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Abstract— Robot assisted heart surgery allows surgeons to
operate on a heart while it is still beating as if it had been
stopped. The robot actively cancels heart motion by closely
following a point of interest (POI) on the heart surface—a
process called Active Relative Motion Canceling (ARMC). Due
to the high bandwidth of the POI motion, it is necessary to
supply the controller with an estimate of the immediate future
of the POI over a prediction horizon. In this paper, a prediction
algorithm, using an adaptive filter to generate future position
estimates, is implemented and studied. The effects of predictor
parameters on tracking performance are studied. Finally, the
predictor is evaluated using a 3 degrees of freedom test-bed
and prerecorded heart motion data.

I. INTRODUCTION

Beating heart surgery cannot be effectively performed by
hand due to the relatively quick motion of the heart [1].
A robot can be used to track a point on the heart surface,
moving with the heart, canceling the relative motion and
allowing a surgeon to operate as if the heart were stationary.
This technology is especially important when performing off-
pump coronary artery bypass graft (CABG) surgery where
the surgeon is required to operate on blood vessels that are
small (diameters ranging from 0.5 mm to 2 mm) that move
quickly. In order to allow for precise operations on vessels of
these sizes, we expect that an RMS position error along the
order of 100 μm to 250 μm will yield satisfactory results.

The relatively fast and high bandwidth motion of a point
on the heart surface, and the high precision to which it must
be tracked, makes its robotic tracking difficult [2]. Causal
error feedback control alone is not able to reduce the tracking
error sufficiently such that surgery can be done on blood
vessels on the heart surface. A predictive controller in the
feedforward path was found to be necessary [2], [3]. Such a
predictive controller needs an estimate of the future motion
of the point of interest (POI) on the heart surface that is
to be tracked. The estimate needs to be of a finite duration
into the future, referred to as the prediction horizon. Figure
1 illustrates the prediction horizon, the estimator reference
data, and displays typical motion of the POI.

In this paper, a heart motion prediction method based on
adaptive filter techniques is studied. A recursive least squares
based adaptive filter algorithm is proposed for parameterizing
a linear system to predict the motion of the POI. The feasibil-
ity and effectiveness of the approach are demonstrated. The
effects of system parameters are systematically studied and
simulated on a hardware test bed with 3 degrees of freedom
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Fig. 1. Plot of heart data and the prediction made from it. The dashed
line indicates the current time. The estimator memory consists of the past
11 data points and the current position which the predictor uses to estimate.
Thus the predictor is 12th order. The bold line indicate the prediction over
the horizon. As can be seen, the prediction initially follows the future POI
motion but diverges towards the end of the prediction horizon.

(DOF) using previously recorded heart motion data, obtained
by Cavusoglu et al. [2], as the reference. Section II discusses
how predictions were generated on similar projects. Section
III and IV formally formulate the problem as well as the
statistical model for the motion of the POI. The use of an
adaptive filter to parameterize an estimator is demonstrated
in Section V. Further, it is explained how the estimator is
used to create estimations throughout the prediction horizon.
Implementation details are addressed in sections VI, VII, and
VIII. Finally, the evaluation results of the effectiveness of the
new prediction scheme on a 3-DOF robot, using prerecorded
heart motion data, is given in section IX.

II. RELATED WORKS IN LITERATURE

This paper is concerned with estimating the prediction
horizon for receding horizon model predictive control–a
control scheme that relies on the estimate of the prediction
horizon as a reference signal. There has already been several
proposed ways to estimate motion of a POI on the heart
surface.

Ortmaier et al. [4] used Takens Theorem to develop a
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robust prediction algorithm, anticipating periods of lost data
when a tool obscured the visual tracking system. Estimates
were generated from a linear combination of embedding
vectors of previous heart data. The weights were chosen such
that better estimating vectors are weighted more heavily. The
algorithm had a global prediction technique that correlated
ECG signals to heart motion. It was able to estimate the
system behavior when visual contact of the landmark was
lost for some period of time.

