECG wave form detection methodology used in this study. Finally, the control

problem and its solution are given in Sections 4.5 and 4.6 respectively.
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4.1 Reference Signal Estimation

A simple prediction scheme that assumes constant heartbeat rate can be used for

reference signal estimation. Heartbeat is a quasiperiodic motion with small variations

in every beating cycle. If the past heartbeat motion cycle is known, it can be used as

an estimate reference signal for the next cycle. Any measured heart position value can

be approximated forward one cycle as long as the heartbeat period for that cycle is

known. In this case, a constant heartbeat period (0.5 s) was used to store one period

length of the heartbeat signal. The motion of the heart from the previous cycle was

used as a prediction of the next cycle (Figure 4.1). The stored beating cycle was used

as the approximate future reference beating signal in the ARMC algorithm.

Using the last heartbeat cycle exactly as the future reference would result in

large errors due to the quasiperiodic characteristics of the heart motion and other

irregularities of the signal. Therefore, instead of using the past beating cycle directly,

the reference signal was processed online. To achieve this, any position offset between

the starting point of the past cycle, y
hrt,pr

, and the starting point of the next cycle

(i.e., current position in time), y
hrt

, were lined up by subtracting the difference, yerr

(4.1). But the added offset was gradually decreased over a constant length of time

(hereafter this length will be referred to as horizon, T ) using a high order error

correction function defined by (4.2). Error correction functions of different orders are

shown in Figure 4.2. This calculation was carried out T steps ahead (4.3). So, only

some percentage of the current error was added to the future signals, and no error was

added to the signals T steps ahead (Figure 4.3). This maintained the continuity of

25



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Control Cycle Steps Ahead (Horizon)

P
e
rc

e
n
ta

g
e
 o

f 
E

rr
o
r 

A
d
d
e
d
 

Error Correction Functions of different order

 

 

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8
p = 9
p = 10
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the signal estimate and converges it onto the actual signal within the horizon ahead.

yerr [k] = y
hrt

[k] − y
hrt,pr

[k] (4.1)

f [m] = 1 −
(

m

T

)p

(4.2)

yest [k + m] = y
hrt,pr

[k + m] + f(m) yerr [k] (4.3)(
m = 0, 1, . . . , T

)
where y

hrt
is the measured motion of the POI on the heart, y

hrt,pr
is the measured

motion of the previous cycle (y
hrt,pr

[k] = y
hrt

[k − N ], with N being the heartbeat

period), yest is the desired reference estimate, k is the current time step, m is the

number of steps ahead that the signal is calculated, p is the order of the error correc-

tion function, and f [m] is the polynomial weighting function used. In Figure 4.3, the

actual and the estimated motions can be seen as the control executes.
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4.2 Electrocardiogram as the biological signal

The human body acts as a giant conductor of electrical currents. Connecting electri-

cal leads to any two points on the body may be used to register an electrocardiogram

(ECG). Thus, ECG contains records for the electrical activity of the heart. The ECG

of heart forms a series of waves and complexes that have been labeled in alphabetical

order, the P wave, the QRS complex, the T wave and the U wave (Figure 4.4) [10].

Depolarization of the atria produces the P wave; depolarization of the ventricles pro-

duces the QRS complex; and repolarization of the ventricles causes the T wave. The

significance of the U wave is uncertain [34]. Each of these electrical stimulations re-

sults in a mechanical muscle twitch. This is called the electrical excitation-mechanical

contraction coupling of the heart. Thus, the identification of such waves and com-

plexes can help determine the timing of the heart muscle contractions. Using ECG

in the control algorithm can improve the performance of the position estimation be-

cause these wave forms are results of physiological processes that causally precede

the heart motion and also because ECG is significantly correlated with heartbeat
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motion [23]. The time relationship between action potential and mechanical force

developed by ventricular muscle is shown in Figure 4.5 [35,36]. Rapid depolarization

of a cardiac muscle fiber is followed by force development in the muscle. The comple-

tion of repolarization coincides approximately with the peak force, and the duration

of contraction parallels the duration of the action potential, which is about 150 to

200 ms long. The lag between these two formations enables the prediction of future

heart activity. Although this time lag is about 200 ms, it is sufficient for real-time

detection of the waves and complexes of the ECG. Average detection time for the

test data was 174 ms (see Section 4.3 for test database details).

The ECG signal employed in this research was collected with the analog data

acquisition part of the sonomicrometry system used. The ECG data were recorded

simultaneously with the collection of the heart motion data at the same sampling

rate of 257 Hz.
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Figure 4.5: Time relationship between action potential and mechanical force devel-
oped by ventricular muscle. Rapid depolarization of a cardiac muscle fiber is followed
by force development in the muscle. The lag between the excitation and the peak
force is about 200 ms long.
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4.3 ECG Wave Form Detection

There is substantial literature on detecting the ECG characteristic points with high

detection accuracies (e.g. [37–40]). However most of these algorithms are designed for

offline processing of ECG signals and only a few of them are for real-time detection

of ECG signal complexes [41,42]. The difficulty in detection arises from the diversity

of complex wave forms and the noise and artifacts accompanying the ECG signals.

In this work, the significant ECG wave forms and points, such as P, QRS and T,

were detected in hard real time3 by an algorithm adapted from Bahoura et al. [42].

This one was selected among other available algorithms because it employs signal

localization both in time and frequency using wavelet analysis, characterization of

the local regularity of the signal and separation of the ECG waves from serious noise,

artifacts, and baseline drifts in real time.

A short explanation of the ECG wave form detection algorithm is as follows.

Wavelet transform of the ECG data at the sampling frequency was calculated at

scales 2j, j = 1...5. These energy levels cover the power spectra of ECG signal:

The energy of the QRS complex is typically placed in the levels 23 and 24, whereas

the energies of P and T waves are located at levels 24 and 25. To detect peaks,

threshold filters and decision making rules were used in every energy level. First,

QRS complexes were detected by locating any peak pairs on the wavelet transforms.

Since both QRS and T peak pairs can appear on the same energy levels, unmarked

peaks on levels 24 and 25 were marked as T waves after the possible QRS complexes

were identified. P wave detection was done similarly by detecting peak pairs at the

energy scale 24 which corresponded to neither a QRS complex nor a T wave.

Bahoura et al. [42] evaluated the original algorithm in real time with the MIT-

BIH Arrythmia Database [43]. This database contains 48 half-hour excerpts of two-

3In hard real time no corrections are allowed to be performed to the past data after the operation
deadline expires.

30



A

C

B

QRS

D

T P

QRS or P

QRS or T
T

QRS

P
 o

r 
T

P

ECG Cycle

Missed Wave

Return to Cycle

Figure 4.7: Finite-state model for the ECG Wave form detection.

channel ambulatory ECG recordings. The recordings were digitized at 360 samples

per second per channel with 11-bit resolution over a 10 mV range. Two or more

cardiologists independently annotated each record; disagreements were resolved to

obtain the computer-readable reference annotations for each beat included with the

database. Using the database, Bahoura et al. [42] reported a 0.29% false detection

rate (135 false positive beats and 184 false negative beats out of 109,809 beats),

showing the algorithms capability in detecting QRS complexes. Constant detection

parameters rather than adaptive ones were used, and this produced a 1.49% false

detection rate using the same database (408 false positive beats and 709 false negative

beats out of 75,010 healthy beats). Table 4.1 summarizes the performance results for

both evaluations. Note that no healthy beats were annotated for some of the ECG

recordings (i.e., 107, 109, 111, etc.) and therefore no healthy QRS detections were

viable in these cases.

With this method, QRS-T-P waves were detected in real time for the collected

56 s ECG data with 100% QRS complex and T wave detection rates, and 97.3% P

wave detection rate (Figure 4.6). Missed waves were determined according to the

ECG state transitions shown in Figure 4.7. Detected signals were used to estimate

the Reference Signal as described in Section 4.4 (Figure 4.8).
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Table 4.1: QRS detection performance results using MIT-BIH Arrhythmia Database
Bahoura et al. Bebek et al.

Data
Type

Total
Beats

Healthy
Beats

False
Positive

False
Negative

False
Detection

False
Positive

False
Negative

False
Detection

100 2273 2237 0 0 0 0.00% 0 0 0 0.00%

101 1865 1859 0 2 2 0.11% 2 0 2 0.11%

102 2187 99 0 0 0 0.00% 0 1 1 1.01%

103 2084 2081 0 1 1 0.05% 1 0 1 0.05%

104 2230 163 10 2 12 0.54% 0 0 0 0.00%

105 2572 2526 27 15 42 1.63% 103 5 108 4.28%

106 2027 1507 6 2 8 0.39% 7 0 7 0.46%

107 2137 0 0 1 1 0.05%

108 1763 1739 20 29 49 2.78% 10 73 83 4.77%

109 2532 0 0 1 1 0.04%

111 2124 0 1 0 1 0.05%

112 2539 2535 2 3 5 0.20% 9 0 9 0.36%

113 1795 1787 0 1 1 0.06% 0 0 0 0.00%

114 1879 1820 4 2 6 0.32% 1 228 229 12.58%

115 1953 1951 0 0 0 0.00% 0 0 0 0.00%

116 2412 2301 4 2 6 0.25% 3 21 24 1.04%

117 1535 1533 0 0 0 0.00% 2 0 2 0.13%

118 2275 0 1 0 1 0.04%

119 1987 1543 2 1 3 0.15% 0 0 0 0.00%

121 1863 1859 2 2 4 0.21% 1 21 22 1.18%

122 2476 2474 0 0 0 0.00% 0 0 0 0.00%

123 1518 1514 0 0 0 0.00% 1 0 1 0.07%

124 1619 0 1 0 1 0.06%

200 2601 1742 0 0 0 0.00% 31 2 33 1.89%

201 1963 1623 7 24 31 1.58% 0 1 1 0.06%

202 2136 2060 1 0 1 0.05% 0 2 2 0.10%

203 2982 2528 11 21 32 1.07% 54 57 111 4.39%

205 2656 2570 1 3 4 0.15% 0 3 3 0.12%

207 1862 0 3 5 8 0.43%

208 2956 1585 2 6 8 0.27% 27 10 37 2.33%

209 3004 2620 0 1 1 0.03% 18 2 20 0.76%

210 2647 2421 2 4 6 0.23% 9 6 15 0.62%

212 2748 922 0 0 0 0.00% 9 0 9 0.98%

213 3251 2639 0 1 1 0.03% 5 0 5 0.19%

214 2262 0 1 2 3 0.13%

215 3363 3194 0 0 0 0.00% 5 0 5 0.16%

217 2208 244 1 2 3 0.14% 7 0 7 2.87%

219 2154 2082 0 0 0 0.00% 18 0 18 0.86%

220 2048 1952 0 0 0 0.00% 1 0 1 0.05%

221 2427 2030 2 0 2 0.08% 0 1 1 0.05%

222 2484 2060 12 27 39 1.57% 9 266 275 13.35%

223 2605 2028 0 1 1 0.04% 2 0 2 0.10%

228 2053 1687 11 23 34 1.66% 25 8 33 1.96%

230 2256 2253 0 0 0 0.00% 14 1 15 0.67%

231 1886 314 0 0 0 0.00% 0 0 0 0.00%

232 1780 0 1 0 1 0.06%

233 3079 2229 0 0 0 0.00% 34 1 35 1.57%

234 2753 2699 0 0 0 0.00% 0 0 0 0.00%

Total 109 809 75 010 135 184 319 0.29% 408 709 1117 1.49%
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Figure 4.8: Simplified finite state model of the Reference Signal Estimation algorithm
using ECG. Detected ECG Wave forms were used in the estimation of Reference, with
the buffered Past Heart Position Data.

4.4 Reference Signal Estimation Using Biological

Signals

Although the position offset between the previous and current beating cycles can be

eliminated gradually using the technique given in Section 4.1, the error due to changes

in heartbeat period remains. Because heartbeat is a quasiperiodic motion with small

period variations in every beating cycle, these period changes could result in large

offsets in the estimated signal, and can cause jumps during the tracking.

As mentioned earlier in the Section 4.2, ECG signal is very suitable for period-

to-period synchronization. In this reference signal estimation scheme, rather than

using a constant heartbeat period, a variable period that was calculated using ECG

was used. QRS, P, and T waves were used as check points for detecting heartbeat

period. In Figure 4.8, the block diagram for reference signal estimation using ECG

is illustrated.

Here, past heart position data were stored on the fly into a FIFO buffer which
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was 1300 elements long (i.e. 650 ms of data; also note that average heartbeat period

is about 500 ms long). The most recently stored part of the heart position buffer, in

the length of updated heartbeat period using ECG, was used in the estimation.

The current heartbeat period was calculated by averaging the periods of the three

ECG wave forms. The period was updated continuously as new wave forms were

detected. If detection of any ECG wave form was missed, the period of the missed

signal was doubled to compensate for the missing signal. Some upper and lower

period boundaries were imposed in order to eliminate any misses by the detection

algorithm.

In Figure 4.9 the estimated signals just before and after the detection of a new

wave form are shown. In Figure 4.9(B), observe that after the T wave was detected,

the past heartbeat period time mark was shifted back in time as a result of the increase

in the heartbeat period. In the example shown with Figures 4.9(A) and 4.9(B), RMS

estimation error for one heartbeat period ahead decreased from 0.887 mm to 0.456 mm

after the shift. With the use of ECG in ARMC algorithm, heartbeat period in the

estimation of reference signal can be adjusted online.

4.5 Control Problem

Having the estimated trajectory of the next cycle in hand, the following control

problem arises: Tracking of heart motion where there is some knowledge of the future

motion. Then, this optimal tracking problem can be stated as follows.

Suppose the dynamics of the robotic surgical manipulator is given by an n-

dimensional linear system having state equations

x[k + 1] = Φx[k] + Γu[k] (4.4)

y[k] = Hx[k] . (4.5)
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Here, if the dimensions of Φ, Γ, and H are n×n, n×m and l×n respectively; then

x[k] ∈ Rn denotes the system state at time k where x[k0 ] is given for some time

k0 such that k0≤k; u[k] ∈ Rm denotes system control at time k; and the y[k] ∈ Rl

denotes the system output at time k where l entries of y are linearly independent, or

equivalently, the matrix H has rank l. Suppose we are also given an l-vector yest [k]

for all k in the range k0≤k≤k0+T for some times k0 and T . The optimal tracking

problem is then to find the optimal control u for the system (4.4)-(4.5), such that the

output y tracks the signal yest , minimizing the index (4.6)

J [k] =

k0+T∑
k=k0

(
(x[k] − xest [k])TQ(x[k] − xest [k]) + uT [k]Ru[k]

)
(4.6)

xest = Lyest (4.7)

where Q is a non-negative definite symmetric matrix and R is a positive definite

symmetric matrix, and, L and Q are

L = HT (HHT )−1 (4.8)

Q =
(
I − LH

)T
Q1

(
I − LH

)
+ HTQ2H. (4.9)

where Q1 and Q2 are non-negative definite symmetric matrices.

