Book Title . - . . 1
Book Editors In Proceedings of Medicine Meets Virtual Reality XIV

I0SPress, 2003 (MMVR'06), Long Beach, CA, January 24 - 27, 2006.

GiPSiNet: An Open Source/Open
Architecture Network Middleware for
Surgical Simulations

Vincenzo Liberatoré, M. Cenk Cavusglu and Qingbo Cai

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Abstract. In this paper, we present the design and techniques of GERSAN open
source/open architecture network middleware being dpeeldor surgical simula-
tions. GiPSiNet extendSiPS (General Interactive Physical Simulation Interface),
our framework for developing organ level surgical simwaas, to network environ-
ments. This network extension is non-trivial, since themoek settings pose sev-
eral serious problems for distributed surgical virtualiemvments such as band-
width limit, delays, and packet losses. Our goal is to enbahe quality (fidelity
and realism) of networked simulations in the absence of ort@oS (Quality of
Service) through the GiPSiNet middleware.

Keywords. Surgical simulation, Virtual reality, Network, MiddlewsrQoS

1. Introduction

Virtual environments receive increasing interest as a nediom for surgical training.
The network extension can substantially amplify the agbé#g of surgical virtual en-
vironments and enable remote continuing education andnaedatraining. However,
this network extension is non-trivial, since the networkiegs and realities pose several
serious problems for distributed surgical virtual envirants such as bandwidth limit,
delays, and packet losses due to congestion. These netsgodsi can greatly impair the
user-perceived simulation quality (fidelity and realisifus, the performance of a net-
worked surgical simulation critically depends on the téghas applied to implement an
effective remote interaction.

In our previous work [1,2], we propos€iPS (General Interactive Physical Simu-
lation Interface), an open source/open architecture soéwevelopment framework for
organ level surgical simulations, to accommodate hetereges models of computation
and interface heterogeneous physical processes. In oaimangroject, we extend GiPSi
to network environments by adding a network middleware ne@uPS Net, which acts
as an intermediary between simulation applications andéteork and takes actions

1Correspondence to: Vincenzo Liberatore or M. Cenk Caglusdepartment of Electrical Engineering and
Computer Science, Case Western Reserve University, 1086dEAvenue, Cleveland, OH 44106, U.S.A.
Tel.: +1 216 368 4088; E-mail: vxl11@case.edu or cavusogks@.edu.

Input/Output GiPSINet GiPSINet

(client) ’ (server)
User Haptic interfac Data representation Data representation Simulation
Visualization Segmentation Segmentation kernel
(e.g., surgeon, Compression Compression
trainee) FEC FEC

Playout
Protocol

Playout
Protocol

Figurel. The GiPSiNet middleware architecture. Shaded module at®fihe existing GiPSi platform, clear
modules are part of the GiPSiNet middleware.

to compensate for the lack of netwo@oS (Quality of Service) [3]. Our goal is to en-
hance the quality of networked simulations in the absenceetfiork QoS through the
GiPSiNet middleware.

Specifically, the design objectives of the GiPSiNet mid@dienare as follows:

e Providing abstraction to address heterogeneous hapticedeand data represen-
tations.

e Ensuring modularity through encapsulation and data hiding

Supporting customizability to accommodate various s@algionulations.

e Utilizing network bandwidth and other system resource<ieffitly. GiPSiNet
should be lightweight and efficient for data communication.

e Devising compensation strategies for networks with d4itgr, and congestion.

In this paper, we present the design and techniques of GEBR SN open source/open
architecture network middleware being developed for saigiimulations.

2. GiPSiNet Architecture

In our current implementation of GiPSi, an APl is providedvieen the simulation ker-
nel and I/O (i.e., haptic I/O, visualization, graphical uggerface (GUI)). To extend
the kernel-1/0O API to network environments, we add a middiewlayer (GiPSiNet) be-
tween the kernel and the I/O module to encapsulate all n&mgfunctionality (Figure
1). The resulting simulator has two communication end-0ifi) theclient, which in-
teracts with the end-user (e.g., surgeon, trainee) thrtheghaptic and visualization in-
terfaces, and (2) theerver, where the simulation kernel runs and the physical prosesse
are numerically simulated. The GiPSiNet high level clisatver architecture and data
flow are illustrated in Figure 2.