Ginhoux et al. [5] separated breathing motion from heart
motion in the prediction algorithm. The breathing motion
was treated as perfectly periodic, since the patient would
be on a breathing machine. The heart motion was predicted
by estimating the fundamental frequency, as well as the
amplitude and phase of the first 5 harmonics. This prediction
was used to estimate disturbance so that the controller could
correct for it.

Rotella [3] used the previous cycle of heart motion data
as an estimate of future behavior. This lead to problems
since the POI motion was not perfectly periodic. Bebek et
al. [6] improved upon this prediction scheme by synchro-
nizing heart periods using ECG data and separated heart and
breathing motion, predicting only heart motion. Bebek noted
that the prediction method still could be improved.

This paper introduces a new estimation algorithm into
the controller described in the earlier work of Rotella [3]
and Bebek et al. [6]. A new prediction technique using
adaptive filters is proposed and used in place of the pre-
diction algorithm of Bebek. Since the new linear predictor
is parameterized by a least squares algorithm, the predic-
tor is inherently robust to noise. The predictor only uses
observations close to and including the present making it
less susceptible to differences between heart periods than
the algorithm of Bebek et al. [6]. Where as Ginhoux et
al [5] formulated prediction for periodic POI motion, no
assumptions are made towards periodicity of the system a
priori, rather the predictor is unconstrained so that it can
best mimic the motion of the POI.

III. PROBLEM FORMULATION

The receding horizon controller require an estimate of
the immediate future of the POI on the heart surface. The
prediction problem is to best estimate, in some sense, the
value for the next several observations over the prediction
horizon, given a finite number of known samples leading up
to the present. Figure 1 provides a graphical schematic of
the problem. Once a method is established to estimate the
next observations, a sequence of future observations can be
estimated.

Fundamentally, the predictor is a mapping from the sam-
ples in its memory to the best estimate of the next observa-
tion. The estimate for the next value is such to minimize
the error between the prediction and the actual position
of the POI as it will appear in the future. An M th order
predictor has memory of the past M − 1 observations as
well as having access to the current observation. It uses these
M observations to generate the next expected observation.

To generate the observation after that one, what was just
estimated is treated as if it were actually observed and
is added to the set of observations. The next observation
predicted from this set is the next value in the prediction
horizon. Proceeding inductively by this method, any number
of future estimates can be made, stopping when all the
predictions for the horizon have been made.

In order to generate predictions in this way, the one step
prediction function must be known. Abstractly, the motion of
the POI is represented as a continuous time dynamic system.
An analogous discrete system must be created for estimation.
However, the state space of the heart is not known—not even
its dimension. To simplify prediction, the heart model must
use a finite, and rather low order, state vector. The discrete
transition function maps from the approximate model’s state
space onto the same space. The transition function for the
discrete, approximate model is, in general, nonlinear. As is,
this would be very difficult to parameterize; so the transition
function will be assumed to be linear. This assumption is
justified by the nature of the signal that is being predicted.

The motion of the POI on the heart surface is quasi-
periodic, subject to small disturbance. Fourier analysis of the
heart signal data reveals how this periodic nature is prevalent
(see Figure 2). The heart position signal is primarily the
superposition of two effects: motion due to the heart beating
and motion due to breathing. Each of these signals closely
resemble periodic signals with their own fundamental period.
In the prerecorded data used by Cavusoglu et al. [2], which
was collected from an adult porcine using a Sonomicrometry
system, the lung motion is lower frequency with a fundamen-
tal period of approximately 0.4 Hz with only the primary
harmonic appearing significant. The heart motion itself has
a fundamental frequency of 2 Hz, corresponding to 120 bpm,
with the first five harmonics being considered significant. The
sharpness of these peaks indicate that the harmonics decay
very little in time, meaning that the overall motion of the
POI is similar to a superposition of periodic signals.