4.6 Receding Horizon Model Predictive Control

Solution to the control problem given in Section 4.5 was derived using the method

given in [32]. An optimal tracking system can be derived using regulator theory. Such

controller consist of a standard optimal feedback regulator involving the backwards

solution of a Riccati equation, and an external signal (feedforward) that results from

the backwards solution of a linear differential equation. Unmeasurable states can be
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replaced by state estimates, under observability of Φ and H (Appendix A.1). Next,

optimal feedback regulator and optimal tracking gain calculations will be described

separately even though they depend on many of the same parameters, and solution

to the control problem will be given.

Optimal Feedback Regulator

To better explain the optimal tracking problem, first the optimal control (or linear

quadratic regulation) will be explained. An optimal regulator can be seen as an

optimal tracking controller where the desired trajectory is zero. Performance index

can be defined as

J [k] =
k0+T∑
k=k0

(xT [k + 1]Qx[k + 1] + uT [k]Ru[k]) (4.10)

This equation takes the form of a quadratic in the control effort and in the state

vector of the system. The idea behind the optimal controller is to find a control effort

that will minimize a cost index equation. Then using the principles of optimality

(4.10) can be transformed into (4.11). The goal for this type of control is to minimize

(4.11) with respect to the control u[k].

J∗[k] = min
u[k]

(
xT [k + 1]Qx[k + 1] + uT [k]Ru[k] + J∗[k + 1]

)
(4.11)

J∗[k] is the optimal index at time k. Q ∈ Rn×n and R ∈ Rm×m are matrix

weighting parameters. By altering the ratio between Q and R, the emphasis of the

optimization problem is shifted. Using a higher Q to R ratio will accentuate the

state and hence regulate more quickly. Using a lower Q to R ratio penalizes higher

control values, so the regulation is slower but uses a smaller control effort. The Q

and R matrices should be positive semi-definite and positive definite, respectively.
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Often for simplicity, the matrices are created as multiples of the identity matrix. For

systems with many states and multiple inputs, this simplifies the tuning process to

two parameters. However, it is possible to weight more heavily different indices of

each matrix in an attempt to penalize particular states or inputs.

Attempting to minimize y − yest is equal to constrain Hx. If H has rank r,

this imposes r constraints on x. By generalizing the performance index, n− r further

constraints can be aimed for x without creating conflict of objectives. Then, formation

of the Q matrix is given below.

Q = HTQ1H + HTQ2H (4.12)

So, the optimal index can also be written as

J∗[k] = min
u[k]

(
yT [k]Q1y[k] + (y[k] − yest [k])TQ2(y[k] − yest [k]) + uT [k]Ru[k] + J∗[k + 1]

)
(4.13)

where Q1 ∈ Rn×n and Q2 ∈ Rp×p are nonnegative definite symmetric matrices and y

is defined as

y[k] = Hx[k]
(

Note that : Hy[k] = 0
)

L = HT (HHT )−1

H = I − LH. (4.14)

For any regulation problem the actual control equation takes the form

u[k] = K[k]x[k]. (4.15)

The optimal index equation can be written in terms of a quadratic of the state and

the next optimal index by substituting in the control equation.
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As it was stated before, this representation is discrete so the state-space equation

is a difference equation. Which means, x[k + 1] can be written in terms of x[k] and

u[k]. By also making this substitution, the cost equation (4.11) can now be written

completely in terms of the current state, x[k], and the next cost index, J∗[k+1]. Note

that the u[k] term is again eliminated through the control equation.

J∗[k] = (Φx[k]+ΓK[k]x[k])T Q(Φx[k]+ΓK[k]x[k])+(K[k]x[k])T R(K[k]x[k])+J∗[k+1]

(4.16)

In an attempt to solve (4.16), (4.17) is assumed to be a solution.

J∗[k] = xT [k]P[k]x[k] (4.17)

Upon substituting in (4.17), nearly every term of (4.16) is a quadratic in terms of the

current value of the state. By repeating the two substitutions used to create (4.16),

the J∗[k + 1] term can be written in terms of the current state as

J∗[k + 1] = xT [k + 1]P[k + 1]x[k + 1]

=
(
Φx[k] + Γu[k]

)T
P[k + 1]

(
Φx[k] + Γu[k]

)
=
(
Φx[k] + ΓKx[k]

)T
P[k + 1]

(
Φx[k] + ΓKx[k]

)
. (4.18)

When eliminating the state from both sides of the equation, it can be seen that P[k]

is actually a solution to a difference matrix Riccatti equation. This Riccatti equation

can be solved by backwards iteration where the final value is P[T ] = 0. All the

parameters in (4.16) are known except K. It is necessary to solve algebraically for

this gain in order to solve numerically the Riccatti equation.

The optimal gain K is solved for by taking the derivative of J∗[k] with respect to

the control effort, u[k], and setting it equal to zero. In order to take the derivative of

the J∗[k + 1] term, it is replaced by xT [k + 1]P[k + 1]x[k + 1] and then subsequently
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the x[k + 1] is exchanged with the state equation. Solving for u[k] then produces

(4.19).

u[k] = −
(
R + ΓT

(
Q + P[k + 1]

)
Γ
)−1(

ΓT
(
Q + P[k + 1]

)
Φ
)
x[k] (4.19)

K[k] = −
(
R + ΓT

(
Q + P[k + 1]

)
Γ
)−1(

ΓT
(
Q + P[k + 1]

)
Φ
)

(4.20)

This derivation shows the optimal gain as a function of time. The Riccatti equa-

tion is now

P[k] = ΦT
{
Q + P[k + 1]−(

Q + P[k + 1]
)
Γ
[
R + ΓT

(
Q + P[k + 1]

)
Γ
]−1

ΓT
(
Q + P[k + 1]

)}
Φ (4.21)

This Riccatti equation is dependent only on the system model and the weighting

matrices Q and R. This equation is independent of the system states, the system

output and the control values. This means that the gain is based only on static

matrices and iterative parameters. Therefore the gains can be solved before control

is exercised on the plant using backwards iteration. The iteration is backwards in

the sense that the starting point of the iteration is some horizon into the future,

k = k0 + T , and the calculation occurs backwards in time to the present, k = k0 .

For simplification during the implementation phase, the Q weighting matrix will

be combined with P[k] to form a new Riccatti parameter, S[k], which is defined by

the (4.22). The final condition for S[T ] is equal to Q. Either P[k] (4.21) or S[k] (4.23)

can be used to determine K[k] in the iteration loop. But, since S[k] will be used in

the calculation of the overall control term, S[k] is used in the iteration process.

S[k] = P[k] + Q (4.22)

S[k] = ΦT
(
S[k + 1] − S[k + 1]Γ

(
R + ΓTS[k + 1]Γ

)−1
ΓTS[k + 1]

)
Φ + Q (4.23)
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Accordingly, K[k] (Equation 4.20) can be written as a function S[k].

K[k] = −
(
R + ΓTS[k + 1]Γ

)−1(
ΓTS[k + 1]Φ

)
(4.24)

Optimal Tracking

An auxiliary system is defined for the estimated signal such that it possesses the same

states as the plant. The relationship between this estimated state and the estimated

output can be described with a difference equation and an output equation.

xest[k + 1] = Fxest[k]

yest[k] = Gxest[k] (4.25)

For tracking purposes, the cost index should attempt to minimize the error be-

tween the newly defined desired state and actual system state. The equation would

hence take the form

J∗[k] = min
u[k]

((
x[k+1]−xest [k+1]

)T
Q
(
x[k+1]−xest [k+1]

)
+uT [k]Ru[k]+J∗[k+1]

)
(4.26)

This form can be forced into the original form (4.11) by creating a new state vector

and carefully choosing the weighting parameter Q.

A new state vector is defined that augments the current state vector with the

states of the auxiliary system. The new state vector now looks like

x̃ =

⎡⎢⎣ x

xest

⎤⎥⎦ . (4.27)

By choosing Q as seen below, the cost index equation can attempt to regulate

x − xest and mimic the form of the regulator problem which already has a solution.

41



Note that the subscripts are dropped for simplification. The matrix Q is originally

an n×n matrix where n is the order of the system. The augmented state is now a

2n×1 vector and hence Q̃ is a 2n×2n matrix.

(x − xest)
TQ(x − xest) = xTQx − xT Qxest − xT

est
Qx + xT

est
Qxest (4.28)

Q̃ =

⎡⎢⎣ q̃11 q̃21

q̃12 q̃22

⎤⎥⎦ (4.29)

[
xT xT

est

]
Q̃

⎡⎢⎣ x

xest

⎤⎥⎦ = xT q̃11x + xT q̃21xest + xT
est

q̃12x + xT
est

q̃22xest (4.30)

Comparing (4.28) and (4.30), Q̃ can be deduced as

Q̃ =

⎡⎢⎣ Q −Q

−Q Q

⎤⎥⎦ (4.31)

Since the state has been augmented, it will be necessary to define a new state

equation. Using (4.25), the below augmented state-space is obtained.

x̃[k + 1] = Φ̃x̃[k] + Γ̃u[k] (4.32)

Φ̃ =

⎡⎢⎣ Φ 0

0 F

⎤⎥⎦ and Γ̃ =

⎡⎢⎣ Γ

0

⎤⎥⎦ (4.33)

At this point the tracking problem can be treated as the regulator problem. The

control effort equation will also retain the form of u[k] = K̃[k]x̃[k], where x̃[k] is the

augmented state. The gain K̃[k] can be written as seen below.

K̃[k] = −
(
Γ̃T
(
P̃[k + 1] + Q̃

)
Γ̃ + R

)−1

Γ̃T
(
P̃[k + 1] + Q̃

)
Φ̃ (4.34)

42



The P̃[k] is the Riccatti equation parameter. For simplification the Q̃ weighting

matrix will be combined with P̃[k] to form a new Riccatti parameter which is defined

by the equation below.

S̃[k] = P̃[k] + Q̃ (4.35)

S̃[k] = Φ̃T
(
S̃[k + 1] − S̃[k + 1]Γ̃

(
R + Γ̃T S̃[k + 1]Γ̃

)−1
Γ̃T S̃[k + 1]

)
Φ̃ + Q̃ (4.36)

The control effort equation can be broken down into block form using 4 terms to

make up the Riccatti parameter and expanding each of the state-space terms.

S̃[k] =

⎡⎢⎣ S11 S12

S21 S22

⎤⎥⎦ (4.37)

Note that in (4.37) all of the matrix blocks within S̃ are functions of k but have been

written only with subscripts. Also, Sxx are all functions of k + 1 for (4.38), (4.39),

(4.40), (4.41), and (4.42).

Then,

K̃[k] = −(Γ̃T S̃[k + 1]Γ̃ + R)−1Γ̃T S̃[k + 1]Φ̃

K̃[k] = (4.38)

−

⎡⎢⎣[ ΓT 0

]⎡⎢⎣ S11 S12

S21 S22

⎤⎥⎦
⎡⎢⎣ Γ

0

⎤⎥⎦+ R

⎤⎥⎦
−1 [

ΓT 0

]⎡⎢⎣ S11 S12

S21 S22

⎤⎥⎦
⎡⎢⎣ Φ 0

0 F

⎤⎥⎦
By multiplying out the matrices, (4.38) is simplified into the equation below.

K̃[k] = −(ΓTS11Γ + R)−1

[
ΓT S11Φ ΓTS12F

]
(4.39)
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So, the control effort is,

u[k] = K̃[k]x̃[k] = −(ΓTS11Γ + R
)−1
[

ΓTS11Φ ΓTS12F

]⎡⎢⎣ x

xest

⎤⎥⎦ (4.40)

u[k] = −
(
ΓTS11Γ + R

)−1

ΓT
(
S11Φx + S12Fxest

)
(4.41)

S11 and S12 need to be calculated in order to find the optimal gains. As was

done for the gain matrix in (4.39), the Riccatti equation can also be expanded and

simplified. The results of this simplification can be seen below.

S̃[k] = (4.42)⎡⎣ ΦT (S11 − S11Γ[ΓT S11Γ + R]−1ΓT S11)Φ ΦT (S12 − S11Γ[ΓT S11Γ + R]−1ΓT S12)F

FT (S21 − S11Γ[ΓT S11Γ + R]−1ΓT S21)Φ FT (S22 − S21Γ[ΓT S11Γ + R]−1ΓT S21)F

⎤⎦+ Q̃

By examining index (1,1) of the matrix in (4.42), a quick substitution back to P

using (4.22) makes the equation identical to the optimal control Riccatti equation,

which was calculated earlier [(4.21) and (4.23)]. So, S11 is defined as,

S11[k] � S[k] (4.43)

However, the gain matrix K̃ is still dependent on S12 and F, which have not been

defined or derived.

Fortunately, both of these unknown parameters can be eliminated with a single

substitution. A new parameter M is defined as,

M[k] � S12[k]xest [k] (4.44)
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So that using (4.25) and (4.44), the control term (4.41) can be written as,

u[k] = −
(
ΓTS[k + 1]Γ + R

)−1

ΓT
(
S[k + 1]Φx[k] + M[k + 1]

)
(4.45)

A simple multiplication of xest will accomplish the task of obtaining the M term

within the S12 equation.

S12[k] = ΦT
(
S12[k + 1]− (4.46)

S11[k + 1]Γ
(
ΓT S11[k + 1]Γ + R

)−1
ΓTS12[k + 1]

)
F −Q

S12[k]xest [k] = ΦT
(
S12[k + 1]Fxest [k]− (4.47)

S11[k + 1]Γ
(
ΓT S11[k + 1]Γ + R

)−1
ΓTS12[k + 1]Fxest [k]

)
−Qxest [k]

M[k] = ΦT
(
M[k + 1]− (4.48)

S11[k + 1]Γ
(
ΓT S11[k + 1]Γ + R

)−1
ΓTM[k + 1]

)
−Qxest [k]

The only unknown parameter of (4.48) at this point is the relationship between

the desired state and desired output. This relationship can be obtained by taking a

pseudo-inverse of the output equation (4.5).

x = Ly

L = HT (HHT )−1 (4.49)

xest = Lyest (4.50)

With the replacement of the derived unknowns (S11[k] = S[k], xest = Lyest), intro-

duced parameter M can be written as,

M[k] = ΦT
(
M[k+1]−S[k+1]Γ

(
ΓTS[k+1]Γ+R

)−1
ΓTM[k+1]

)
−QLyest [k] (4.51)

More simplification in the iteration process could be achieved by using some offline
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calculated parameters. First expanding Φ and collecting M, second separating some

middle terms inside a curly parenthesis and taking transpose of it will result in,

M[k] =
(
ΦT −ΦTS[k + 1]Γ

(
ΓTS[k + 1]Γ + R

)−1
ΓT
)
M[k + 1] − QLyest [k]

M[k] =
(
ΦT −

{(
ΓT S[k + 1]Γ + R

)−1
ΓT S[k + 1]Φ

}T

ΓT
)
M[k + 1] − QLyest [k]

where, S and R are symmetric matrices. Clearly, the terms inside the curly paren-

thesis are equal to K[k] defined in (4.24), finally M[k] is,

M[k] =
(
ΦT + KT [k]ΓT

)
M[k + 1] − QLyest [k] (4.52)

Using (4.52), M can now be calculated iteratively in the same way as the feedback

Riccatti equation using the final condition M[T ] = 0.

