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Abstract— We are developing a personal micronavigation
system that uses high-resolution gait-corrected inertial measure-
ment units. The goal of this project is to develop a navigation
system that use secondary inertial variables, such as velocity,
to enable long-term precise navigation in the absence of Global
Positioning System (GPS) and beacon signals. In this scheme,
measured zero velocity durations from the ground reaction
sensors are used to reset the accumulated integration errors
from the accelerometers and gyroscopes in position calculation.
We achieved an average position error of 4 meters at the end
of half-hour walks.

I. INTRODUCTION

We are developing a personal micronavigation system
that uses high-resolution gait-corrected inertial measure-
ment units. The system combines a commercial off-the-
shelf (COTS) inertial measurement unit (IMU) with a
high-resolution, thin, flexible, error-correcting biomechanical
ground reaction sensor cluster (GRSC) connected to a hand-
held processing and read-out unit. The final sensor parts in-
cluding the IMU and the GRSC will be placed within the heel
and at the sole of a personnel boot and wirelessly connected
to a handheld unit which will process the data in real-time. In
this approach the IMU will measure inertial displacements,
and the GRSC will independently measure dynamic ground
forces, shear strains and sole deformation associated with
ground locomotion gait. The high resolution biomechanical
GRSC data can be used to detect periods of zero velocity
accurately. These zero velocity points provide discrete zero
velocity corrections to the IMU that dramatically increase its
effective positioning resolution.

Step corrected (also known as dead reckoning) IMU and
GPS navigation systems have been in existence for several
years [1]–[10], but unlike our proposed approach these
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Fig. 1. Stance phase in human bipedal locomotion. In this phase the foot
is in contact with the ground. Only at specific times, during midstance, the
foot heel remains stationary (Figure modified from [12]).

systems detect the step impact shock with accelerometers
placed away from the ground. This approximate detection
technique typically results in a 1-2% positioning error. In our
approach, we use a data-rich high-resolution GRSC placed
very close to the point of heel to ground contact to provide
detailed contact information to an IMU located in close
proximity to the GRSC. We believe this extra information
and the close mechanical (near rigid) relation between the
velocity at the GRSC and IMU locations [11] are key to
reach the high resolution positioning improvements. Our goal
with this unique sensor data fusion approach is to ultimately
permit accurate navigation on any indoor or outdoor terrain,
unassisted by external signals.

In human bipedal locomotion, the walking mode or gait
consists of two separate phases [12]. In the swing phase, the
leg is off the ground. This period extends from the instant
the toe leaves the ground until the heel strikes. In the stance
phase (Figure 1), the foot heel first contacts the ground, then
it rolls until midstance is reached resulting in pivoting of
the leg on the ankle (and corresponding forward motion of
the body). Beyond midstance, detachment of the foot takes
place through a gradual rolling. It is evident that only during
a fraction of the midstance the velocity of the heel is exactly
zero [13]. Hence we propose to detect this time period very
precisely with the GRSC. A high density GRSC can detect
very small changes in the stationary contact yielding very
small errors in the velocity determination in the stance phase.
Relating the velocity of the rolling contact to the the heel
velocity, where IMU is located, can provide us to detect zero
velocity points.

Our initial design goals for the personal micronavigation
system are: (i) navigation accuracy below 10 meters for 1/2
hour walking; (ii) velocity sensing bias per step below 4
mm/s; (iii) form factor for the GRSC below 10 cc; (iv) power
consumption of the GRSC below 300 mW; and (v) GRSC
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Fig. 2. Comparison of position calculations with and without zero-
velocity updating (ZUPT’ing). The user walks on a straight line headed
towards north-east. The figure shows the position of the user with respect to
time, where Easting refers to the eastward-measured distance, and Northing
refers to the northward-measured distance. Without zero-velocity correction,
drifting errors build up in few seconds. Dashed lines in the figure indicate
the drifted position.

with at least 10 sensor elements. If these design goals are
met, the developed system will exceed the current state of
the art micronavigation systems.