The justification for using a linear predictor is this: a linear
system can easily be constructed that has a frequency re-
sponse that mimics the heart signal’s Fourier representation.
The transient response would then resemble the observed
heart data. Since each peak in the system’s frequency re-
sponse would be due to a pair of complex eigenvalues, the
above five significant harmonics would only need a tenth
order system to reproduce the behavior. This system would
have the special property that, given the current state of
the actual heart signal as initial values for the system, the
transient response would follow the actual heart motion—
giving a prediction. Finally, if the state was formulated as a
stacked vector of past observation then the determination of
the initial state would be trivial. A linear system of the above
specifications would meet the requirements for the heart
model transition function. However, the model would still
need to be parameterized in a way to statistically minimize
the error of the prediction.
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Fig. 2. Power Spectral Density of the heart motion in the y and z directions.
Tall, narrow peaks with the absence of intermittent frequencies indicate
largely periodic motion of the heart.

IV. STATISTICAL MODEL OF HEART MOTION

The heart position data consists of 3-dimensional vectors
representing position. These vector samples are assumed to
be generated from a vector autoregressive model (VAR). A
VAR process has multiple output signals which are correlated
with each other. The model is given by (see [7]):

�γk =
M∑
i=1

Ai�γk−i + �γk (1)

In this case, it is an M th order VAR model. Each observation
is given by a weighted sum of past observations, and is
perturbed by noise given by �γk. Noise vector �γk is assumed
to be zero mean white noise. Since the linear combination
of past observations account for correlation between obser-
vations, for any two noise vectors �γk is uncorrelated with
�γi for i �= k. Since the noise vector is assumed to be
white, it is not useful when generating predictions of future
values. Therefore, when parameterizing the equation for the
purpose of prediction, only the weighting matrices need to
be estimated.

The prediction is treated as if the heart statistics are
stationary. In practice, the heart statistics may likely change
during surgery. Should these changes be gradual, an adaptive
predictor will be able to adjust to these changes sufficiently
quickly. However, if the statistics change abruptly the pre-
dictor cannot adapt in time and actions must be taken to
minimize the effect of poor predictions. Future work will
have to address how to detect these events as well as what
actions should be taken.
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Fig. 3. The adaptive filter is arranged to minimize the error between the
estimate for the current observation, calculated in the last iteration, and the
actual observed value. In this way, the weights of the filter are statistically
optimized to estimate one step ahead.

A. State Space VAR Model

The VAR model given in (1) can be reformulated in state
space canonical form as

�Xk = Φ �Xk−i + Γ�vk

�σk = C �Xk
(2)

This system can be reformulated using an arbitrary state vec-
tor, however a stacked vector of past observations simplifies
the determination of the initial state, parametrization of the
matrix Φ, and generation of the prediction horizon. In this
case, Φ is in canonical form and can be written as:

Φ =

⎛
⎜⎜⎜⎜⎝

A1 A2 · · · AM

I 0 · · · 0

0 I
...

...
. . . 0

⎞
⎟⎟⎟⎟⎠

(3)

Future observations of the system are given by solving the
state space solution at time n. In order to find the expected
trajectory, we take the expectation of (2) and find that the
solution takes the form

E{γn+k} = CΦk �Xn (4)

Where the above formula gives the horizon estimate made
at time n for a value k steps into the future. Note that since
Φk is only computed for k < K , where K is the horizon
length, Φk always remains finite. Therefore, stability of Φ is
not a concern. Since �v is unknown, but its expected value
is zero by construction, it does not appear in the solution to
the expected trajectory.

V. ADAPTIVE FILTER

The adaptive predictor consists of two principle parts:
a linear filter and an adaption algorithm. The input-output
relation of the adaptive filter is determined by the linear filter.
The adaptive filter’s response is the response of the linear
filter to the system’s input. In this case, the linear filter will
be a transversal filter. The adaptive algorithm changes the
filter’s weights in order to make the filter’s output match the
desired response in a statistical sense. The adaptive algorithm
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changes the filter’s weights, so the filter is in fact not linear
time-invariant. However, when the adaptive filter is adapting
to a stationary signal, it will converge to a steady state, after
which point it can be treated as being linear time-invariant.