Then, the solution to the control problem defined in Section 4.5 can be summarized

as

u[k] = −
(
ΓTS[k + 1]Γ + R

)−1

ΓT
(
S[k + 1]Φx[k] + M[k + 1]

)
(4.53)

where S and M are given by the iterative equations

S[k] = ΦT
(
S[k + 1] − S[k + 1]Γ(ΓTS[k + 1]Γ + R)−1ΓT S[k + 1]

)
Φ + Q (4.54)

M[k] =
(
ΦT + KT [k]ΓT

)
M[k + 1] − QLyest[k] (4.55)

and K is

K[k] = −
(
ΓT S[k + 1]Γ + R

)−1

ΓTS[k + 1]Φ . (4.56)

The resulting control algorithm is composed of feedback and feedforward parts

which are identified, respectively, as follows:

u
fb

[k] = −
(
ΓTS[k + 1]Γ + R

)−1

ΓT S[k + 1]Φx[k] (4.57)

u
ff

[k] = −
(
ΓTS[k + 1]Γ + R

)−1

ΓT M[k + 1] (4.58)
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Figure 4.10: Coarse Block Diagram of MPC

such that

u[k] = u
fb

[k] + u
ff

[k] . (4.59)

Parameters S and M are calculated iteratively backwards with final conditions

S[T ] = Q and M[T ] = 0. The iterations are carried out for horizon, T , times.

Every iteration corresponds to one control cycle set of gains. In effect, calculating

T iterations is like calculating time varying gains up to T steps ahead even though

only the gain for the current time is used. This type of control is also known as

Receding Horizon Control [32], and in this framework, we call the control defined in

(4.53) as the Receding Horizon Model Predictive Control (RHMPC). With every new

control cycle, a new point on the desired signal is used and an old point is dropped

in the gain calculation. The calculation is then repeated at every control cycle. The

prediction horizon recedes as time progresses such that the furthermost point ahead

of the horizon is considered to be moving one step for every control cycle.

The block diagram for this controller is shown in Figure 4.10 which is similar to

that of the Pole-Placement Control algorithm (Figure A.3). The difference between

two is the calculation of the gains. In RHMPC the optimal gains are calculated

for a receding horizon at every control step, where in optimal control the gains are

calculated once at the start. This is what separates RHMPC from optimal control.
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Chapter 5

Simulation and Experimental

Results

Simulations and experiments were carried out for the estimation algorithms with

Receding Horizon Model Predictive Controllers as presented in the previous chapter.

In order to find a baseline performance of the estimation algorithms, a RHMPC

with known future reference signal was also tested. Knowing the future reference

signal for the RHMPC algorithm provides close to perfect tracking. However, using

the future reference signal in heart tracking is not feasible as this makes the algorithm

acasual. In this case, it was used to show the base line performance.

The horizon value, T , is one of the parameters that can be used to tune the algo-

rithm. Even though tuned intuitively, the horizon does make a difference in the results

whenever altered. A longer horizon generally results in a more accurate feedforward

term, primarily because of greater foresight into the future and more iterations to cal-

culate gains. As the horizon increases the tracking error decays exponentially. On the

other hand, parameter calculations take longer. Therefore, a horizon must be chosen

such that the gains can be iteratively calculated within one cycle of the control loop.

This RHMPC can handle time-varying systems and weighting matrices. For the
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Table 5.1: Parameters used with the Receding Horizon Model Predictive Controller
of the Test Bed System. Higher Q to R ratio is selected to accentuate the state and
hence regulate more quickly.

Axis 1 Axis 2 Axis 3

Q1 5 · 10−16 · I4×4 5 · 10−16 · I4×4 5 · 10−16 · I4×4

Q2 50 30 30

R 0.003 0.05 0.05

applications used herein, constant weighting matrices, Q1,Q2, and R (Table 5.1),

and a constant horizon value, T , were used along with constant state-space models.

The only true time-varying gain matrix within the algorithm was M, which was

calculated from the heartbeat data. As a result, feedforward control term (4.58) was

time-varying, and M was calculated iteratively on the fly every control cycle.

Feedback term (4.57) was not dependent on any time-varying values. Conse-

quently, calculated gains were constant for a given horizon. Once the horizon value

was set, there was no need to calculate the feedback gains in every control cycle.

Another parameter that can be used to tune the algorithm is the error correction

function order, p of (4.2). Here, p plays a good role in the performance of the algorithm

along with the horizon value, T . For the optimum error/performance ratio, a 6th order

polynomial error correction function and a horizon value of 50 samples were selected.

The experimental results of the tuning are shown in Figure 5.1.

Although, using the past heart cycle as an estimate of future reference signals

would cause large errors in extended estimates, it was not a deterministic issue in

this approach, since the horizon used in the RHMPC algorithm (25 ms) was relatively

short compared to the heartbeat period (≈ 500 ms).

The computation scheme of the feedback and the feedforward terms, and the

control effort, using the derived equations, are as follows.

Offline Step 1. Calculate: L and H (4.14)
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function order, p, and the horizon value, T , are tuned to get minimum RMS position
error.

Step 2. Calculate: Q (4.12)

Step 3. Initialize: P[T ] = 0, S[T ] = Q, M[T ] = 0

Step 4. Backwards iterate Feedback Optimal Parameters:

S[k], K[k] for k = T, . . . , 1 [(4.54), (4.56)]

Online Step 1. Generate yest [k + m] for m = 0, . . . , T (4.3)

Step 2. Backwards iterate Feedforward Optimal Parameters:

M[k] for k = T, . . . , 1 (4.55)

Step 3. Calculate: u (4.53)

Step 4. Goto Online Step 1 for next k

The robot was made to follow the combined motion of heartbeat and breathing

as described in Chapter 3. Separating the respiratory motion enabled better heart

motion estimation. In terms of control performance, controlling the respiratory mo-
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tion separately did not affect the heart tracking accuracy when the results of the

combined motion tracking were compared with the pure heartbeat motion tracking

results. This validates our earlier observation that heartbeat motion tracking will be

the bottleneck in motion tracking and the breathing motion can be easily tracked

using a pure feedback controller.

5.1 Test Bed System

In order to develop and test the algorithms, a hardware test bed system, PHANToM

Premium 1.5A, was used and modeled. In Figure 5.2 the degrees of freedom and

the zero configuration of the manipulator are shown. In modeling, experimental

transfer function models for the three principle axes were determined. The produced

mathematical models were tested for controllability and observability. It was found

that all three axes were uncontrollable and unobservable. This would cause poor

conditioning of the state space matrices, hence instability and poor control.

Reduced realizations were obtained using Schur balanced model reduction [44].

With this reduction, the weakly controllable eigenvalues are eliminated to produce

a new system. New system models were better conditioned, as well as fully control-

lable and observable. For detailed derivation of the mathematical modeling of the

PHANToM robot, see [45] (axes transfer functions and their frequency response plots

are given in Appendix B). Also, the friction forces acting on the joints were modeled

experimentally according to Coulomb friction model.

The dynamic equations for the phantom are in the form:

Mp(θ)θ̈ + Cp(θ̇, θ)θ̇ + Np(θ) = τ (5.1)

where θ = [θ1 θ2 θ3]
T ∈ R3, Mp is the inertia matrix, Cp is the Coriolis matrix of the

manipulator, Np includes the gravitational and other forces−such as friction−that
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acts on the joints, and τ is the vector of actuator torques. The nonlinearities of

the system were overcome by adding the torque that was required against the grav-

itational effects, Np, and Coriolis and centrifugal forces, Cp(θ̇, θ)θ̇ according to the

derived dynamics. The added Cp(θ̇, θ)θ̇ term was considerably smaller than the ap-

plied torque, which is due to the quadratic dependence of this term on the joint

velocities.

The PHANToM robot possesses characteristics similar to an actual surgery robot.

Its lightweight links, low inertia design and low friction actuation system allows suffi-

cient motion and speed abilities for tracking the heartbeat signal. In the experimental

setup, the control algorithms were executed on a PC equipped with a 2.33 GHz Dual-

Core Intel Xeon 5140 processor running MATLAB xPC Target v3.3 real-time kernel

with a sampling time of 0.5 ms. PHANToM Premium does not come with a built-in

homing option. In order to improve the accuracy of the experiments, before every

experiment, the robot was brought to a selected home position, in this case the zero

configuration of the manipulator (Figure 5.2-Right), where the tracking was started.

In order to attain pure heartbeat and respiratory motion data from the raw data,

two lowpass filters are used as shown in Figure 3.1. Second and tenth order Chebyshev

Type II IIR filters with cutoff frequencies at 26 Hz and 1 Hz were used, respectively.

The second order filter was used to remove high frequency components (above 26

Hz) of the data. The RMS error in between the filtered position and the measured

position is 0.528 mm when the filtering was performed online.

In the experiments, prerecorded heart motion signal and ECG signal were used.

Overall, three sets of experiments were conducted. The first set of the experiments

was conducted using offline filtered heartbeat and breathing motion data which were

re-sampled using the raw heart position data from 257 Hz to 2 kHz by cubic inter-

polation. Zero group delay was introduced since the data was processed offline. The

second set of the experiments was conducted using raw heart position data sampled
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Figure 5.2: Left : PHANToM Premium 1.5A. Right : PHANToM’s zero configuration.

at 257 Hz. Filtering operations were performed online to attain pure heartbeat and

breathing motions. The filtered data were extrapolated online to be used with the

control algorithms that run at 2 kHz. The third set of experiments was conducted

using re-sampled raw heart position data from 257 Hz to 2 kHz. Similar to the second

set, filtering operations were performed online to attain pure heartbeat and breathing

motions to be used in the control algorithms.

5.2 Experimental Results

In both simulations and experiments, the same methods and reference data were

used. Some slight differences in parameters were observed due to the mathematical

modeling of the robot. To validate the algorithms effectiveness, first 10 s of the 56-

s long data was used to tune the control parameters. Then, the experiments were

carried out using the 56-s long heart data.

Matrix weighting parameters of the optimal index were tuned to minimize RMS

tracking error. Parameters were selected in order to accentuate the states and hence

regulate more quickly, with higher control efforts. Tuning was performed to avoid the
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high frequency resonances so that no vibration would be reflected to the structure.

For each case, experiments on PHANToM robot were repeated 10 times. It was

noted that the deviations between the trials are very small. Among these results, the

maximum values for the End-effector RMS and Maximum Position Errors in 3D and

RMS Control Effort are summarized in Tables 5.2, 5.3 and 5.4 to project the worst

cases.

Results of Receding Horizon Model Predictive Control with Reference Signal Es-

timation using ECG signal for each axis are shown in Figures 5.3, 5.4, and 5.5. Low

frequency respiratory motion is noticeable at the Figures 5.3-A, 5.4-A, and 5.5-A.

All three axes of the PHANToM demonstrated similar performance. It is believed

that the maximum error values are affected from the noise in the data collected by

sonomicrometric sensor. Although high-frequency parts of the raw data were filtered

out, relatively low “high frequency” components stayed intact. It is unlikely that the

POI on the heart is capable of moving 5 mm in a few milliseconds. The measured

data has velocity peaks that are over 13 times faster than the maximum LAD veloc-

ity measurements reported by Shechter et al. [46]. Heavy filtering should have been

performed to delete the high frequency motions, but they were kept, as currently we

do not have an independent set of sensor measurements (such as from a vision sensor)

that would validate this conjecture. This also gives a conservative measurement of

the performance of the system.

5.3 Discussion of the Results

The parameters were tuned using the first 10 s of the data and validated with the

56 s data. There was less improvement in the RMS error when the 56 s data was

used (see the underlined elements in Table 6.1). This is because the heartbeat period

variability was larger in the first 10 s segment of the data. The mean of the heartbeat
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Figure 5.3: PHANToM 1st axis results for Receding Horizon MPC with Reference
Estimation using ECG Signal. A-Reference and Position, B-Position Error, and C-
Control Effort signals are shown.
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Figure 5.4: PHANToM 2nd axis results for Receding Horizon MPC with Reference
Estimation using ECG Signal. A-Reference and Position, B-Position Error, and C-
Control Effort signals are shown.
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period change was 9.3 μs for the first 10 s segment of the data and 1.6 μs for the

overall data. As a result, the effect of the biological signal on the signal estimation,

therefore on the tracking error, was more pronounced in the first 10 s of the data.

If we compare the results of the algorithms with each other, as expected, the

RHMPC with Reference Signal Estimation Using Biological Signals algorithm out-

performed the RHMPC with Reference Signal Estimation algorithm. Results proved

that by using ECG signal in the motion estimation, heart position tracking was not

only improved but also became more robust. The system was more responsive to

sudden changes in the heart motion with the addition of ECG signal, accordingly the

variance of the error distribution decreased by half. One-way ANOVA was used to

test the statistical significance of the results and they were found to be significantly

different (F (1, 38) = 6809, p < 0.001). These tracking results are 2.5 times better

than the best results in literature that is reported by Ginhoux et al. [24]. Comparing

the results of the predictive algorithms with the baseline performance results shows

that there is still room for improving the estimation algorithm. It is important to

note that the results also need to be validated in vivo, which was the case in [24].

Three different sets of experiments were conducted in order to test the effects of

filtering and the sensor sampling. Filtering effects (i.e. group delay) were minimized

by using low order filters. Although small increases in the RMS errors were noticed,

online filtering of the raw data was successful. The experiment results given in Tables

5.3 and 5.4 were prepared to demonstrate the performance difference of the system

with different sensor sampling rate. The decrease in the RMS errors in all control

algorithms demonstrates the performance improvement of the robotic system with

higher sensor sampling rates. This shows the importance of the sensor system in the

robotic assisted beating heart surgery.
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Chapter 6

Three Dimensional Heart Position

Measurement: Whisker Sensor

Design

This thesis aims to develop telerobotic tools to actively track and cancel the relative

motion between the surgical instruments and the heart by Active Relative Motion

Canceling (ARMC) algorithms, which will allow coronary artery bypass graft (CABG)

surgeries to be performed on a stabilized view of the beating heart with the technical

convenience of on-pump procedures.

In this chapter, design and characterization of a novel whisker-like sensor that is

capable of measuring the position in three dimensions (3D) are discussed.

The whisker sensor is a flexible, high precision, high bandwidth contact sensor

designed for measuring biological motion of soft tissue for medical robotics applica-

tions. Low stiffness of the sensor prevents damage on the tissue during its contact.

Two different designs are described: one for measuring large displacements and the

other for small displacements. Simulation and measurement results from prototype

of both designs are reported.
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Physiological motions are measured and actively compensated during robotic-

assisted medical interventions to improve the accuracy of the surgery [18–20, 23, 24,

47, 48]. The sensors for measuring the physiological motion of the target tissue is

a critical component of the overall robotic system. In this thesis a whisker-like

three-dimensional, high precision, high bandwidth, flexible contact position sensor

is proposed for measuring the physiological motion of the body in medical robotics

applications. The proposed highly sensitive sensor equipped with micro strain gauges

comes out from the tip of a manipulator and touches the tissue or skin surface. It

can be in continuous contact with the point of interest, in contrast to other available

sensors for measuring biological motion. Its high precision and high resolution en-

ables the robotic system to actively compensate for the relative motion between the

surgical site and the surgical instruments.