II. NAVIGATION WITH IMU AND ZERO-VELOCITY
UPDATING

The basic idea behind a gait-corrected navigation system
is to use the walking stride to periodically reset the drifting
IMU, thus dramatically reducing cumulative navigation er-
rors. The correction occurs when the foot is on the ground,
when all velocities and accelerations of the shoe are zero.
Without this correction, even smallest measurement errors,
due to sensor drift or sensor noise, will amplify and cause
drifting errors, meters in 4-5 steps. Figure 2 compares the
position calculated by integrating the acceleration twice with
zero-velocity updating (ZUPT’ing) during stance period, and
the position calculated without any velocity updates.

The effectiveness of stance-based zero-velocity updating
depends on the detection of zero velocity at the stance period.
Most personal dead-reckoning systems detect steps using a
pedometer or accelerometer, and move the position estimate
forward by the step length in the direction determined by a
magnetic compass or a yaw gyroscope [6], [14]–[16]. The
sensors which are attached to the upper body, detect motion
from normal acceleration or phasing acceleration axes that
exhibit cycles typical of a human’s walking motion. The
number of steps is counted in a pedometer system. The
average step length is adjusted for the walking speed, and
then used to calculate the user’s position. More sophisticated
systems analyze the accelerometer signals to estimate step
lengths. All of these systems require calibration to an in-
dividual user because everyone’s gait has different accel-
eration profiles. An inertial navigation system embedded
in a soldier’s boot heel is described by Elwell [17], but
no experimental validation was performed. Stirling et al.
[18] describe an experiment using a prototype shoe-mounted
sensor that measures stride length with accelerometers and
direction with magnetometers. The system measures angular

acceleration using pairs of accelerometers. The system stops
integrating and resets the velocity before each step. Errors
up to 20% of distance traveled were reported.

A more complex pedometer-like approach was introduced
by Cho and Park [19]. Their system uses a two-axis ac-
celerometer and a two-axis magnetometer located on a shoe.
Step length is estimated from accelerometers readings that
are passed through a neural network, and a Kalman filter
was used to reduce magnetic disturbances. Although their
outdoor results are good, they could not filter the magnetic
disturbances well indoors, which resulted in large errors. A
fiducial-based position estimation system was proposed by
Saarinen [20]. Ultrasonic sensors attached to boots were used
to measure the length of every stride in real-time. In straight-
line walking experiments the authors report an average and
maximum error of 1.3% and 5.4%, respectively. Another
fiducial-based approach introduced by Brand [21] uses radio
frequency (RF) phase changes between a reference signal
located in a waist pack and the one coming from a trans-
mitter located on each boot. This system’s measurements
are limited to 2D environments and cannot detect altitude
changes.

Recently Ojeda and Borenstein [9], [10] developed a shoe-
based navigation system that uses a small 6-DOF inertial
measurement unit (IMU) attached to the user’s boot. The
IMU provides rate-of-rotation and acceleration measure-
ments that are used in real-time to estimate the location
of the user relative to a known starting point. In order to
reduce the most significant errors of this IMU-based system
they used ZUPT’ing. With the ZUPT technique and related
signal processing algorithms, relative error of the system was
about 2% of the distance traveled. In this typical personal
dead-reckoning (PDR) system, the error is independent of
the gait or speed of the user. Their PDR system works in
3D environments, although errors in z-direction are usually
larger than 2% of distance traveled. Feliz et al. used an IMU
unit and a GPS and barometer unit in their PDR system [22].
They did short indoor and outdoor walks to test the system.
Their best relative position loop-closing errors were around
2% for outdoor walks and 10% indoor walks.

Many of the PDR devices attempt to perform the
ZUPT’ing by detection of the contact of the foot with the
ground. Most stance based schemes in the literature equate
zero velocity detection to the impact of the heel when it
hits the ground. The problem with this scheme is that the
impact shock event only signals the beginning of the stance
phase which involves several sub phases itself. Not all the
sub phases has zero velocity. Zero velocity only occurs at
some point around the midstance subphase, after all rolling
contact of the foot with the ground has been reached. If the
zero velocity point is not accurately determined, the resulting
ZUPT’ing scheme will have an intrinsic zero-velocity bias
which will reduce its effectiveness. In order to detect zero-
velocity stance accurately, its is necessary to utilize a sensor
at the IMU location to record sufficient data detailing the
nature of the contact with the ground. In this work, we
propose to use a GRSC placed in close proximity to the
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Fig. 3. Propagation of a pressure contour created by the heel.