Accordingly, relevant modules in GiPSi (i.e., haptics I/@davisualization) are re-
structured so that their functionalities are appropnadiétributed over the network. For
example, the architecture of the GiPSi haptics /0O moduh@wvn in Figure 3. In this
architecture, the Haptic Interface (HI) class provides lastraction and a uniform API
for the physical haptic interface device, and hardwareifipdow-level function calls.
The Haptic Interface Object (HIO) class is the represemtatif an actual haptic inter-
face in the simulation. Then, the Haptics Server is respbasif creating the instances
of the HlI class, initializing them, attaching them to thegeoHIOs, and when requested
by the Simulation Kernel, enabling, disabling, and terriirgathem. The Haptics Client
starts and initializes instances of HIs, starts the reaétschedulers for the physical hap-
tic interface devices, establishes network communicatiitin the Haptics Server, and,

Server Client

Haptic Haptic Haptic
Server (Client = Interface
. . Network
Simulation - - : o
Visualizatio Visualization Visualization
Kernel Server ? /> Client [~ 7 Engine
GUI Server GUIClient <= GUI

Figure 2. The GiPSiNet client-server architecture and data flow.

Simulation Kernel

Simulation objec

Collision Detectio
and Response

Haptic Server Haptic Client
Network
H]

Hapitc Interface objedt - Hapitc Interface proxy<—— - Hapitc Imerfa%ﬁ
i Q T- U

Figure 3. The high level architecture and data flow for GiPSiNet haptic

when requested by the Haptics Server, enables, disabkkteminates His. Each HI at
the haptic client side has a corresponding HI Proxy residintpe haptic server which
encapsulates the network communications for haptics l&Dcanmsequently is the main
API for extending to GiPSiNet.

2.1. Communication Model

GiPSiNet uses the following agreement for the client-secoenmunication. The client
sends the server a data unit including: (1) an inpythe state of user actions, e.g., a
scalpel position, and (2) an integration intervsd;. The server computes a linearized
approximationV;;; of the system state after the integration interxa} assuming that
the inputz; is applied continuously during such interval, and repleethe client with a
data unit including the new system stafg ;. GiPSi views such data units as building
blocks for its operations. However, for each “unit”, sevarperations are required to
make it suitable for network transmission, for example psegtation and compression
as implemented in the GiPSiNet middleware.

Figure 4 shows a canonical simulation client-server comoation: the client sends
(z;, At;) to the server, and the server replies to the client with thesystem staté ;.
The information exchange follows a classical on-demantbga: the client sends a re-
quest(z;, At;) to the server, and the server replies with a respoFisg). Ideally, the
client sends requests at regular intervals of lergth(say, 100ms, as in the GiPSi simu-
lator), and the server reply is delivered to the client befdt;. However, in a best-effort
network such as the Internet, a server reply may be delayéasbdue to congestion,
and cannot be delivered befafe;. Therefore, we should take actions to remediate for
such network impairments and ensure timely data delivedjistsissed in Section 3.

ATy Aty AL, AT,

\ \ \ \ \
\ V, \, \
0 1 2 3 ; Local (client)
\(Xo Atg) V/ xxlvAtl) v7/ xxz At) v% Xxs Aty) V/
Remote (server)
oy T t
Figure4. Timeline of data unit exchanges between client and server.

‘ Schema }—{ GiPSiNet}—

generalParameters ‘

simulationObjects ‘

connectors ‘

visualization ‘

I

collisionDAR ‘

Figure5. An overview of the XML schema representing the data exchéet®@een a simulation server and a
user interface client.

2.2. GiPSINet Modules

Data representation module. This module implements a format to represent the data
exchange implied by the GiPSi kernel-1/O API. For example adopt XML, a platform
independent and well supported technique, to exploit tihe elechange between a simu-
lation server and a user interface client. Figure 5 showssarvew of the XML schema
used in GiPSiNet to set up or change the parameters of théaioruenvironment.

Protocol module. A simulation server should sense clients’ input throughticage-
vices, apply corresponding operations, and respond totsligith haptic feedback and
the updated simulation object geometry in real time. Thereefin the protocol module,
we implement a lightweight protocol for efficient commurtioa between the client and
server. This protocol is based on User Datagram ProtocoP()J®hich incurs much less
overhead than Transmission Control Protocol (TCP) andriseguently better suited for
real-time traffic.

Segmentation module. The sizes of client and server data unit (i(e,,, At;) andV;41)
are currently of the order of 14 and 11,664 bytes respegtitlwever, the size of pack-
ets in the Internet traffic cannot exceed certain limitsidsity 1500 bytes (the Ethernet
Maximum Transmission Unit). Therefore, a data unit is ddddnto multiple packets
(segmentation) if it is longer than the limit. Moreover, in a best-efforttamrk such as
the Internet, there is no guarantee of data delivery, iackets can be lost, duplicated,
delayed, or delivered out of order. Meanwhile, the lightigie protocol in GiPSiNet is

UDP-based and UDP provides no mechanisms to ensure retiatdedelivery. There-
fore, segmentation handling is necessary.