6.1 System Concept and Use of Sensors

In robotic tele-surgery conventional surgical tools are replaced with robotic instru-

ments which are under direct control of the surgeon through teleoperation. During

off-pump CABG surgery, the robot arm and the robotic surgical instruments track the

heart and breathing motion, which are the main sources of the physiological motions

observed. The relative motion between the surgical site and the surgical instruments

is canceled. As a result, the surgeon operates on the heart as if it were stationary,

while the robotic system actively compensates for the relative motion of the heart.

Measurement of heart motion with high precision and high confidence is required for

precise motion canceling performance. Also, redundant sensing systems are desirable

for safety reasons.

Earlier studies in canceling beating motion with robotic-assisted tools used vision

based and ultrasound based sensory systems to measure heart motion. Nakamura
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et al. [18] tracked heart motion with a 4-DOF robot using a vision system. The

tracking error due to the camera feedback system was relatively large (error in the

order of few millimeters in the normal direction) to perform beating heart surgery.

Thakral et al. [19] used a laser range finder system to measure one-dimensional motion

of a rat’s heart. Groeger et al. [20] used a two-camera computer vision system to

measure local motion of heart and performed analysis of measured trajectories, and

Koransky et al. [21] studied the stabilization of coronary artery motion afforded by

passive cardiac stabilizers using three-dimensional digital sonomicrometry. Hoff et

al. [49] measured the beating heart motion in three dimensions using two 2-axis

accelerometers, showing that acceleration measurements can reveal patterns that may

be an indication of heart circulation failure. Ortmaier et al. [23] and Ginhoux et

al. [24] also used camera systems to measure motion of the heart surface for their

estimation algorithms. Cavusoglu et al. [50] used a sonomicrometric system to collect

heart motion data from an adult porcine and showed the feasibility of a robotic

system performing off-pump coronary artery bypass grafting surgery. Vitrani et al.

[51] used ultrasound-based visual imaging to guide a surgical instrument within the

heart during surgery. Bader et al. [52] estimated a portion of organ surface motion

using a pulsating membrane model with a stereo vision system. The model was used

to estimate the periodic organ motion when the camera view is occluded. Noce et

al. [53] simulated a method that characterizes heart surface texture to detect heart

motion with recorded sequences by a monocular vision system.

The experimental results indicate that vision sensors were not satisfactory for

tracking in beating heart surgery. Vision systems have problems with noise and

occlusions. Noise can be reduced by using fluorescent markers, but the occlusion

problem remains significant, and is an important setback, especially during surgi-

cal manipulations. Although some research was directed towards estimating heart

motion when the image was occluded [23, 52], a sensor that provides persistent po-
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sition information is necessary for satisfactory tracking, i.e., a continuous contacting

position sensor. Also the resolution of a vision system is restricted, depending on

the camera quality and distance to the point of interest. Vision sensors can provide

high precision measurements in tangential directions, but their precision is low in the

normal direction.

Inertial sensors are not suitable for stand-alone use in position measurements,

due to drift problems. Laser proximity sensors are limited to one dimensional mea-

surement and cannot provide any information about tangential motion of the heart

surface. Cagneau et al. [47] used a force sensor equipped robot designed for min-

imally invasive surgery in [54] to compensate for physiological motions in surgical

tasks involving tissue contact. However the proposed force feedback controller did

not perform effective motion compensation.

A sensor that is in continuous contact with tissue is necessary for satisfactory

tracking. The continuous contact sensors used in measuring the heart motion in the

current literature are limited to sonomicrometer. A sonomicrometric position sensor

has been the sensor of choice in the earlier studies of this research, but obtaining pre-

cise position measurements is essential in closed loop control for tracking the beating

heart. Although sonomicrometric sensors are very accurate, they contain noise from

ultrasound echoes. Also, they are more prone to error in calibration between the base

sensors and the robotic manipulator coordinate frame.

The whisker sensor that is introduced in this study is a high sensitivity, flexible,

three-dimensional position sensor equipped with micro strain gauges. Because of the

sensor’s resemblance to projecting hairs or bristles, which come out from the tip of

the surgical manipulator and touch the heart surface, the sensor is called a whisker

sensor. Sensors for different scopes were developed within the general whisker sen-

sor description given above. Berkelman et al. [55] designed a miniature force sensor

with strain gauges to measure forces in three dimensions at the tip of a microsur-
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gical instrument. Two sets of crossed beams are used as the elastic elements of the

force sensor. Scholz and Rahn [56] used an actuated whisker sensor to determine

the contacted object profiles for underwater vehicles. This whisker sensor predicted

contact point based on the measured hub forces and torques with planar elastica

model. Solomon and Hartmann [57] used artificial whiskers to sense the profile of

three-dimensional objects. They used an array of flexible steel wires fixed to bases

equipped with four strain gauges to measure the two orthogonal components of the

base moment. From the rate of change of moment, they calculated the radial contact

distance and constructed the detected object’s profile.

The next section focuses on the mechanical design of the proposed whisker sensor.

6.2 Whisker Sensor Design

The scope of this study is to create a miniature whisker sensor to measure the position

of point of interest on the tissue or skin during medical interventions. Physically a

whisker sensor is a long thin, and flexible extension used to detect the surrounding ob-

jects as well as their position, orientation and profiles. Design limitations include size

constraints to make the tool usable in minimally invasive operations. The resolution

of the sensor needs to be in the range of 50 μm in order to track the beating heart

using the control algorithm described in Chapter 3.2. In this section two whisker

sensor designs are proposed to be used in two different scenarios.

Design 1 employs a linear position sensor connected to two flexible cantilever

beams that are attached orthogonally with a ridged joint. The one dimensional linear

motion along the normal dimension of the tip is measured with the linear position

sensor and the two dimensional lateral motion of the tip is measured with strain

gauge sensors placed on the beams by separating the motion into its two orthogo-

nal components (Figure 6.1). These kind of beam designs are used in flexure joint
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Position Sensor

Strain Gauges

Figure 6.1: Whisker Sensor Design 1. Left : One linear position sensor and two
orthogonally placed flexure beams with strain gauges are used to measure the three-
dimensional position of the sensor tip. Right : Sensor is attached to the manipulator
base to provide continuous contact even when the surgical tools are not in close
proximity, and to measure the heart position.

mechanisms [58]. The design shown in Figure 6.1 can be attached to the robotic

manipulator base to provide continuous contact. Even though the surgical tools are

not in close proximity to the heart the sensor is capable of measuring the biological

motion. The operation range of the sensor is adjusted to fit the heart motion, 12 mm

peak to peak max displacement [50].

Design 2 employs a cross shaped flexible structure at the back of the linear sensor,

which allows the lateral motion on the tip to be measured by the strain in the legs of

the cross structure (Figure 6.2). A similar cross-shaped structure design was used by

Berkelman [55] to measure force/torque values of the sensor tip. One major difference

is the higher stiffness of their design, which was intended for force sensing. In the

second design, a smaller linear position sensor with a spring loaded coil is used since

a smaller operation range of 5 mm in each direction is aimed. Cross shaped whisker

sensor design is manufactured in relatively smaller dimensions and it is planned to

be used with the system in a slightly different way as a result of its smaller size. The

sensor will be attached to the surgical tool to measure the displacement between heart
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Position Sensor

Strain Gauges

Figure 6.2: Whisker Sensor Design 2. Left : One linear position sensor and a cross (×)
shaped flexible structure with strain gauges are used to measure the three-dimensional
position of the sensor tip. Right : Sensor is attached to the robot arm to measure the
displacement between the heart and the surgical tools.

and surgical tools. This will bring more dexterity to the system, since the sensor base

moves with the surgical tool.

Both of the proposed whisker sensor designs use a one axis linear position sensing

element (i.e., a Linear Variable Displacement Transducer) and a two axes flexure

strain gauge position sensor. The reason for using linear position sensors to measure

the motion in the normal direction of the sensor is to provide low stiffness. The

positions in the lateral axes are to be measured with strain gauges attached to flexure

beams. Due to both designs’ technological similarities, the same data acquisition

system and similar models can be used to calculate the position of the sensor tip with

respect to the sensor base. As mentioned earlier, similar geometrical designs are used

in flexural joint mechanism designs [58]. Flexural joints are preferred because of the

absence of friction and backlash. A drawback of the flexural elements is their limited

deflection, which needs to be taken in to consideration.

Note that, due to the constraints of minimally invasive surgery, both of these

designs will have to be fitted inside a narrow cylindrical volume. The sensor design

shown in Figure 6.1 is relatively bigger in size with respect to the one shown in
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Figure 6.2 since the linear transducer needs to support the flexure beams holding the

strain sensors. This necessity for support requires a structurally stronger therefore

bigger linear sensor. However, smaller linear sensors can be used in the design shown

in Figure 6.2.

Equipment

As mentioned earlier, both designs require a one axis contactless linear position sens-

ing element, and a two axes flexure beam strain gauge position sensing element. The

following equipment were used to build prototype sensors.

Linear Position Sensor

MicroStrain 24 mm stroke Subminiature Differential Variable Reluctance Transducer

(DVRT−or half bridge LVDT) was used for the measuring the displacement in the

normal direction in Design 1. The sensor casing is 4.77 mm in diameter and sensor

length is 132 mm at its maximum stroke. Resolution of the transducer is 5.7 μm with

± 1 μm repeatability.

MicroStrain 9 mm stroke Micro gauging DVRT with internal spring and bearings

was used to measure the displacement in the normal direction in Design 2. Sensor

casing is 1.80 mm in diameter and sensor’s uncoiled length is 61 mm. Resolution of the

transducer is 4.5 μm with ± 1 μm repeatability. Both sensors’ response bandwidth

is 7 kHz.

Strain Gauges

Kyowa KFG-5-120-C1-11L1M2R type strain gauges with nominal resistance value,

RG = 119.6±0.4 Ω and gauge factor, GF = 2.11±0.4 are used with Design 1. Strain

gauges are bonded with Instant Krazy Glue (Elmer’s & Toagosei Company).

In Design 2 Micron Instruments SS-060-033-500PU-S4, semiconductor type strain
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Figure 6.3: Half Wheatstone Bridge Circuit: R1 and R2 are bridge completion resis-
tors, RL is the lead resistance and RG is the nominal resistance of the strain gauges.
Vex is the excitation voltage and V

O
is the measured output.

gauges with nominal resistance value, RG = 540 ± 50 Ω and gauge factor, GF =

140 ± 10 are used. Strain gauges are bonded with Vishay Micro-measurement M-

Bond 600 Adhesive Kit (M-Line Accessories Measurement Group) [59, 60].

Signal Conditioning Equipment

National Instruments PCI-6023E 12-Bit Multifunction DAQ Board, SCXI-1121 4-

Channel Isolation Amplifier and SCXI-1321 Offset-Null and Shunt-Calibration Ter-

minal Block were used to acquire strain gauge and LVDT measurements.

SCXI-1121 module has 4 channel input with internal half-bridge completion. Mod-

ule was configured for a voltage excitation, Vex, of 3.333 V. Input gains were adjusted

to 1000 for Kyowa strain gauges and 10 for Micron Instruments strain gauges.

Strain Calculations

In order to minimize the effect of temperature changes and increase the sensitivity of

the circuit, half-bridge configurations are used to measure strains. Strain, ε, for the

half-bridge configuration given in Figure 6.3 is

ε =
−2 · (VO − VOunstd

)

GF · Vex

·
(

1 +
RL

RG

)
, (6.1)

70



where VO is the measured output when the beam is deflected (strained), VOunstd
is

the initial, unstrained measurement and Vex is the excitation voltage [61]. VOunstd

is adjusted to 0 V by offset nulling beforehand. Offset nulling circuitry is used to

rebalance the bridge; it also eliminates the effects of lead resistance.

If RG, RL, GF and Vex values are substituted into (6.1), the final strain equations

for the sensor designs are

Design 1 : ε = −0.2905 · VO, (6.2)

Design 2 : ε = −0.0043 · VO. (6.3)

6.3 Mechanics of the Flexure Beams

Using the strain values calculated in the Section 6.2, the position change of the tip

of the sensor, (x
tip

, y
tip

), can be found using basic mechanics of materials [62]. The

following assumptions are made to model the mechanics:

1. The gravitational effects on the beam are negligible.

2. The deflection of the beam is in the elastic range.

3. The square of the slope of the beam,
(

dy
dx

)2

, is negligible compared to unity,

where y = f(x) is the elastic curve.

4. The beam deflection due to shearing stress is negligible (a plane section is

assumed to remain plane).

5. Young’s modulus, E, and the second moment of the cross sectional area, I,

values remain constant for any interval along the beam.
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Figure 6.4: Beam section forces and stresses at strain gauge position. σc is the normal
stress acting on the surface of the transverse cross section. Mr is the resisting moment
and Vr is the resiting shear force.

Mechanics of the Cantilever Beam

The motion in the lateral plane of the flexure beams will cause two bending moments,

Mx and My, in the sensor body. Bending moments can be calculated using the strain

values, εx and εy, measured from the gauges attached on the cantilever beams. The

strain and stress relation can be defined for linear elastic action with Hooke’s law:

σx = E · εx (6.4)

where σx is the normal stress on a cross sectional plane and εx is the longitudinal

strain. The normal stress will be maximum at the surface farthest from the neutral

axis (σmax = σc at y = c and c is half of the beam thickness, d). The normal stress

at the surface, σc (Figure 6.4), can be calculated from the strain measurement of the

surface using Hooke’s Law as given in (6.4).

For the cantilever beam design, resisting moment at supported end is given as

Mr = −σc · I
c

= −εc · E · I
c

. (6.5)

The resisting moment acting at the point of strain gauge can be calculated using

Mr(Lgauge) = P · Lgauge , (6.6)
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Figure 6.5: Free body diagram of the cantilever beam. R is the reaction force at the
supported end, Mr is the resisting moment and P is the bending force.
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Figure 6.6: Deflected Cantilever Beam

where P is the force acting on the unsupported end of the beam (Figure 6.5). Then,

(6.5) can be rewritten as

P = −εc · E · I
Lgauge · c

. (6.7)

During straight beam loading in an elastic action, the centroidal axis of the beam

forms a curve defined as the elastic curve, y = f(x).

In small portions of the beam with constant bending moment, the elastic curve is

an arc of circle with radius ρ. Using Hooke’s law and geometry radius of curvature

of the neutral axis can be derived as

1

ρ
=

M

E · I (6.8)

where M is the bending moment. The curvature along the beam can be simplified
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using assumption 3 as

1

ρ
=

d2y
dx2[

1 +
(

dy
dx

)2] 3
2

=
d2y

dx2
. (6.9)

Combining (6.8) and (6.9), the differential equation for the elastic curve of the beam

is

M(x) = E · I · d2y

dx2
(6.10)

where the moment, M(x) is a function of x,

M(x) = P · x , 0 ≤ x ≤ L . (6.11)

If (6.10) is integrated twice, elastic curve can be derived. The beam’s end point

deflection, y = 0 at x = L, and end point slope, dy
dx

= 0 at x = L, can be used as

boundary conditions for the integration. Then, (6.10) can be written as

E · I · d2y

dx2
= P · x . (6.12)

Integrating twice will result in

E · I · y =
P · x3

6
+ C1 · x + C2 (6.13)

where

C1 = −P · L2

2
, C2 =

P · L3

3
. (6.14)

Deflection curve and slope on the beam are given respectively as

y = − ε

3 · d · Lgauge

· (x3 − 3 · L2 · x + 2 · L3) (6.15)

dy

dx
= − ε

d · Lgauge

· (x2 − L2) . (6.16)
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Figure 6.8: Free body diagram of the cross beam section. R is the reaction force at
the supported ends, M is the bending moment. M1 and M2 are the reaction moments
at the supported ends.