IMU location to more accurately estimate the periods of zero
velocity, improving ZUPT’ing and reducing position error.

III. INERTIAL MEASUREMENT UNIT (IMU)

We used an InterSense InertiaCube3 module that integrates
a two two-axes accelerometers, three single-axis gyroscopes
and a three-axes magnetometer compass within a low volume
(26.2×39.2×14.8 mm3), which can fit within the heel. This
IMU module is temperature compensated producing a lower
error bias than other COTS IMU units. InterSense [23] has
developed one of the most sophisticated extended Kalman
filter schemes for micronavigation. InertiaCube3 combines
the aforementioned sensing elements with an integrated
Kalman filtering algorithm. The unit can provide orientation
and gravity compensated acceleration information aligned
with earth’s magnetic north. InertiaCube3 can measure ac-
celerations up to ±6 g.

IV. PRESSURE SENSOR

In our walk experiments, we used a COTS pressure sensor
array, DigiTacts II Array Tactile sensors manufactured by
Pressure Profile Systems (PPS), as our biomechanical GRSC
sensor. DigiTacts II sensors have 24 sensing elements with
sensing area of 82.3 × 45.1 mm2. These sensors use a
capacitance-based sensing scheme that can detect pressures
up to 140 kPa. Overall power consumption of the GRSC,
was 20 mW (3.3 V/6 mA). The GRSC was a custom built
unit that was calibrated prior to shipment.

Pressure sensor arrays can be used to detect pressure
contours that are generated by the heel if the sensor is placed
between the heel of the shoe and the shoe insole. One can
find the centroid velocity of the pressure contours (Figure 3)
as

�v(θ, t) =
dr(θ, t)

dt
· r̂ ≈ r(θ, t + Δt) − r(θ, t)

Δt
· r̂, (1)

�vcntr =
∫ 2π

0

�v(θ, t)dθ (2)

where �v is the velocity of a point on the contour, r is the
radius of the contour point, r̂ is the unit vector that lies on the
line between the center of the contour and the contour point,
and �vcntr is centroid velocity of the contour. The contour
velocity can be used to detect the zero velocity of the shoe.

We can assume that the shoe, and the IMU, is at rest when
the centroid velocity is below a velocity threshold

||�vcntr|| ≤ vthrsh. (3)

This zero velocity information can be used in the ZUPT’ing
scheme to reduce the drift in the IMU measurements.

In order to verify that pressure sensor arrays can be used to
detect zero-velocities of the heel, we conducted experiments
using an external sensor in addition to the IMU and biome-
chanical sensor. A 3D optical motion capture system system,
Eagle Digital RealTime System from Motion Analysis Corp.
[24], was used as the external sensor. This sensor can
provide 6-DOF position and orientation information with
sub-millimeter RMS accuracy using optical markers. Optical
markers and IMU were placed on a plate that was attached
to the heel of a combat boot (Figure 4). An insole-shaped
pressure sensor, Novel Pedar Pressure Sensor System [25],
was placed in the boot as the biomechanical sensor. This sen-
sor has 99 sensing elements. We used 54 of the 99 elements
located in the heel portion of the sensor (Figure 5). Using
all these sensors, walk data from each of the sensors were
captured and calculated velocity outputs were compared.
Figure 6 shows the velocity measurements from the three
sensors: Boot’s heel velocity along the walking direction,
vx, from optical motion capture system, the angular velocity
in the pitch1 rotation, ωpitch, from the IMU, and the pressure
contour centroid velocity of the heel, vcntr, from the pressure
system. This figure shows that the minimum detectable
velocity of the boot can be observed from the pressure
contour velocity of the heel, vcntr. This provides additional
and more accurate zero velocity detection, independent of
the measurements from the IMU. The optical sensor was
not used in the calibration of the overall system, which is
described in the later parts of the presented work.