If the adaptive algorithm is able to forget the past, just as
it was able to converge to a stationary signal, it can track a
signal with changing statistics [8]. In the special case that the
statistics change slowly relative to the algorithm’s ability to
adapt, then the filter can track the ideal time-varying solution.
Further, if the statistics change slowly relative to the length
of the prediction horizon as well as the length of the state
vector, then the adaptive filter can be considered to be locally
linear time-invariant. The two afore mentioned conditions are
the case with modeling the heart motion during most normal
situations.

The adaption algorithm uses an exponential window to
weight past observations so that more recent observations
carry more weight. The exponential window was chosen
because it can easily be implemented recursively. Due to
this windowing, the adaptive predictor is able to track the
heart signal even if the statistics of the heart signal change
slowly with time.

A. Parametrization

Traditional system identification problems using adaptive
filters arrange the filter such that the input to the filter is
the system’s input and the desired response is the system’s
desired response. In this way, the filter converges towards an
approximation of the system’s input-output relation. How-
ever, (2) is driven by white noise input vector �v. This input is
unknown and unable to be predicted for future observations.
Thus, deriving an input-output relationship for the heart
motion would be impractical. Instead, the adaptive filter is
arranged as a one-step predictor. The desired response is
the heart position’s current observation and the input to the
adaptive filter is the previous heart observation. The adaptive
filter adjusts its filter weights such that it generates the
statistically best estimate for the next observation, given only
the current and past observations.

In order to generate the predictions, the coefficient ma-
trices, Ai, from (1) need to be estimated. Equivalently, the
matrix Φ from (2). This matrix is in controllable canonical
form, so estimating Ai is sufficient to parameterize the
estimated matrix, denoted Φ̂. As can be seen from (1),
the matrices Ai correspond to tap weights in a transversal
filter. In a one-step predictor, when it has converged to a
solution, its filter weights are precisely the matrices needed to
parameterize Φ̂. In this way the adaptive algorithm estimates
the matrix Φ̂.

B. Recursive Least Squares

Recursive least squares (RLS) was chosen to be the
adaptive algorithm to update the filter weights. RLS is a
method that updates a least squares solution when a new
piece of data is added. In practice, the RLS solution will
approach the actual solution, even if the initial estimates for
the solution were wrong. To formulate the RLS algorithm

for vector samples, the one step prediction problem needs to
be stated as a least squares problem.

⎛
⎜⎝

γT
n−1 γT

n−2 · · · γT
n−M

γT
n−2 γT

n−3 · · · γT
n−M−1

...
...

⎞
⎟⎠W =

⎛
⎜⎝

γT
n

γT
n−1
...

⎞
⎟⎠ (5)

where the objective is to find W such that the square of the
error between the two sides of the equation is minimized.
Since ( γT

n−1 γT
n−2 · · · γT

n−M )W = yT where y is the
expected one step estimate, it is clear that

WT = (A1 A2 · · · AM ) (6)

where Ai are the weighting matrices from (1).
Using the statement of the least squares problem for

the one step estimator in (5), the RLS algorithm can be
derived. The derivation of the vector valued RLS algorithm
is analogous to Haykin’s derivation of the scalar case [8].
Further, an exponential weighting factor can be introduced
to produce a weighted least squares problem. This factor, λ
is multiplied to each observation at each iteration, producing
an exponential weighting of observations.

The RLS algorithm was formulated with past observations
exponentially windowed such that the algorithm has the
ability to forget the distant past. The exponential window
parameter λ is referred to as the forgetting factor. When
λ = 1, the RLS algorithm does not forget old observations,
instead it has infinite memory. When λ < 1, observations
are reduced in importance such that the least squares solution
places a greater importance on minimizing error for the more
recent observations and their prediction than on older ones.
From the combination of weighted memory and convergence
to the optimal solution, if the statistics of the heart motion
change in time, the RLS algorithm is able to adapt to the
new heart behavior.

C. Prediction

Following from (4) , the one-step prediction is:

γn = Ŵ

⎛
⎜⎜⎜⎝

γn−1

γn−2

...
γn−M

⎞
⎟⎟⎟⎠ (7)

which is precisely the expected value of γn from (1).
The prediction horizon of length K starting at time n is

the solution to (4) with initial condition vector being the
stacked vector of the past M observations.