Then, the slope of the tangent line at the end point of the cantilever beam (x = 0) is

dy

dx

∣∣∣∣
x=0

=
ε · L2

d · Lgauge

. (6.17)

It is assumed that tool tip has high modulus of elasticity (rigid) and its deflection

is negligible. Therefore its contact position can be calculated using the following line

equation.

ytip
=

(
ε · L2

3 · d · Lgauge

)
· (3 · x

tip
− 2 · L) (6.18)

Mechanics of the Cross Beam

Similar derivation methods can be used in this design. Motion of the position sensor

tip in the lateral plane would cause two bending moments, Mx and My, on the cross

flexure structure. Bending moments can be calculated using the strain values, εx and
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εy. Slope between the position sensor and the resting plane of the cross beam can be

calculated using the measured strain.

Simplified free body diagram of the cross flexure section is shown in Figure 6.8.

A relation between reaction forces and bending moment can be written as

R =
3 M

4 L
, (6.19)

where R is reaction force at the supporting ends. Then, the resisting moment, Mr,

acting at the point of the strain gauge is

Mr(−Lgauge) =
M (2L − 3Lgauge)

4L
. (6.20)

Using (6.5) and (6.20), the bending moment can be calculated as

M = − 8 εcEIL

d(2L − 3Lgauge)
. (6.21)

The moment distribution on the beam with respect to position can be derived as

M(x) =
M (3x + 2L)

4L
, − L ≤ x ≤ 0

−
(6.22a)

M(x) =
M (3x − 2L)

4L
, 0

+ ≤ x ≤ L . (6.22b)

The beam’s end point deflections, y = 0 at x = −L and y = 0 at x = L, and

end point slopes, dy
dx

= 0 at x = −L and dy
dx

= 0 at x = L, can be used as boundary

conditions for the integration of the elastic curve equation given below.

E · I · d2y

dx2
=

3Mx

4L
+

M

2
, − L ≤ x ≤ 0

−
(6.23)
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Integrating twice will result in

E · I · y =
Mx3

8L
+

Mx2

4
+ C1x + C2 (6.24)

where

C1 =
ML

8
, C2 = 0 . (6.25)

Deflection curve and slope of the beam respectively are

y = − ε x (x + L)2

d(2L − 3Lgauge)
· , − L ≤ x ≤ 0

−
(6.26)

dy

dx
= −ε (x + L) (3x + L)

d(2L − 3Lgauge)
, − L ≤ x ≤ 0

−
, (6.27)

and the slope of the tangent line at the base of the position sensor (x = 0) is

dy

dx

∣∣∣∣
x=0

= − εL2

d (2L − 3Lgauge)
. (6.28)

Therefore, slope of the position sensor is

dyp

dxp

∣∣∣∣
xp=0

=
d (2L − 3Lgauge)

εL2
= tan(α) . (6.29)

where

dyp

dxp

∣∣∣∣
xp=0

· dy

dx

∣∣∣∣
x=0

= −1 . (6.30)

Then, the angle of the position sensor with respect to the coordinate frame, α

(Figure 6.7), is defined as

α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1

(
d (2L−3Lgauge )

εL2

)
, ε > 0

tan−1
(

d (2L−3Lgauge )

εL2

)
+ π, ε < 0

π
2
, ε = 0

(6.31)
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It is assumed that linear position sensor has high modulus of elasticity (rigid) and

its deflection is negligible. Therefore its contact position can be calculated using the

following equations:

xtip
= L

tip
cos(α) (6.32)

y
tip

= L
tip

sin(α)

where L
tip

is the overall length of the position sensor.

Resolution

The estimated ideal resolution of the sensors can be calculated using (6.2), (6.3),

(6.18), (6.32) and the resolution of the DAQ system. The calculated resolution of

the Design 1 is (x, y, z) = (10.1, 4.7, 5.7) μm. The resolution difference in the x

and y axes are due to the relative placement of the strain gauges to sensor tip and

the length of flexures. Resolution of Design 2 is (x, y, z) = (0.9, 0.9, 4.5) μm,

note that resolution of x and y axes are same due to symmetry of the design. This

resolution estimate is valid for the ideal case and does not include the effects of noise

and unmodeled nonlinear effects.

6.4 Finite Element Simulation

Finite Element Model (FEM) analyses were done on the flexure beams to check the

derived mathematical models (Figures 6.9, 6.10 and 6.12). Principle stress values

(σ11) were analyzed in the Finite Element Analysis (FEA) models. As the maximum

stress on the surface of a deflected beam is equivalent to the principle stress value,

corresponding strain values are calculated with principle stresses using Hooke’s Law.

In this analysis, it was also confirmed that the effect of two-dimensional lateral
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Figure 6.9: FEA principal stress results of the flexure beam for a sensor tip dis-
placement of 6 mm in the x-direction. Stress value at the strain gauge position is
2.60 · 107 N/m2.

motion on the flexure beams can be separated into its two orthogonal components

with the used flexure geometries (cross structured beams and orthogonally fixed can-

tilever beams). This enabled the use of strain gauges for measuring motion in two

dimensions.

Also modal analyses of the sensor designs during free vibration were carried out

using the same finite element models. The first ten mode shapes and corresponding

natural frequencies of these sensor models are shown in Figures 6.14 and 6.15. These

analyses show that the desired working bandwidth of 10 Hz is well below the lowest

natural frequencies of the sensor designs.

6.5 Experimental Results with the Prototypes

The prototypes of the designs are shown in Figures 6.11 and 6.13. The flexure parts

of the prototypes are tested one axis at a time by measuring displacement of the

sensor tip. The calibration of the sensors is done using a three-dimensional linear

positioning stage. The calibration setup is depicted in Figure 6.16. Any error in
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Figure 6.10: FEA principal stress FEA results of the flexure beam for a sensor tip
displacement of −6 mm in the y-direction. Stress value at the strain gauge position
is 8.84 · 107 N/m2.

Figure 6.11: Prototype of the Whisker Sensor Design 1: The sensor is shown when
the linear stage is fully extended. Overall length of the sensor when the linear stage
is fully retracted and extended are 21.3 cm and 23.9 cm, respectively. The largest
diameter of the prototype is 12.5 mm.
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Figure 6.12: FEA principal stress results of the cross flexure structure for a sensor tip
displacement of −2.5 mm in the x-direction. Stress value at the strain gauge position
is 4.18 · 108 N/m2.

Figure 6.13: Prototype of the Whisker Sensor Design 2: Left - Overall length of the
sensor when the linear stage is uncoiled is 65.0 mm (as shown here). The largest
diameter of the prototype is 15.3 mm. Right - Flexure part of the sensor shown next
to a cent.
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Figure 6.14: First ten mode shapes and corresponding natural frequencies of sensor
Design 1.
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Linear Translation Stage
Whisker Sensor Joint

x

z
y

Figure 6.16: Setup for static testing. A three-dimensional linear positioning stage is
used to move the sensor tip.

the mathematical model was corrected using the calibration plots created with the

collected data, as described below for each prototype.

Simulation and experimental strain and tip bending force measurement results

of restrained sensor tip are given in Table 6.1. In simulations, the estimated strain

values are computed at a selected sensor tip displacement. For the experimental

case, actual strain readings from the prototype sensor at the same tip deflection are

reported. Strain values in the FEM analyses report the averaged strain values of the

nodes where the actual strain gauges are bonded in the prototypes. If a small strain

gauge is used with a relatively longer beam, the gauge is assumed to measure the

strain value at the center point of the strain gauge. The measured strain value starts

to deviate from the actual strain as the flexure beams get shorter relative to the length

of the strain gauge. In the cantilever beam model, measured strain and the actual

strain at the center point of the strain gauge can be assumed to be equal. But the
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Table 6.1: Strain and tip bending force measurement results for constant sensor tip
displacement: In simulations, the estimated strain and tip bending force values at the
selected sensor displacements are calculated. Actual strain gauge readings from the
prototype sensors and measured tip force at the same tip displacements are reported
for the experiment case.

Design 1 Design 2

Tip Displacement 6.0 mm 2.5 mm

Bending Flexure Element X Y X or Y

Strain m/m

Mathematical Model 2.38 10−4 4.50 10−4 1.60 10−3

Finite Element Analysis 1.39 10−4 4.58 10−4 1.58 10−3

Experimental Value 1.71 10−4 4.49 10−4 1.21 10−3

Tip Force mN

Mathematical Model 48.0 122.9 260.1

Experimental Value 12.2 58.7 694.4

effect of the mentioned centreline assumption can be observed with the experimental

and the calculated values of the cross beam prototype. Therefore the averaged strain

values of the FEA nodes are tabulated in Table 6.1. The estimates and actual strain

values of cantilever beam sensor (Design 1) are closer than the values for the cross

beam sensor (Design 2). Also, FEM results are affected by the deflection of sensor

elements other than flexures (i.e., flexure joint elements, position sensors).

For tip force measurements, a ATI Nano17, 6-axis F/T sensor with force resolution

of 1/80 N was used [63]. Measured and calculated force values were in the same order for

both prototypes. The difference in the mathematical model is due to the estimation

of the parameters such as E and I.
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Figure 6.17: Tip position measurement results for the prototype of the Whisker Sensor
Design 1. f(x) = 0.8819x + 0.0249, f(y) = 1.0433y + 0.0639

Prototype of Design 1

Figure 6.17 shows the static calibration data collected from the prototype of the

Design 1. These plots show the general behavior of the sensors under predetermined

sensor tip displacement. Linear fits to the data show that prototype of Design 1

has almost no nonlinearity. Especially the fit for y-direction data is almost on the

theoretical line (i.e. slope = π/4). As the mechanical structure of the beams gets

complicated, the reported results starts to vary for the same element (Table 6.1).

For instance, reported results of the cantilever beam that measures the motion in

y-direction are similar. This is mainly because of the geometrical simplicity of that

element. Also, in the static testing no significant hysteresis is observed for this design.

Dynamic testing of the prototype under harmonic motion was conducted to de-

termine the accurate working bandwidth of the sensors. A LVDT sensor attached to

a motor was used to create harmonic motion at constant frequencies. The setup used

for dynamic testing is depicted in Figure 6.18. Two dimensional position information

collected from the 2 DOF dynamic setup is compared to the sensor’s position out-

put. Frequency response of the prototype of Design 1 is shown in Figure 6.20. The
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Position Sensor
Whisker Sensor Joint

Motor

Tendon
Driven
Pulley

Figure 6.18: Setup for dynamic testing. A tendon driven pulley is actuated with a
servo motor to move the sensor tip.

frequency response of the sensor is flat up to a resonance observed around 10 Hz.

Phase difference is about 1-2 degrees in the 0.1-12.0 Hz range. Lissajous plots for the

cantilever beam prototype under 0.1, 1.0 and 10.0 Hz harmonic motion are shown in

Figure 6.19. Coefficient of determination (R2) values obtained by least squares re-

gression for the dynamic test results are shown in Figure 6.21-A. R2 values are above

0.968 in the 0.1-10 Hz range for the prototype of Design 1, showing the linearity of

the measurements collected by the sensor. Maximum measured percent hysteresis

values are shown in Figure 6.21-B. Hysteresis values below 3% are observed for low

frequencies, and around 6% hysteresis is observed for high frequencies.

Prototype of Design 2

Figure 6.22 shows the static calibration data collected from the prototype of the

Design 2. No significant hysteresis was observed in the static testing of this design
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Figure 6.19: Dynamic response data of the cantilever beam prototype under 0.1, 1.0
and 10.0 Hz harmonic motion.
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Figure 6.20: Frequency response data of the cantilever beam prototype
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Figure 6.21: A-Coefficient of determination values of the prototypes over the dynamic
test bandwidth. B-Maximum measured percent hysteresis values of the prototypes
over the dynamic testing bandwidth.

either. Cubic polynomial fits are shown in the plots. The nonlinearity observed in the

Figure 6.22 is due to the measurement inaccuracies of the parameters used in (6.31)

and (6.32). For subsequent tests, the measurements were corrected using the inverse

of the cubic calibration curves. Two axes of the prototype are physically same, and

similar response results are observed.

Frequency response of the Design 2 prototype is shown in Figure 6.24. The fre-

quency response of the sensor is flat up to a resonance observed around 10 Hz. Phase

difference is about 1-3 degrees in the 0.1-15.0 Hz range. Lissajous plots for the cross

beam prototype under 0.1, 1.0 and 10.0 Hz harmonic motion are shown in Figure 6.23.

Coefficient of determination (R2) values are above 0.9608 in the 0.1-10 Hz range for

the prototype of Design 2, showing the linearity of the measurements collected by

the sensor. Maximum measured hysteresis is around 5% for low frequencies. Smaller

hysteresis values, around 3%, are observed for high frequencies.
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Figure 6.22: Tip position measurement results for the prototype of the Whisker Sensor
Design 2. f(x) = −0.0211x3 + 0.0245x2 + 1.3375x − 0.0163, f(y) = −0.0197y3 +
0.0188y2 + 1.2622y + 0.0388.
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Figure 6.23: Dynamic response data of the cross beam prototype under 0.1, 1.0 and
10.0 Hz harmonic motion.
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Figure 6.24: Frequency response data of the cross beam prototype

Discussion

In this section, a novel position sensor to measure physiological motion of biological

tissue in robotic-assisted minimally invasive surgery is presented. The manufactured

prototype showed that use of proposed whisker sensors are promising and able to

effectively measure dynamic motion at a bandwidth of 10 Hz.

Similar magnitude responses are observed in both sensor prototypes although their

physical properties are different. Start of a resonant peak is visible in the magnitude

plots. It is believed that the resonance is caused by the dynamics of the two-degree-

of-freedom test setup.

The resolution values reported in Section 6.3 are not homogenous in the three

directions. If desired, the flexure beams’ dimensions and the position of the strain

gauges can be optimized to provide uniform resolution in every direction.
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Chapter 7

Sensors in Robotic-Assisted

Beating Heart Surgery

Sensing systems, for monitoring biological signals and tracking heart motion are crit-

ical components of the overall system. In this application, redundant sensing systems

are desirable for safety reasons. Measurement of heart motion with high precision and

high confidence is required for precise tracking performance. One of the major focus

of this thesis is developing sensing systems and algorithms for fusing the information

supplied from the different systems for superior performance.

In this chapter, first, sensors planned to be used with the robotic system other than

the whisker sensor are described. Working principles and specifications of sonomicro-

metric sensor, stereo camera system, accelerometer and laser sensors are given. Then,

a preliminary noise characterization for the future sensor system implementation is

given. A general statistical fusion method motivated by the geometry of uncertainties

for robotic systems with multiple sensors proposed by Nakamura et al. [64] is used.