V. POSITION CALCULATION FROM THE SENSORS

The sensor data fusion scheme that we followed to inte-
grate acceleration is given in Figure 7. First, acceleration
and orientation information, which are represented in the
navigation coordinate frame, was retrieved from IMU. Navi-
gation coordinate frame (also known as spatial coordinate
frame, or world coordinate frame) is the name that was
used by the IMU manufacturer, which is the locally-level
geographic frame with its x−axis pointing north, y−axis
east, and z−axis down [26]. Next, a Kalman filter (KF) [27]
is employed to find acceleration biases. This estimation is
performed in the sensor’s body coordinate frame and then
the resultant biases are transformed to the world coordinate
frame. Bias compensated acceleration from the IMU and zero
velocity points from the pressure sensor array are used in
the integration via ZUPT’ing to calculate the position of the
user. Finally, a calibration is applied to correct the drifts in
the calculated position. This calibration is used to correct
future collected walk data.

1Pitch is the measure of the rotation to which boot’s nose tilts up or down
relative to its heel.
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Fig. 4. Boot sensors: Boot with the pressure sensor inserted in the insole
is shown. The IMU is located externally on the heel attached to an optical
marker tool frame. Position and orientation of the IMU is captured using
the 3D optical motion tracker system.
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Fig. 5. Pressure contours overlayed on the heel portion of the pressure
sensor insole.
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Fig. 7. Integration with ZUPT’ing scheme followed to calculate position
from IMU and pressure sensor outputs.
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Fig. 8. Kalman filter bias output for IMU’s acceleration outputs.

In the following sections the steps of this position calcu-
lation process are explained in detail.

A. Acceleration bias compensation

The IMU software provides gravity-compensated accelera-
tion in the navigation coordinate frame, anav, and the matrix
that defines rotation between navigation and body coordinate
frames, Rnb. Gravity-compensated acceleration in the sensor
body coordinates, abody, can be calculated as

abody[k] = R−1
nb [k]anav[k] . (4)

We fine tuned the IMU measurements via a bias estimator.
IMU’s acceleration output was processed with a Kalman
filter to calculate the actual acceleration as

anav
a [k] = anav

m [k] − Rnb[k]abody
b [k] (5)

where anav
m is the measured acceleration in the navigation

frame, abody
b is the acceleration bias detected by the Kalman

filter in the body frame, and anav
a is the actual acceleration

represented in the navigation frame that exists on the heel.
The bias estimation, abody

b , is performed in the IMU’s body
coordinate frame, and then subtracted from the measured
acceleration in order to get the the actual acceleration in the
navigation frame.

The output of the KF is plotted in Figure 8. With this
extra level of filtering, the final position error was decreased
about 5-10% in most of our tests. Positions calculated from
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Fig. 10. Calibration step points around the square calibration loop.

measured and actual (bias compensated) accelerations are
compared in Figure 9. For the case shown in this figure, the
loop-closing error was decreased by 26%.

B. Calibration

In initial loop-closing tests, we realized that our position
results have drifts towards a fixed direction. We believe
that this is due to an error in the IMU’s internal gravity
compensation algorithm. In order to cancel this random drift
effect, we developed a calibration scheme that was applied
each time we performed an experiment. We marked 40 points
around a 11.7 m/edge square in the field such that the user
can walk on these marked step points. Walking with uniform
steps, the user completed 4 to 6 laps (Figure 10) around the
square. Using this initial data, 40 lines were fitted through
the position of the same step points (Figure 11). An average
slope was determined from the linear fits, and the slope was
used to correct the deviation in the future collected data.

C. Walk Experiments

We performed loop-closing 1/2 hour walks to test our
system. The procedure that we followed is depicted in
Figure 12. First, we performed a 5-minute short walk to
be used in the calibration process described in the previous
section. Next, we performed, longer, 1/2 hour walks ending at
the starting point to calculate the loop-closing error for each
walk.
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Fig. 11. Linear fits are shown for the steps during calibration walk. Average
slope of the linear fits was used to correct the deviation in the future data.
Easting refers to the movement towards the east, and Northing refers to the
movement towards the north.

