
Book Title
Book Editors
IOS Press, 2003

1

GiPSiNet: An Open Source/Open
Architecture Network Middleware for

Surgical Simulations

Vincenzo Liberatore1, M. Cenk Çavuşŏglu and Qingbo Cai

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Abstract. In this paper, we present the design and techniques of GiPSiNet, an open
source/open architecture network middleware being developed for surgical simula-
tions. GiPSiNet extendsGiPSi (General Interactive Physical Simulation Interface),
our framework for developing organ level surgical simulations, to network environ-
ments. This network extension is non-trivial, since the network settings pose sev-
eral serious problems for distributed surgical virtual environments such as band-
width limit, delays, and packet losses. Our goal is to enhance the quality (fidelity
and realism) of networked simulations in the absence of network QoS (Quality of
Service) through the GiPSiNet middleware.

Keywords. Surgical simulation, Virtual reality, Network, Middleware, QoS

1. Introduction

Virtual environments receive increasing interest as a new medium for surgical training.
The network extension can substantially amplify the accessibility of surgical virtual en-
vironments and enable remote continuing education and advanced training. However,
this network extension is non-trivial, since the network settings and realities pose several
serious problems for distributed surgical virtual environments such as bandwidth limit,
delays, and packet losses due to congestion. These network issues can greatly impair the
user-perceived simulation quality (fidelity and realism).Thus, the performance of a net-
worked surgical simulation critically depends on the techniques applied to implement an
effective remote interaction.

In our previous work [1,2], we proposedGiPSi (General Interactive Physical Simu-
lation Interface), an open source/open architecture software development framework for
organ level surgical simulations, to accommodate heterogeneous models of computation
and interface heterogeneous physical processes. In our ongoing project, we extend GiPSi
to network environments by adding a network middleware module GiPSiNet, which acts
as an intermediary between simulation applications and thenetwork and takes actions

1Correspondence to: Vincenzo Liberatore or M. Cenk Çavuşoğlu, Department of Electrical Engineering and
Computer Science, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, U.S.A.
Tel.: +1 216 368 4088; E-mail: vxl11@case.edu or cavusoglu@case.edu.

User

FEC

Compression

Segmentation

Data representation

(client)

FEC

Segmentation

Compression

Data representation

GiPSiNet

(server)

Protocol Protocol

Playout Playout

GiPSiNet

(e.g., surgeon,

 trainee)

Network

Input/Output

Haptic interface

Visualization

Simulation

kernel

Figure 1. The GiPSiNet middleware architecture. Shaded module are part of the existing GiPSi platform, clear
modules are part of the GiPSiNet middleware.

to compensate for the lack of networkQoS (Quality of Service) [3]. Our goal is to en-
hance the quality of networked simulations in the absence ofnetwork QoS through the
GiPSiNet middleware.

Specifically, the design objectives of the GiPSiNet middleware are as follows:

• Providing abstraction to address heterogeneous haptic devices and data represen-
tations.

• Ensuring modularity through encapsulation and data hiding.
• Supporting customizability to accommodate various surgical simulations.
• Utilizing network bandwidth and other system resources efficiently. GiPSiNet

should be lightweight and efficient for data communication.
• Devising compensation strategies for networks with delay,jitter, and congestion.

In this paper, we present the design and techniques of GiPSiNet, an open source/open
architecture network middleware being developed for surgical simulations.

2. GiPSiNet Architecture

In our current implementation of GiPSi, an API is provided between the simulation ker-
nel and I/O (i.e., haptic I/O, visualization, graphical user interface (GUI)). To extend
the kernel-I/O API to network environments, we add a middleware layer (GiPSiNet) be-
tween the kernel and the I/O module to encapsulate all networking functionality (Figure
1). The resulting simulator has two communication end-points: (1) theclient, which in-
teracts with the end-user (e.g., surgeon, trainee) throughthe haptic and visualization in-
terfaces, and (2) theserver, where the simulation kernel runs and the physical processes
are numerically simulated. The GiPSiNet high level client-server architecture and data
flow are illustrated in Figure 2.