A detailed explanation of the method is provided in Appendix C. This sensor fusion

method aims to increase the accuracy and reduce the uncertainty by combining re-

dundant sensory information. The described sensors are analyzed within this fusion
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framework.

7.1 Sonomicrometric Sensor

One of the sensor systems, that is planned to be used, is Digital Ultrasonic Measure-

ment System (Sonomicrometer) obtained from Sonometrics Corporation, Canada.

Sonomicrometers employ piezoelectric transducers. Scalar intertransducer element

distances with no relative or absolute directional orientation can be measured between

transmitter and receiver piezoelectric crystal pairs within soft tissue by using sound

energy [29]. Ratcliffe et al. [28] used a piezoelectric transducer element to broadcast

to an array of receivers, and by sequentially changing the broadcasting transducer,

they measured the entire set of intertransducer element distances. Switching between

the transducers are done at very high speeds therefore during the operation the delay

in successive measurements are insignificant compared to the measured biological sig-

nal. With the measured scalar distances in hand, trigonometry is sufficient to locate

the transducer elements in 3-D space.

In sonometric sensors flight time of a burst of ultrasound is measured. No analog

conversion process is involved in these measurements, which eliminates the need to

calibrate the systems. Crystal operation frequency of 64 MHz provides resolution of

24 μm in the measurement of intertransducer element distances. The rate at which

the circuitry cycles through the transmitters is determined by the cycle time. Sys-

tem allows cycle times between 28 μs and 2044 μs in 16 μs intervals. At the end

of each cycle, the measurement data is stored and then the next transmitter is acti-

vated. When all of the piezocrystal transmitters are circled, a block of measurement

is completed. Considering the transmit time of sound and to allow acoustic energy

to dissipate before next cycle optimum cycle time should be around 348 to 444 μs for

a distance of 150 mm. If all 6 crystals are operated and cycle time per transreceiver
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Figure 7.1: Sonomicrometer Sensing Model: Five crystals were mounted to a base to
measure the distance of a sixth crystal attached to the heart.

is set to 348 μs, block time would be 2.088 ms giving a total sampling frequency of

478.93 Hz for the sensor system.

In this sensor system, the sensors are assumed to be well calibrated. No errors

due to the inaccuracy of the flight time measurements, uniform speed of sound in the

medium of measurements and no weak signal reception are assumed. Only possible

error is due to the crystal’s geometry, which only affects the absolute value of the

distance measurements. This error is estimated to be 1.5 mm or less. Absolute

accuracy of the sonomicrometry system is 250 μm (approximately 1/4 wavelength of

the ultrasound) [30].
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Figure 7.2: Stereo Vision Sensing Model: Position data of a point from two cameras
are combined to measure displacement in 3D.

7.2 Multi-Camera Vision System

A vision system can be used to capture the global motion of the heart. Vision systems

were widely used in heart tracking by other researchers.

Measurement resolution of a vision system depends on the camera quality and

the distance to the point of interest (POI). A small color camera model was selected

to be used in the sensing system. Panasonic GP-KX121 series cameras feature 512

Horizontal × 492 Vertical pixels, 30 frames-per-second. The standard lens has the

configuration of 51◦ field angle (angle of view), F/2.0 max aperture and f =3.7 mm

focal length [65]. Assuming a viewing distance of 15 cm, the camera has 0.29 mm/pixel

resolution (Figure 7.3).

Two cameras placed about b =3 cm apart with parallel optical axes, providing a

stereo image of the area of interest is planned to be used. This configuration is called

normal stereo camera system, since the images’ coordinate frames lie on the same

plane [66]. Position of a point, P (px, py, pz), is calculated by the disparity within
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Figure 7.3: Optics of a camera.

stereo image pairs using perspective projection:

px =
b

2
· x

L
+ x

R

x
L
− x
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L
− x
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, pz =
b · f
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L
− x

R

(7.1)

where x
L
, y

L
and x

R
, y

R
are the position image of P in the image frames of Left

Camera and Right Camera respectively (Figure 7.2).

7.3 Laser Sensor

A triangulating laser displacement sensors is planned to be used in the sensory system.

A laser sensor will give one-dimensional position information of the heart position.

Laser sensors are preferred because of their flexible use and high precision measure-

ments.

A laser triangulation sensor uses a transmitter (laser diode) to project a spot of

light to the target, and its reflection is focused via an optical lens on a receiver (e.g.
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charge coupled device (CCD)). If the target changes its position from the reference

point the position of the reflected spot of light on the detector changes as well. The

signal conditioning electronics of the laser detects the spot position on the receiving

element and provides an output signal proportional to target position. Resolutions

down to 0.01% (i.e. 20 μm) of the working range can be achieved [67].

7.4 Accelerometer

The accelerometer that will be used in the sensing system is a three axis low-g,

micromachined accelerometers with adjustable measurement ranges between ±2.5 g

to ±10 g, manufactured by Freescale Semiconductor [68].

Each axis consists of two surface micromachined capacitive sensing cells and a

signal conditioner. Sensing cells are mechanical structures made of semiconductor

materials using semiconductor processes (masking and etching). It can be modeled

as a set of cantilever beams attached to a movable central mass that moves between

fixed beams. With acceleration the cantilever beams are deflected. As the beams

attached to the central mass move, the distance from them to the fixed beams on one

side will increase by the same amount as the distance to the fixed beams on the other

side decreases. The change in distance is a measure of acceleration. The heart data

described in Section 2.2 has acceleration peaks around 7 g. Therefore the sensor will

be used in the 10 g range. The measured RMS noise is 4.7 mV, when the sensitivity

of is adjusted to 120 mV/g.
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7.5 Sensor Fusion for Robust Measurement of Heart

Motion

Extracting accurate and precise position information of the heart from all of the po-

sition tracking sensors is an important prerequisite for proper working of the control

algorithms. Information from the sensors described in the previous chapter, except

for the accelerometer, are going to be fused to acquire high precision position mea-

surement of the point of interest (POI). Although briefly explained in Section 7.4,

accelerometer data is not going to be included in the geometrical fusion method be-

cause the sensor cannot provide direct position measurements. Accelerometer sensor

can be used in correcting the uncertainties from other sensors, such as sonomicrom-

eter, therefore this sensor will be a part of dynamic fusion algorithm (i.e. Kalman

filtering)

7.5.1 Whisker Sensor

A continuous contact position sensor is necessary for satisfactory tracking of the POI

on the heart. The whisker sensor is a high sensitivity sensor that comes out from

the tip of the surgical manipulator and touches the heart surface. Combining two

different sensing systems, namely strain gauges and linear position sensor, the tip

position of the sensor can be calculated with respect to its base. The position of the

sensor’s contact point with the tissue, P (px, py, pz), can be calculated using the strain

measurements, εx and εy, acquired from the DAQ board, and position information,

dz, acquired from the linear position sensor, θi = [εx εy dz]
T ∈ R3.

Shape of the uncertainty geometry for the sensor prototype 1 described in Section

6.5 is an ellipsoid (Figure C.1). The most uncertain measurement direction is x-axis

(ei,1) and the least uncertain measurement direction is y-axis (ei,3). For the sensor

prototype 2, the uncertainties are equal for x- and y-axis. For this prototype, least
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uncertain measurement direction is along the z-axis.

7.5.2 Sonomicrometric Sensor

In this sensor frame, the low level measurements are the scalar intertransducer element

distances, dtr, where t = 1, . . . , k, r = 1, . . . , k and t �= r, t is the index number for

the transmitter transducer, r is the index number for the receiver transducer, and k

is the number of the transducers used in the sonometric sensor setup. The number

of available unique scalar measurements using k transducers is kC2 = k(k−1)
2

. Unique

transducer measurements are represented with ds where s = 1, . . . , k(k−1)
2

. Any three

of the transducers that are placed on the base (i.e. other than the transducer placed

on the POI) can be used to create a coordinate frame, therefore 3 of the k(k−1)
2

scalar measurements are used to form a reference frame. Then the distance from

the origin of the sensing frame O-xyz and the POI, P (px, py, pz), can be calculated

(Figure 7.1). Accordingly the sensory data and the sensory information become θi =[
d1 d2 . . . d k(k−1)

2

]T
∈ R

k(k−1)
2 −3

and xi = [px py pz]
T ∈ R3 respectively.

So in order to satisfy the condition of (C.1), n(= 3) ≤ mi, order of sensory data

space, mi, should be equal or greater than n = 3,

(n =) 3 ≤
(

k(k − 1)

2
− 3

)
(= mi) ⇒ k ≥ 4 .

Therefore at least four transducers are necessary to represent the sensory infor-

mation as described in (C.1). The sonomicrometer setup obtained from SonoMetrics

Corporation has six channels for piezoelectric crystals. The planned placement of the

crystals will be as follows. One of the piezoelectric crystals will be placed on the POI.

The remaining crystals will be placed on a fixed base beneath the heart, facing towards

the POI. Geometrical placement of the piezoelectric crystals on the base will affect

the formation of the uncertainty geometry of the sensor. Therefore, sensors should
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Figure 7.4: Sonomicrometer Sensing Model: Crystal placement and principle varia-
tion axes are shown.

be mounted asymmetrically to prevent having homogeneous solutions since solutions

depend on geometrical placement. In order to minimize the uncertainty geometry

of the sensor, the base crystals should be placed evenly on a circle. Both of these

could be satisfied by placing the crystals on a circle slightly shifting them from their

original evenly spaced positions. The position information of the fourth crystal (i.e.

the crystal attached next to the POI) relative to the origin can be calculated using

geometric triangulation method. There are ten possible reference coordinate frame

combinations that can be formed from the five base crystals. These ten measurements

are combined with least square analysis to minimize the measurement error.
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In Figure 7.4 the principle variation axes, ei,k k = 1, . . . , 5, for base crystals

are shown. The uncertainty in the direction of these unit vectors are minimum for

each crystal. Geometrical fusion of uncertainties according to these principle axes

minimizes the uncertainty geometry of the sensor setup. Shape of the uncertainty

geometry for the sensor is a spheroid4.

7.5.3 Multi-Camera Vision System

Vision systems potentially have problems with noise and occlusions. Besides, their

resolution are restricted with the image quality. The noise performance can be im-

proved by using fluorescent markers but in stand alone operations the occlusion prob-

lem remains to be solved. The fusion algorithm should handle any occlusion problems

during tracking. As a simple solution, the data obtained from the vision system can

be omitted by the fusion process until the occlusion is over.

A stereo vision system example is shown in Figure 7.2. The position of point of

reference P in the absolute coordinates is xi = [px py pz]
T ∈ R3. Here, xi is to be

computed from θi = [x
R

y
R

x
L

y
L
]T ∈ R4 where [x

R
y

R
]T and [x

L
y

L
]T are the position

image of P in the image frames of Right Camera and Left Camera respectively (Figure

7.2). Therefore, (n = 3) < (mi = 4) is satisfied.

A similar approach can be followed for the multi-camera vision system. A camera

has two principle variation axes, accordingly, each camera has an uncertainty shape

of ellipsoid based cylinder (Figure 7.5). The geometry for uncertainty−intersection

of the cylinders−is a curved parallelogram solid. The further the cameras are placed

with respect to each other in a multi vision system, the more detached will be the

principle variation axes. Therefore, resultant shape of the geometric fusion would be

minimized.

4Spheroid is a quadric surface in three dimensions obtained by rotating an ellipse about one of
its principal axes.
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Figure 7.5: Formation of an uncertainty ellipsoid in a Stereo Vision Sensing Model.

7.5.4 Laser Sensor

A laser sensor will give one-dimensional position information of the heart position. It

will be possible to compensate for the vision sensor’s low precision measurements in

the normal direction.

The distance to the point of reference, xi = [dz] ∈ R is to be computed from

θi = [Vlaser] ∈ R where Vlaser is the measured sensor voltage. Therefore, (n = 1) ≤
(mi = 1) is satisfied.

7.5.5 Sensor Placement for Minimal Uncertainty

The sensors described above should be positioned in a way to minimize uncertainty.

Sensor positions and orientations are selected to take advantage of the least uncertain

measurements collected by the sensors. In an experimental setup to measure the

position of LAD, positioning of the sensors should be as follows.

Sonomicrometric Sensor has the least flexibility due to its physical properties.

Base carrying the five fixed crystals will be placed beneath the heart, and the sixth

crystal will be sutured next to point of reference. Whisker sensor will approach
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the heart from the side touching the heart with a narrow angle to the chest. This

placement will shrink the measurement uncertainty of the sonomicrometer within

frontal plane. Two cameras separated by 3 cm will be placed 15 cm above the heart.

The laser sensor will be placed next to the camera pair measuring its distance from

the heart. This will enable the reduction of the measurement uncertainty in the

normal direction created by the vision system.
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Chapter 8

Conclusions

According to the Centers for Disease Control and Prevention (CDC) statistics [1,

Table 7], heart disease was the leading cause of mortality with 654,092 deaths in

2004. Improving the treatment for coronary heart disease is a need that should be

prioritized and relevant treatment options should be developed in the fields. Robotic-

assisted off-pump beating heart surgery with active relative motion canceling will

allow bypass graft surgeries to be performed on a stabilized view of the beating heart

with the technical convenience of on-pump procedures. This will eliminate the use of

cardio-pulmonary bypass machines in on-pump heart surgeries, or the use of passive

stabilizers in traditional off-pump beating heart surgeries.

In this study, the use of biological signals in the model-based intelligent Active

Relative Motion Canceling (ARMC) algorithm to achieve better motion canceling

was presented. The tracking problem was reduced to a reference signal estimation

problem with the help of a model predictive controller. The estimated signal was

created by using the last heartbeat cycle with cancelation of the position offset. Due

to the quasiperiodic nature of the heart motion, heartbeat period could change in

time. In order to reduce the error resulting from heart rate variations, ECG wave

forms were detected and used to adjust heartbeat period during the tracking. Ex-

104



perimental results showed that using ECG signal in ARMC algorithm improved the

reference signal estimation. It is important to note that, for patients with severe

rhythm abnormalities, the detection of the ECG waveforms present a challenge for

the proposed method.

Biological signals other than ECG that can be used to assist the tracking of heart

motion include aortic, atrial and ventricular blood pressures. Similar to the ECG sig-

nal, these blood pressures are significant indicators of the heart motion as they can be

used to predict when the heart valves will be opening and closing, which in turn helps

us determine the distinct phases of the heart cycle. These distinct phases correspond

to qualitatively different mechanical properties of the heart tissue, changing the lo-

cal deformation model. The blood pressure signals also give additional independent

information, which can be used in conjunction with ECG signal to improve noise

robustness and to reliably detect unexpected rhythm abnormalities and arrhythmias,

which will be a challenging part for the realization of the ARMC algorithm.

One of the restrictions faced in this dissertation was the limited prerecorded data.

Longer position and ECG data sets from healthy cases as well as cases with heart

disease are needed to effectively evaluate the performance of the controllers used.

Such evaluations can provide better estimation algorithms especially in cases where

the ECG signal is not a sufficient data source due to disease related irregularities or

unexpected interruptions during surgery.