Fig. 12. Procedure for loop-closing 1/2 hour walks: 1. Short walk around
a square (11.7 m/edge) for 5 minutes. 2. Longer, 1/2 hour walks around the
same square as short walk or random path (paths are shown for illustrative
purposes only).

The field where we performed our walk tests is a sports
field with reasonably flat surface, and we are assuming that
the person is walking on a flat surface. Therefore the position
errors reported in this paper are the Euclidean norm of
the two-dimensional errors. We have conducted 6 half-hour
loop-closing experiments; the subject first walked along the
square-shaped path for about five minutes for the calibration.
Then we collected additional 1/2 hour walk data either around
the same square as the calibration walk or random path in
the field.

D. Walk Results

Figures 13 and 14 shows two of the walk results. “Position
Error" is calculated by integrating the measured accelera-
tion, am, with ZUPT’ing, and “Calibrated Position Error"

1056



TABLE I
DESIGN GOALS AND MEASURED RESULTS.

System Metric State of the art Goal Results

Navigation accuracy for 1/2 hour walk [m] 45 ≤ 10 4.30±3.15

Zero-velocity sensing bias per step [mm/s] 28 ≤ 4 4 (imaging limited)

Form factor for velocity sensor alone [cc] 125 ≤ 10 5

Power consumption of the velocity sensor [mW] 2000 ≤ 300 20

Number of GRSC sensor elements 10 ≥ 10 (COTS) 24 (COTS)

State of the art navigation accuracy is projected from a shorter walk that was reported in [9].
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Fig. 13. 1/2 hour square loop walk results. Position is calculated by
integrating the measured acceleration, am, with ZUPT’ing, and Calibrated
Position is calculated from integrated actual acceleration, aa , with ZUPT’ing
followed by the calibration. Loop closing error is 1.04 m (0.098%).

is calculated from integrated actual acceleration, aa, with
ZUPT’ing followed by the calibration. Figure 13 shows a
walk experiment where the user followed the square loop for
the whole experiment. Loop closing error for this experiment
is 1.04 m (0.098%). This result shows the effectiveness of
the calibration process that was performed. Figure 14 shows
a calibration walk followed by a random walk experiment in
the field. Loop closing error for this experiment is 1.45 m
(0.078%).

The average path length walked during 1/2 hour walks was
1215 m (this is in addition to an average 235 m calibration
walks). We have conducted 6 walk experiments, and the
loop-closing errors has a mean of 4.30 ± 3.15 m (mean ±
standard deviation), which makes the average relative error
0.35%.

VI. CONCLUDING REMARKS AND FUTURE WORK

We have developed a personnel micronavigation system
that uses inertial measurements from an IMU and zero
velocity measurements from a GRSC. Our design goals,
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Fig. 14. 1/2 hour random walk results. Position is calculated by integrating
the measured acceleration, am, with ZUPT’ing, and Calibrated Position is
calculated from integrated actual acceleration, aa, with ZUPT’ing followed
by the calibration. Loop closing error is 1.45 m (0.078%).

specifications from state of the art, and results from the
developed system are given in Table I. All of the design
goals were achieved. Only the zero-velocity sensing bias goal
was reached indirectly. That is due to the placement of the
pressure sensor array in the shoe. The closer the sensor is to
the ground, the better the detection of zero-velocity regions
get. Although the pressure sensor array in our setup was
placed under the insole of the shoe, we were able to observe
the zero-velocity points effectively using pressure contour
velocities.

In our future work, would like to use a higher density
pressure sensor array. As the number of the pressure sensor
elements increase, the resolution of the pressure contours
increase, and with that the minimum detectable zero velocity
becomes closer to zero. This would improve the performance
of ZUPT’ing. We also would like to use a differential global
positioning system (DGPS) to validate our random walk
results throughout the trajectory, where in this study only
loop-closing errors were used to verify the system accuracy.
Our straight-walk and around-the-square-loop experiments
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show that we did not have any other form of error that would
not be shown by loop-closure check, but would be visible in
DGPS data.
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