Compression module. Data compression can reduce bandwidth requirements in com-
munication network and the loss probability. Moreover, poessed data has a shorter
transmission time given the same end-to-end availablevaiaitih However, compres-
sion also imposes additional processing at the data sourtéestination. There is in-
tensive research on devising efficient compression algarior various types of data. In
GiPSiNet, we implement a data compression algorithm basdteostandard Burrows-
Wheeler algorithm [4], a simple and light-weight algoriti@ading to better compres-
sion rates than other widespread techniques. Moreoverldporithm can compress each
data unit independently of others and consequently makedhepression resilient to
data losses.

Section 3 introduces the rest of the GiPSiNet modules iraratphg with the tech-
niques to ensure timely data delivery.

3. Timely Data Delivery

Most of today’s networks are unreliable and are based onélkedffort model, which

provides low level of QoS. Data delay and losses can greathair the realism and fi-

delity of a networked simulation. An approach to addressdtlissues is to apply tech-
niques to ensure timely data delivery in the GiPSiNet middie.

Retransmission. There are three categories of data losses: the client ditess), the
server data unit loss, and both data unit loss. If a server wait is lost, the client will
fail to receive the updated system state and the simulatibappear irresponsive to the
user. On the other hand, if both data units are lost, both ¢hees and the client will
wait for data from each other and the simulation will be deekiéd. A solution is to let
the client resend its data unit to the server at a regulaniatéengthé regardless of the
client data unit loss. This regular retransmission by thentlcan support timely data
delivery to some extent.

Forward Error Correction (FEC) Module. FEC is an error control method which adds
redundancy to the data transmitted using some algorithra. r€beiver only needs a
certain portion of the data that contains no errors. FEC doesliminate packet losses,
but it can significantly reduce the data loss probabilitynets a FEC module is included
in the GiPSiNet middleware.

Playout Module. The round-trip time (RTT) changes over time due to varyingvoek
conditions. This variance of network delay (jitter) didisrthe temporal relationships
in the visualization and hapic media stream. An approachdtiress this problem is
to buffer the received packets and delay their playout, &edbuffering time inteval
should be long enough such that most packets can be recedfeckliheir scheduled
playout times. However, this buffering time cannot be tawglosince it would effect the
realism of a networked simulation. Hence, the approprisdg i to set the buffering
time dynamically according to the network conditions (R&hj the server computation
time.

In GiPSiNet, a playout module is included to implement theme playout. We
will apply Algorithm 4 from [5], which appears to be effeativsimple, and robust for

audio applications over the Internet. Accordingly, thisndgically changing playout
time is included ag\¢; in the client’s request to the server, and is the basis to coeg
linearized approximation of the system sthie;.

4, Conclusion and futurework

In this paper, we presented the architectural design of iR&iBlet middleware, which
extends our GiPSi framework to network environments. We @éscribed the techniques
applied in GiPSiNet to ensure timely data delivery and eobhdhe quality of networked
surgical simulations. In the future, we will implement GiR&t, run experiments to ob-
tain a better perception of the interaction between netwarkthe virtual environments,
and evaluate the technical and educational impacts of Gi€tSi

Acknowledgements

The authors acknowledge Technology Opportunities Prodii@@P) of Department of
Commerce, NASA NNCO5CB20C, NSF CCR-039910, NSF [IS-0232NSF EIA-
0329811, NSF CNS-0423253, and the Virtual Worlds LaboyaébrCase Western Re-
serve University.

References

[1] T. Goktekin, M.C. Cavusoglu: GiPSi: A Draft Open Sou@pkn Architecture Software De-
velopment Framework for Surgical Simulatiahe | nter national Symposium on Medical Sm-
ulation 2004, 240-248.

[2] M. C. Cavusoglu, T. G. Goktekin, F. Tendick: GiPSi: A Frawork for Open Source/Open
Architecture Software Development for Organ Level Suriggmulation,| EEE Transactions
on Information Technology in Biomedicine, 2005 (In Press).

[3] J. Smed, T. Kaukoranta, H. Hakonen: Aspects of netwarkirmultiplayer computer games,
Proceedings of the International Conference on Applications and Devel opment of Computer
Gamesin the 21st Century 2001, 74-81.

[4] M. Burrows,D. J. Wheeler: A block-sorting lossless dedanpression algorithm, Digital Sys-
tems Research Center Research Report 124, 1994.

[5] R. Ramjee, J. F. Kurose, D. F. Towsley, H. Schulzrinneaptive Playout Mechanisms for
Packetized Audio Applications in Wide-Area NetworkiFOCOM 1994, 680—688.

	mmvrtitleText3: In Proceedings of Medicine Meets Virtual Reality XIV (MMVR'06), Long Beach, CA, January 24 - 27, 2006.