Image stabilization in addition to tracking the heart motion with the surgical tools

is an important requirement for successful performance of off-pump bypass surgery

without passive stabilization. The developed ARMC algorithm can be applied to

camera control to achieve image stabilization.

In this study, the controller parameters were selected empirically. To the best of

our knowledge, automatic selection of these parameters is still an open problem in the

control literature. Although the weighting parameters were well tuned to minimize
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RMS error, a more comprehensive study can be conducted to automate the process

and find the optimum gains.

This study used prerecorded position data from a sonomicrometer. An important

part of this robotic system is the development of sensing systems that will be appro-

priate to use in a tight control loop for active tracking of the heart. These sensing

components will track the heart motion, monitor biological signals, and provide force

feedback. Multi sensor fusion with complementary and redundant sensors will be

used for superior performance and safety. The whisker sensor introduced here is a

high sensitivity contact sensor. The advantage of whisker sensor is that it will directly

give the relative motion of the heart with respect to the robotic manipulator.

Merging the sensor data from multiple position sources would increase the ac-

curacy of motion detection and improve tracking results. An analytical formulation

for asynchronous fusion of the sensory data without creating any inconsistencies was

presented for the planned sensors to be used at an actual system. Adding more

mechanical sensors that measure heart motion would improve the measurement pre-

cision.
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Appendix A

Traditional Controllers

In this Appendix the traditional controllers used for tracking are described. The

system to be controlled is characterized by a discrete state-space realization as shown

in Equation A.1 and A.2. With the exception of PD control, all controllers and the

observers were designed in discrete time using state-space difference equations:

x[k + 1] = Φx[k] + Γu[k] (A.1)

y[k] = Hx[k] (A.2)

If the dimensions of Φ, Γ and H are n× n, n×m and l× n, respectively then x is

an n−vector, u is an m−vector and y is an l−vector.

For an nth order system with one input, m = 1, and one output, l = 1, the

dimension of x is n × 1.

A.1 Observer Implementation

Controllers were implemented using state-space realizations and utilized state feed-

back. Only positions and velocities were directly measured. An observer was imple-

mented for each plant model to obtain the full state vector for state feedback.
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Figure A.1: Observer Block Diagram

The prediction state estimator was implemented [69]. Next cycle’s state was

calculated based on the current state measurements, the control effort and the error

of the observer output. The equation for estimation is

x̄[k + 1] = Φx̄[k] + Γu[k] + Lp(y[k] −Hx̄[k]) (A.3)

where x̄ is the state estimate and Lp is the feedback gain matrix that is acquired

through Ackerman’s formula.

The observer poles were placed to avoid oscillation and in most cases the observer

pole values were chosen between 0.5 and 0.9. See Figure A.1 for a discrete block

diagram of the observer.

A.2 Position Plus Derivative Control

The only control algorithm implemented in continuous time was position-plus-derivative

(PD) control. The control effort, u, was calculated according to Equation A.4:

u = kp(ydes − y) − kdẏ (A.4)
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Figure A.2: Continuous PD Control Block Diagram

The output of the system is y and the desired output is ydes. The position and

derivative gains are notated by kp and kd respectively. A continuous block diagram

representation can be seen in Figure A.2. The speed was calculated using the state-

space plant model. This model is represented using A, B, and C matrices. The A

and B matrices relate the states and the control respectively to the derivative of the

states. The C matrix relates the state to the system output. Note that all of the

systems were strictly proper or forced to be strictly proper and hence did not contain

a D term.

ẋ = Ax + Bu (A.5)

y = Cx (A.6)

ẏ = Cẋ = C(Ax + Bu) (A.7)

By taking a time derivative of the output equation, the output velocity can be related

to the state velocity. For a given state and control effort, state derivatives can be

calculated from the state equation.

The states maintained their values and meaning through the continuous-to-discrete

transformation. It was necessary to obtain the discrete state-space realization from

the continuous time state-space realization. In the end the state was calculated us-

ing a discrete observer and then the state was used with the continuous state-space
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model. By obtaining the velocity in this form, the noise that would resulted from the

calculation of the first-order approximation is omitted.

The gains for this algorithm were tuned by checking the RMS control and RMS

error between the desired and actual position. The process of tuning the gains started

by simply increasing the position gain until the buzzing of the system was the primary

cause of tracking error. At this point, the derivative gain was set to cancel the buzzing.

These two steps were repeated until adequate tracking was obtained and the buzzing

was insignificant.

A.3 Pole-Placement Control

PD control can be seen as a variation of pole-placement (PP) control. In general, pole

placement has n degrees of freedom to control (where n is the order of the system). In

other words, it is possible to move all the poles of the system to any specific locations

in the unit circle. PD control, however, is limited to two degrees of freedom. For

systems of order n > 2, PD is not exercising all the degrees of freedom possible to do

control. PD control will often find an acceptable set of poles, but it is likely that the

controller is suboptimal.

The pole-placement algorithm used state feedback with the states obtained by

the observer. The poles were placed using the discrete plant transfer function and

Ackerman’s formula.

The feedforward gain of the algorithm was calculated by extracting states that

corresponded to the desired trajectory. These desired states were compared to the

actual states in feedback. Both of these gains were calculated from the system model.

The pole-placement system block diagram can be seen in Figure A.3. Note that

the following derivation was obtained from [69].

Steady-state error occurs with this algorithm for systems of type 0 or the systems
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Figure A.3: Pole-Placement Control Block Diagram

that contain no poles at s = 0. The type of the system is defined as the number

of poles at zero. Therefore, a feedforward steady-state term was added to the basic

PP controller. Desired states are achieved by multiplying the desired signal with a

vector:

Nydes = xdes (A.8)

The output is determined by the states by:

y = Hx. (A.9)

For tracking, the desired signal should be identical to the actual signal therefore the

desired states should be the same as the actual states. By making a substitution from

(A.8) to (A.9), it can be seen that N is actually a pseudo-inverse of H:

y = HNydes (A.10)

HN = I (A.11)

The steady-state term is defined as

uss = Nfydes. (A.12)

When in steady state, the control should be tracking therefore the component from
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the state feedback will be completely eliminated by the state feedforward portion.

This makes the state equation for steady state

xss = Φxss + Γuss. (A.13)

By making substitutions into the steady-state equation the following can be de-

rived:

(Φ − I)N + ΓNf = 0. (A.14)

Using (A.14) in conjunction with (A.11), a system of equations is constructed from

which N and Nf can be obtained.

⎡⎢⎣ N

Nf

⎤⎥⎦ =

⎡⎢⎣ Φ − I Γ

H 0

⎤⎥⎦
−1 ⎡⎢⎣ 0

I

⎤⎥⎦ (A.15)

Once Nf and N have been solved, the feedforward control is simply

uff = Nfydes + KNydes (A.16)

uff = (Nf + KN)ydes (A.17)

uff = Nydes (A.18)

The matrix K is the set of feedback gains that are acquired through the Ackerman’s

formula. The complete control equation takes the form of

u = (Nf + KN)ydes − Kx (A.19)

During the selection of the poles, selected controller poles are kept slower than the

estimator poles, so that the total system response is dominated by the control poles.
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A.4 Experimental Results

The results given in this section are to extend the 1-D results of Rotella [25] to 3-D.

The results for the traditional controllers are presented here since this thesis mainly

focuses on the design of Receding Horizon MPC. In both simulations and experiments,

the same methods and reference data were used. Some slight differences in parameters

were observed due to the mathematical modeling of the robot.

In PD control, position and derivative constants are tuned to minimize tracking

error. Another factor for tuning was to reduce the buzzing of the actuators which

was due to control signals’ high frequency behavior. When the tuning was finalized

the buzzing was reduced to an insignificant noise.

In PP control, the closed-loop poles were selected to find controller gains. Same

goals of tuning were followed as in PD control. In this case, when the tuning was final,

although the tracking error was decreased, there was a high disturbing buzzing in the

motors. This was due to the high frequency control switching and high frequency

oscillation of the actuators during the tracking.

In RHMPC algorithms, weighting parameters of the optimal index were tuned to

minimize RMS tracking error. Parameters were selected in order to accentuate the

states therefore regulate quicker with higher control efforts. Tuning was performed

to avoid the high frequency resonances so that no vibration would be reflected to the

structure.

For each algorithm, experiments on PHANToM robot were repeated 10 times.

The deviation between the trials were very small. The maximum values for the End-

effector RMS and Maximum Position Errors in 3-D and RMS Control Effort are

summarized in Table A.1 to project the worst cases. These results are obtained using

the first 10-s segment of the data.

Considering the RMS end-effector error, all of the controllers, that were tested

for their performances, performed relatively close. Receding Horizon Model Predic-
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Table A.1: End-effector Simulation and Experimental Results: Summary of the max-
imum end-effector RMS position error and RMS control effort values for the PD
control, PP control and RHMPC algorithms used with the first 10-s segment of the
data.

End-effector Tracking Results
RMS Position Error RMS Control Effort

Simulation PHANToM Simulation PHANToM

Units mm Nmm

Position Plus Derivative Control 0.443 0.869 104.8 100.7

Pole Placement Control 0.656 0.784 312.3 234.8

Receding Horizon Model Predictive Control
with Exact Reference Information

0.276 0.372 17.1 59.5

Receding Horizon Model Predictive Control
with Reference Signal Estimation

0.640 0.815 22.5 69.7

Receding Horizon Model Predictive Control
with Reference Signal Estimation Using ECG
Signal

0.491 0.669 19.4 61.8

Table A.2: End-effector Simulation and Experimental Results: Summary of the max-
imum end-effector RMS position error and RMS control effort values for the PD
control, and RHMPC algorithms used with the 56-s long heart data. 6.519 grams
were attached to the end effector of the PHANToM in order to perturb the model.

End-effector Tracking Results

RMS Position Error

%Increase

RMS Control Effort

%Increase
(Max Position Error)

PHANToM Perturbed PHANToM Perturbed

Units mm Nmm

Position Plus Derivative
Control

0.849 0.994 17
96.6 99.7 3

(6.089) (6.838) (12)

Receding Horizon MPC with
Reference Signal Estimation
Using ECG Signal

0.681 0.767 12
59.8 63.6 5

(5.569) (5.857) (4)
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tive Control with Reference Signal Estimation Using ECG Signal performed better

compared to other controllers. Also, when the RMS control efforts are compared,

PD and PP controllers performed poorly. The RHMPC controllers could have been

pushed more to get less RMS position error. But in that case, with better track-

ing, relatively low control efforts would have been compromised. Also, as a result of

tuning, unwanted noise in the actuators would have been introduced. Even though

the RMS position errors are close, the model predictive controllers outperformed the

traditional controllers.

When the tuning processes of the controllers are compared, it is seen that tuning

the model predictive controller is less demanding, which supports the following state-

ment by Garcia et al. [31] that RHMPC is not inherently more or less robust than

classical feedback, but it can be adjusted more easily for robustness. The design of

feedforward controllers is generally much simpler than that of feedback controllers,

such that from a mathematical point of view, it is simpler to optimize an affine func-

tion of feedforward controller by searching all stable controllers than it is to optimize a

nonlinear function of feedback controller subject to complicated constraints of closed

loop stability.

The PHANToM model is perturbed from its original by adding 6.5 grams to

PHANToM’s end effector. Same controller parameters were used before and after the

weight is added. Experiments were done using the 56-s long heart data with the PD

controller and Receding Horizon Model Predictive Controller with reference signal

estimation using ECG signal. The RMS position error and RMS controller effort

results, and their increase percentage after the system was perturbed are tabulated

in Table A.2. The position error increase for the RHMPC controller were less than

the PD controller. RMS control effort of the RHMPC is less than the PD controller’s

control efforts, although PD controller’s percent control effort increase is less than

RHMPC’s. These results show that RHMPC with reference signal estimation using
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Figure A.4: PHANToM 3-D: Position Plus Derivative (PD) Control Tracking Results.
Reference and Position signals of all three axes are shown.

ECG signal is more robust than the PD controller.

High jumps in the position error are due to the noisy data collected by sonometric

system. It is unlikely that the POI on the heart is capable of moving 5 mm in

a few milliseconds. The measured data has velocity peaks that are over 13 times

faster than the maximum LAD velocity measurements reported in [46]. At these high

jumps, RHMPC algorithms outperformed traditional controllers, because with the

traditional controllers these jumps initiated system oscillations.

PD control and PP control tracking results for 1st axis of PHANToM are shown in

Figures A.5 and A.6 respectively. Reference and position plots for all axes are shown

in Figures A.4 and A.7.
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Figure A.5: PHANToM 3-D: Position Plus Derivative (PD) Control Tracking Results.
Reference & Position, Position Error and Control Effort signals are shown for the 1st

axis.
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Figure A.6: PHANToM Simulation: Pole Placement (PP) Control Simulation Re-
sults. Reference & Position, Position Error and Control Effort signals are shown for
the 1st axis.
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Figure A.7: PHANToM 3-D: Pole Placement (PP) Control Tracking Results. Refer-
ence and Position signals of all three axes are shown.
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Appendix B

Mathematical Model of the

PHANToM Robot

PHANToM Premium 1.5A was used and modeled as a hardware test bed system to

develop algorithms. In modeling, experimental transfer function models for the three

axes were determined. Transfer functions and their frequency response plots are given

in (B.1), (B.2) and (B.3) and Figures B.1, B.3, and B.3 respectively.

Axis 1 Transfer function

G1(s) =
983.6s4 + 3.037 · 104s3 + 1.154 · 108s2 + 1.502 · 109s + 2.402 · 1012

s6 + 214s5 + 3.544 · 105s4 + 1.036 · 107s3 + 9.179 · 109s2
(B.1)

Axis 2 Transfer function

G2(s) =
2146s4 + 2.611 · 105s3 + 3.777 · 108s2 + 9.557 · 109s + 9.735 · 1012

s6 + 263.7s5 + 6.486 · 105s4 + 1.841 · 107s3 + 2.344 · 1010s2
(B.2)
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Axis 3 Transfer function

G3(s) =
4874s4 + 2.265 · 106s3 + 2.862 · 109s2 + 1.455 · 1011s + 9.968 · 1013

s6 + 465.8s5 + 2.136 · 106s4 + 5.575 · 107s3 + 9.542 · 1010s2
(B.3)
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Figure B.1: Frequency Response of Axis 1
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Figure B.2: Frequency Response of Axis 2
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Appendix C

Geometrical Fusion Method

The sensor fusion method explained in this appendix was proposed by Nakamura et

al. [64].

Define θi ∈ Rmi(i = 1, . . . , p) as sensory data from the sensor unit i, where a

sensory data is the low-level measurements inherent to a specific physical sensor.

Here, mi means the number of the independent measurement and p is the number of

the sensor units. Also, xi ∈ Rn, i = 1, . . . , p is called sensory information which is

computed from sensory data θi. Here n is the dimension of the sensory information.

A general representation for xi is:

xi = fi(θi) (C.1)

where it was assumed that n ≤ mi.

Equation (C.1) can be used as a general model of the sensors that would track

the point-of-interest (POI) on the heart.
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C.1 Uncertainty Ellipsoid

Note that θi is defined as low level sensory information whose physical meaning is

defined by the inherent structure of a specific sensor.