Accordingly, relevant modules in GiPSi (i.e., haptics I/O and visualization) are re-
structured so that their functionalities are appropriately distributed over the network. For
example, the architecture of the GiPSi haptics I/O module isshown in Figure 3. In this
architecture, the Haptic Interface (HI) class provides an abstraction and a uniform API
for the physical haptic interface device, and hardware specific low-level function calls.
The Haptic Interface Object (HIO) class is the representation of an actual haptic inter-
face in the simulation. Then, the Haptics Server is responsible of creating the instances
of the HI class, initializing them, attaching them to the proper HIOs, and when requested
by the Simulation Kernel, enabling, disabling, and terminating them. The Haptics Client
starts and initializes instances of HIs, starts the real-time schedulers for the physical hap-
tic interface devices, establishes network communicationwith the Haptics Server, and,

Haptic
Server

Server
Visualization

GUI Server

Kernel

Simulation

Server

Haptic
Client

GUI Client

Visualization
Client

Haptic
Interface

Visualization

GUI

Engine

Client

Network

Figure 2. The GiPSiNet client-server architecture and data flow.

Simulation object

Hapitc Interface object

Collision Detection
and Response

Simulation Kernel

Hapitc Interface proxy Hapitc Interface

Haptic Server Haptic Client

Network

Figure 3. The high level architecture and data flow for GiPSiNet haptics.

when requested by the Haptics Server, enables, disables, and terminates HIs. Each HI at
the haptic client side has a corresponding HI Proxy residingat the haptic server which
encapsulates the network communications for haptics I/O and consequently is the main
API for extending to GiPSiNet.

2.1. Communication Model

GiPSiNet uses the following agreement for the client-server communication. The client
sends the server a data unit including: (1) an inputxi, the state of user actions, e.g., a
scalpel position, and (2) an integration interval∆ti. The server computes a linearized
approximationVi+1 of the system state after the integration interval∆ti assuming that
the inputxi is applied continuously during such interval, and replies to the client with a
data unit including the new system stateVi+1. GiPSi views such data units as building
blocks for its operations. However, for each “unit”, several operations are required to
make it suitable for network transmission, for example, segmentation and compression
as implemented in the GiPSiNet middleware.

Figure 4 shows a canonical simulation client-server communication: the client sends
(xi, ∆ti) to the server, and the server replies to the client with the new system stateVi+1.
The information exchange follows a classical on-demand protocol: the client sends a re-
quest(xi, ∆ti) to the server, and the server replies with a response (Vi+1). Ideally, the
client sends requests at regular intervals of length∆ti (say, 100ms, as in the GiPSi simu-
lator), and the server reply is delivered to the client before∆ti. However, in a best-effort
network such as the Internet, a server reply may be delayed orlost due to congestion,
and cannot be delivered before∆ti. Therefore, we should take actions to remediate for
such network impairments and ensure timely data delivery asdiscussed in Section 3.

V1V0V

1 32 τττ

(x(x(x
4V

Remote (server)

t

t

2 Local (client)

)))), ,,, 3210(x
3V2V1V

3V

t2∆t0∆t 1∆t

0∆t 3∆t2∆t1∆t

∆ 3

Figure 4. Timeline of data unit exchanges between client and server.

Schema GiPSiNet generalParameters

simulationObjects

connectors

visualization

collisionDAR

Figure 5. An overview of the XML schema representing the data exchangebetween a simulation server and a
user interface client.

2.2. GiPSiNet Modules

Data representation module. This module implements a format to represent the data
exchange implied by the GiPSi kernel-I/O API. For example, we adopt XML, a platform
independent and well supported technique, to exploit the data exchange between a simu-
lation server and a user interface client. Figure 5 shows an overview of the XML schema
used in GiPSiNet to set up or change the parameters of the simulation environment.

Protocol module. A simulation server should sense clients’ input through haptic de-
vices, apply corresponding operations, and respond to clients with haptic feedback and
the updated simulation object geometry in real time. Therefore, in the protocol module,
we implement a lightweight protocol for efficient communication between the client and
server. This protocol is based on User Datagram Protocol (UDP), which incurs much less
overhead than Transmission Control Protocol (TCP) and is consequently better suited for
real-time traffic.

Segmentation module. The sizes of client and server data unit (i.e.,(xi, ∆ti) andVi+1)
are currently of the order of 14 and 11,664 bytes respectively. However, the size of pack-
ets in the Internet traffic cannot exceed certain limits, typically 1500 bytes (the Ethernet
Maximum Transmission Unit). Therefore, a data unit is divided into multiple packets
(segmentation) if it is longer than the limit. Moreover, in a best-effort network such as
the Internet, there is no guarantee of data delivery, i.e., packets can be lost, duplicated,
delayed, or delivered out of order. Meanwhile, the light-weight protocol in GiPSiNet is

UDP-based and UDP provides no mechanisms to ensure reliabledata delivery. There-
fore, segmentation handling is necessary.