Adding statistical disturbances to the low level sensory data rather than adding to

the processed information, such as coordinate frames, is a more realistic assumption

to model the disturbances.

The disturbance or uncertainly included in the sensory data is assumed additive

as follows,

θi = θi + δθi (C.2)

where θi ∈ Rmi(i = 1, . . . , p) is the true (undisturbed) value of the data and δθi ∈
Rmi(i = 1, . . . , p) is the disturbance, and assumed Gaussian distribution to δθi is,

E(δθi) = δθi = 0 ∈ Rmi (C.3)

V (δθi) � E((δθi − δθi)(δθi − δθi)
T ) = Qi = diag(σ2

i,1, . . . , σ
2
i,mi

) ∈ Rmi×mi (C.4)

where E(∗) is expectation of ∗, and also assume that δθi,j (j = 1, . . . , mi), the jth

element of δθi, is not correlated and σ2
i,j is the variance of δθi,j . Qi is the covariance

matrix of δθi. Substitute (C.2) into (C.1),

xi = fi(θi + δθi). (C.5)

If, δθi is small enough (C.5) can be approximated by,

xi = fi(θi) + Ji(θi)δθi (C.6)

Ji(θi) =
δfi

δθi
∈ Rn×mi (C.7)
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where Ji(θi) is the Jacobian matrix of fi with respect to θi. Then expectation and

covariance matrix of xi become,

E(xi) = xi = fi(θi) (C.8)

V (xi) = E
(
(xi − xi)(xi − xi)

T
)

= JiQiJ
T
i (C.9)

(C.8) implies that after infinite number of measurements, the average is equal to the

true value of xi. Here, it was assumed that the calibration error is neglected, the

focus here is the local errors, assumed as statistical uncertainty.

In (C.9) covariance of xi is not diagonal anymore. Since jacobian is not diagonal

in general. For a full rank Ji, JiQiJ
T
i is positive definite since Qi is positive definite.

Also, JiQiJ
T
i is symmetric, and its singular value decomposition can be represented

by,

JiQiJ
T
i = UiDiU

T
i (C.10)

Ui = [ei,1 · · · ei,n] ∈ Rn×n, (ei,j)(ei,k)
T =

⎧⎪⎨⎪⎩ 1 for, j = k

0 for, j �= k
(C.11)

Di = diag (di,1, . . . , di,n), di,1 ≥ di,2 ≥ . . . ≥ di,n ≥ 0 (C.12)

where U is an orthogonal matrix and di,j (j = 1, . . . , n) are the singular values of

JiQiJ
T
i . The scalar variance in the direction of unit vector ei is

V
(
(ei,j)

T (xi)
)

= di,j. (C.13)

Therefore
√

di,j represents the uncertainty of xi in the direction of ei,j. So the

distribution of variances in all directions form an ellipsoid with ei,j as the principle

axes with lengths of 2
√

di,j. A three dimensional case is shown in Figure C.1. The

ellipsoid shown is called an “uncertainty ellipsoid.” In parallel to the singular val-

125



Figure C.1: Uncertainty Ellipsoid.

ues, the most uncertain direction is ei,1 with uncertainty
√

di,1, and ei,3 is the least

uncertain one with uncertainty
√

di,3.

C.2 Geometrical Fusion Method

Information from multiple sensors, xi could be fused to get consensus x with linear

combination,

x =

p∑
i=1

Wi xi (C.14)

where Wi ∈ Rn×n is the weighting matrix. The shape of the uncertainty ellipsoid

depends on the selection of the weighting matrix. The mean of the x is computed as:

E(x) =

p∑
i=1

Wi E(xi) =

p∑
i=1

Wi xi (C.15)

Since no calibration error was assumed, xi is equal to x, so (C.15) becomes,

E(x) =

( p∑
i=1

Wi

)
x (C.16)
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Also from (C.8),

E(x) = x. (C.17)

Therefore weighting should satisfy,

p∑
i=1

Wi = I (C.18)

where I ∈ Rn×n is an identity matrix.

Also using (C.6), (C.8), (C.14), and (C.18) and xi = x, the covariance matrix of

x is given by,

V (x) = E
(
(x − x)(x − x)T

)
= WQWT ∈ Rn×n (C.19)

W � (W1 W2 . . . Wp) ∈ Rn×pn (C.20)

Q �

⎛⎜⎜⎜⎜⎝
J1Q1J

T
1 · · · 0

...
. . .

...

0 · · · JpQpJ
T
p

⎞⎟⎟⎟⎟⎠ ∈ Rpn×pn (C.21)

In the derivation of (C.19) uncertainty of the sensor units, δθi and δθj, are assumed

to be uncorrelated.

To get the most accurate and least uncertain sensory information, we should find

the weighting matrix, W, that minimizes the uncertainty ellipsoid. Singular value

decomposition of the covariance matrix of x is,

WQWT = UDUT (C.22)

U = [e1 · · · en] ∈ Rn×n, ej ∈ Rn

D = diag (d1, . . . , dn), di,1 ≥ di,2 ≥ . . . ≥ di,n > 0

where 2
√

di,j is the length of the ith longest principle axis of the uncertainty ellipsoid

of the fused sensory information, x, and unit vector ei represents its direction.
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The geometric volume calculation of an ellipsoid is as follows

V olume =
π

p
2

Γ(1 + p
2
)

( p∏
i=1

di

) 1
2

V olume =
π

p
2

Γ(1 + p
2
)

√
det(WQWT ) (C.23)

where Gamma function is defined as

Γ(α) =

∫ ∞

0

e−ttα−1dt

Γ(1 +
p

2
) =

∫ ∞

0

e−tt
p
2 dt.

Hence, minimizing volume is equivalent to minimizing the determinant of covariance

matrix,

min(V olume) ≡ min

(
π

p
2∫∞

0
e−tt

p
2 dt

√
det(WQWT )

)
≡ min

(
det
(
WQWT

))
.

Then, the minimization problem turns into,

min Z = det
(
WQWT

)
s.t.

p∑
i=1

Wi = I (C.24)

This problem can be solved with Lagrange multipliers,

min Z∗ = det
(
WQWT

)
+ P (C.25)

P =
n∑

i=1

n∑
j=1

λij

( p∑
k=1

Wk,ij − δij

)
(C.26)

δij =

⎧⎪⎨⎪⎩ 1 for i = j

0 for i �= j
Λ �

⎛⎜⎜⎜⎜⎝
λ11 · · · λ1n

...
. . .

...

λn1 · · · λnn

⎞⎟⎟⎟⎟⎠ (C.27)
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where Wk,ij is the (i, j) element of the Wk, λij are the Lagrangian multipliers and

in order to minimize Z∗,
(∑p

k=1 Wk,ij − δij

)
should be zero. Also W must satisfy,

∂Z∗

∂W
=

⎛⎜⎜⎜⎜⎝
∂Z∗
∂W1

...

∂Z∗
∂Wp

⎞⎟⎟⎟⎟⎠ = 0 (C.28)

Lagrange multipliers are derived as,

Λ = −2 det
(
WQWT

)(
WQWT

)−1
{ p∑

i=1

(
JiQiJ

T
i

)−1
}−1

(C.29)

Finally the weighting matrices and the covariance of x are,

Wi =

{ p∑
j=1

(
JjQjJ

T
j

)−1
}−1(

JiQiJ
T
i

)−1

(C.30)

V (x) =

{ p∑
i=1

(
JiQiJ

T
i

)−1
}−1

(C.31)

C.3 Computation of Multi Sensor Information Fu-

sion

Assume that x∗ is the fusion of x1, x2, . . . , xp, xp+1. In order to find the relation for

fusing x and xp+1 to get the resultant sensor information x∗, where x is the fusion of

x1, x2, . . . , xp the following derivation is followed.

Define covariance of xi as Hi , then from (C.31), covariance of x is

H � V (x) =

{ p∑
i=1

(
Hi

)−1
}−1

(C.32)
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then (C.30) can be written as,

Wi =

{ p∑
i=1

(
Hi

)−1
}−1(

Hi

)−1

= H
(
Hi

)−1
(C.33)

also, for x∗, (C.14) becomes,

x∗ =

p+1∑
i=1

H∗(Hi

)−1
xi

= H∗
p+1∑
i=1

(
Hi

)−1
xi

= H∗(H−1x + H−1
p+1 xp+1

)
=
{
H−1 + H−1

p+1

}−1(
H−1x + H−1

p+1 xp+1

)
x∗ =

p+1∑
i=1

{ p+1∑
j=1

H−1
j

}−1

H−1
i xi (C.34)

(C.34) implies that fusion of x and xp+1 is equivalent to fusion of x1, x2, . . . , xp, and

xp+1. Also note that, the fusion described here is a geometrical summation of the

uncertainty ellipsoids, therefore the order of i does not matter. Hence, the following

recursive computation scheme can be used for multi sensor information fusion:

Step 0. Initialize: x = 0, H−1 = 0

Step 1. xa = x, H−1
a = H−1

xb = xi, H−1
b = Hi

−1

Step 2. x =
{
H−1

a + H−1
b

}−1(
H−1

a xa + H−1
b xb

)
H−1 = H−1

a + H−1
b

Step 3. Go to Step 1 for next i

In this procedure order of the fused sensors is not important. Best estimate of the x

can be obtained using the already fused information xi at any stage. These properties

of the algorithm permits to use sensors with different sampling frequencies. Therefore,

the sensor unit with faster response can be fused earlier than the ones with slower

130



response. Change of number of fused sensors does not create any inconsistencies

which allows asynchronous fusion computations.
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Appendix D

Sonomicrometer Least Squares

Equations

For each transducer quartet, the position of the crystal attached on the point of

interest (POI) is calculated relative to the three crystals fixed on the base. First

crystal on the base is selected as the origin of the coordinate frame. Second crystal

forms the x-axis with the crystal at the origin, and the third crystal forms the xy-

plane together with the x-axis. Four different coordinate frames, (α, β, γ, δ), from five

base crystals can be formed:

α1 : 1 − 2 − 3 β1 : 1 − 3 − 4 γ1 : 2 − 3 − 4 δ1 : 4 − 5 − 1

α2 : 1 − 2 − 4 β2 : 1 − 3 − 5 γ2 : 2 − 3 − 5 δ2 : 4 − 5 − 2

α3 : 1 − 2 − 5 δ3 : 4 − 5 − 3

(D.1)

Let position of the fourth crystal be P (x, y, z); x =
[
x y
]T

denote the xy-

coordinates with respect to the coordinate frame; and d be the measured distance

between two crystals. If x is known, the distance of the fourth crystal from the base

frame, z, can be calculated from raw intertransducer measurements using trigonom-

etry. The position of the forth crystal can be calculated as:
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⎡⎢⎣ 2x2 2y2

2x3 2y3

⎤⎥⎦
︸ ︷︷ ︸

⎡⎢⎣ x

y

⎤⎥⎦
︸ ︷︷ ︸

=

⎡⎢⎣ d2
1 − d2

2 + x2
2 + y2

2

d2
1 − d2

3 + x2
3 + y2

3

⎤⎥⎦
︸ ︷︷ ︸

A1 xα b1 (D.2)

z = +
√

d2
3 − x2 − y2 (D.3)

Then for n possible measurements, there are n linear equations.

A1x1 = b1

A2x2 = b2

...

Anxn = bn

(D.4)

Similar solutions can be grouped under the same coordinate frame such as:

xn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xα, n = 1, 2, 3

xβ, n = 4, 5

xγ, n = 6, 7

xδ, n = 8, 9, 10

A1xα = b1 A4xβ = b4 A6xγ = b6 A8xδ = b8

A2xα = b2 A5xβ = b5 A7xγ = b7 A9xδ = b9

A3xα = b3 A10xδ = b10

(D.5)

Let g be a homogeneous transformation matrix

g =

⎡⎢⎣ R p

0 0 1

⎤⎥⎦ (D.6)
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where position vector p describes translations with respect to a reference frame, and

orientation matrix R describes rotations. Then inverse transformation matrix of g is

g−1 =

⎡⎢⎣ RT −RTp

0 0 1

⎤⎥⎦ (D.7)

Using the transformation matrices, all of the measurements can be expressed under

the same coordinate frame.

gαβ

[
xβ

1

]
=

[
xα

1

]
−→

[
xβ

1

]
= g−1

αβ

[
xα

1

]

gαγ

[
xγ

1

]
=

[
xα

1

]
−→

[
xγ

1

]
= g−1

αγ

[
xα

1

]

gαδ

[
xδ

1

]
=

[
xα

1

]
−→

[
xδ

1

]
= g−1

αδ

[
xα

1

]
(D.8)

Lets define a truncated transformation matrix g̃ and its identity as

g̃−1 =

[
RT −RTp

]
(D.9)

Ĩ =

⎡⎢⎣ 1 0 0

0 1 0

⎤⎥⎦ (D.10)
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Anxα = bn −→ AnĨ

[
xα

1

]
= bn, n = 1, 2, 3

Anxβ = bn −→ Ang̃
−1
αβ

[
xα

1

]
= bn, n = 4, 5

Anxγ = b6 −→ Ang̃
−1
αγ

[
xα

1

]
= bn, n = 6, 7

Anxδ = bn −→ Ang̃
−1
αδ

[
xα

1

]
= bn, n = 8, 9, 10

(D.11)

Then, all equations can be combined into a single linear equation as

A1Ĩxα = b1

...

A4g̃
−1
αβ

[
xα

1

]
= b4

...

A6g̃
−1
αγ

[
xα

1

]
= b6

...

A8g̃
−1
αδ

[
xα

1

]
= b8

...

A10g̃
−1
αδ

[
xα

1

]
= b10

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1Ĩ

...

A4g̃
−1
αβ

...

A6g̃
−1
αγ

...

A8g̃
−1
αδ

...

A10g̃
−1
αδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
x0

y0

1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

...

b10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(D.12)
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1Ĩ

...

A4g̃
−1
αβ

...

A6g̃
−1
αγ

...

A8g̃
−1
αδ

...

A10g̃
−1
αδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ĩ1

⎡⎢⎣ x0

y0

⎤⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1Ĩ

...

A4g̃
−1
αβ

...

A6g̃
−1
αγ

...

A8g̃
−1
αδ

...

A10g̃
−1
αδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ĩ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

...

b10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(D.13)

where

Ĩ1 =

⎡⎢⎢⎢⎢⎣
1 0

0 1

0 0

⎤⎥⎥⎥⎥⎦ and Ĩ2 =

⎡⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎦ . (D.14)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1Ĩ

...

A4g̃
−1
αβ

...

A6g̃
−1
αγ

...

A8g̃
−1
αδ

...

A10g̃
−1
αδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ĩ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

⎡⎢⎣ x0

y0

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

...

b4

...

b6

...

b8

...

b10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1Ĩ

...

A4g̃
−1
αβ

...

A6g̃
−1
αγ

...

A8g̃
−1
αδ

...

A10g̃
−1
αδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ĩ2

︸ ︷︷ ︸

(D.15)

A b
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Using linear least squares, a solution to Ax = b can be found as:

x = (ATA)−1ATb (D.16)
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