Compression module. Data compression can reduce bandwidth requirements in com-
munication network and the loss probability. Moreover, compressed data has a shorter
transmission time given the same end-to-end available bandwidth. However, compres-
sion also imposes additional processing at the data source and destination. There is in-
tensive research on devising efficient compression algorithm for various types of data. In
GiPSiNet, we implement a data compression algorithm based on the standard Burrows-
Wheeler algorithm [4], a simple and light-weight algorithmleading to better compres-
sion rates than other widespread techniques. Moreover, this algorithm can compress each
data unit independently of others and consequently make thecompression resilient to
data losses.

Section 3 introduces the rest of the GiPSiNet modules incorporating with the tech-
niques to ensure timely data delivery.

3. Timely Data Delivery

Most of today’s networks are unreliable and are based on the best-effort model, which
provides low level of QoS. Data delay and losses can greatly impair the realism and fi-
delity of a networked simulation. An approach to address these issues is to apply tech-
niques to ensure timely data delivery in the GiPSiNet middleware.

Retransmission. There are three categories of data losses: the client data unit loss, the
server data unit loss, and both data unit loss. If a server data unit is lost, the client will
fail to receive the updated system state and the simulation will appear irresponsive to the
user. On the other hand, if both data units are lost, both the server and the client will
wait for data from each other and the simulation will be deadlocked. A solution is to let
the client resend its data unit to the server at a regular interval lengthδ regardless of the
client data unit loss. This regular retransmission by the client can support timely data
delivery to some extent.

Forward Error Correction (FEC) Module. FEC is an error control method which adds
redundancy to the data transmitted using some algorithm. The receiver only needs a
certain portion of the data that contains no errors. FEC doesnot eliminate packet losses,
but it can significantly reduce the data loss probability. Hence, a FEC module is included
in the GiPSiNet middleware.

Playout Module. The round-trip time (RTT) changes over time due to varying network
conditions. This variance of network delay (jitter) disturbs the temporal relationships
in the visualization and hapic media stream. An approach to address this problem is
to buffer the received packets and delay their playout, and the buffering time inteval
should be long enough such that most packets can be received before their scheduled
playout times. However, this buffering time cannot be too long, since it would effect the
realism of a networked simulation. Hence, the appropriate way is to set the buffering
time dynamically according to the network conditions (RTT)and the server computation
time.

In GiPSiNet, a playout module is included to implement the adaptive playout. We
will apply Algorithm 4 from [5], which appears to be effective, simple, and robust for

audio applications over the Internet. Accordingly, this dynamically changing playout
time is included as∆ti in the client’s request to the server, and is the basis to compute a
linearized approximation of the system stateVi+1.

4. Conclusion and future work

In this paper, we presented the architectural design of the GiPSiNet middleware, which
extends our GiPSi framework to network environments. We also described the techniques
applied in GiPSiNet to ensure timely data delivery and enhance the quality of networked
surgical simulations. In the future, we will implement GiPSiNet, run experiments to ob-
tain a better perception of the interaction between networkand the virtual environments,
and evaluate the technical and educational impacts of GiPSiNet.

Acknowledgements

The authors acknowledge Technology Opportunities Program(TOP) of Department of
Commerce, NASA NNC05CB20C, NSF CCR-039910, NSF IIS-0222743, NSF EIA-
0329811, NSF CNS-0423253, and the Virtual Worlds Laboratory at Case Western Re-
serve University.

References

[1] T. Goktekin, M.C. Cavusoglu: GiPSi: A Draft Open Source/Open Architecture Software De-
velopment Framework for Surgical Simulation,the International Symposium on Medical Sim-
ulation 2004, 240–248.

[2] M. C. Cavusoglu, T. G. Goktekin, F. Tendick: GiPSi: A Framework for Open Source/Open
Architecture Software Development for Organ Level Surgical Simulation,IEEE Transactions
on Information Technology in Biomedicine, 2005 (In Press).

[3] J. Smed, T. Kaukoranta, H. Hakonen: Aspects of networking in multiplayer computer games,
Proceedings of the International Conference on Applications and Development of Computer
Games in the 21st Century 2001, 74–81.

[4] M. Burrows,D. J. Wheeler: A block-sorting lossless datacompression algorithm, Digital Sys-
tems Research Center Research Report 124, 1994.

[5] R. Ramjee, J. F. Kurose, D. F. Towsley, H. Schulzrinne: Adaptive Playout Mechanisms for
Packetized Audio Applications in Wide-Area Networks,INFOCOM 1994, 680–688.

	mmvrtitleText3: In Proceedings of Medicine Meets Virtual Reality XIV (MMVR'06), Long Beach, CA, January 24 - 27, 2006.