In the actual implementation, predictions over the horizon
length are generated by iterating this function several times.
This avoids the computational complexity of calculating
Φk and using it directly to compute the predictions. The
calculation of �Xn = Φ �Xn−1 is simplified by calculating
γn+k by (7), shifting the stacked observation vector �X down
by one observation size and making the first observation the
current estimate. In this way, the computational complexity
of iterating the state variable increases proportional to M ,
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Fig. 4. The one step estimate is generated by use of a transversal filter
weighting the past observations to produce an estimate for the next expected
observation. When generating predictions for the horizon, the path is closed
as the last estimate is treated as the current input. The prediction sequence
is the collection of the estimate output each time the filter is iterated.

opposed to M2. Since the observation matrix C from (2)
simply retrieves the first observation from �X , multiplication
by C is not necessary because the observation can be directly
indexed and removed.

Using the above described method for obtaining an es-
timate, the horizon is generated by collecting the next K
estimates of the heart surface trajectory. Each time the
process starts, the current state vector is used to start the
process. As each prediction is generated, the state vector is
updated with the newest observation and the observation is
saved into a collection. This collection of estimates is the
expected trajectory of the heart surface given the past M
observations. When each horizon is generated, the predictor
starts with the current set of actual observations. This way, if
the transition matrix Φ is unstable then the predictions will
not diverge in the finite horizon window.

VI. CORRELATION BETWEEN SIGNALS

The described method for generating estimates use the
matrices Ai as weights for the vector observations. This
allows for motion along one axis to be correlated with motion
on the other two. This feature comes at a significant compu-
tational cost. A less computationally intense method would
treat motion of the POI on each axis as being independent.
Since it would be using 3 scalars to weight each past data
sample, opposed to a 3×3 matrix, it would require one third
of the computational effort to process the same number of
past observations. This would allow, in the same time, for
more samples of past data to be processed when generating
the next prediction.

In order to decide which option is best for implementation,
the effectiveness of each estimate per the computational
effort needs to be determined. The complexity corresponds
to the order of an independent predictor of equivalent order,
or a correlated predictor with order being a third of the
complexity. The simulation was done by processing all of the
data at once, calculating the least squares fit for the weights,
and simulating predictions. The average of the Euclidean
norm of the error is shown for both systems in Figure 5.

The results shown in Figure 5 reveals that treating the heart
signals as being correlated yields better estimates when the
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Fig. 5. Comparison plot for independent and correlated signal predictions.
The predictor complexity is relative to the complexity of three independent
RLS predictors of the same order. Therefore correlated predictor complexi-
ties are three times the estimator order. The trend of the plot is that for the
computational effort required, accounting for correlation between signals
yields better results.

computation effort is low. Typical complexity for an on-line
estimator would fall in the 20 to 50 region.

Also, it should be mentioned here that these errors are
not necessarily monotone with respect to the filter order.
This is because the predictor minimizes the error of the one
step prediction. The one step error is monotone decreasing
in magnitude because if the order was increased and the
new weights were held to be zero, we would have the same
error that was in lower order. This way, the one step error
will never increase with order. However, minimizing the one
step error does not necessarily correspond to minimizing the
error at some arbitrary time in the prediction horizon. Rather,
Figure 5 reveals that as the order increases, and so the one
step prediction error decreases, the error in the prediction
horizon tends to decrease as well.

VII. PREDICTION ERROR WITHIN THE TIME WINDOW

Section VI studied the effect of predictor order on the
prediction error for a fixed amount of time in the future.
However, the error varies based upon how far it is in the
future. Figure 6 shows the error across the prediction hori-
zons of the correlated predictions for several complexities—
as calculated in Section VI. The figure was created in the
same manner as described in Section VI.

The behavior of these plots appear to be linear for times
in the immediate future, and holds particularly well for the
lower complexity cases. The monotone increasing error with
lead time displayed in this plot reflects that the quality of the
estimation decreases as you attempt to estimate further into
the future. This generalization will be useful for allowing
the predictive controller to properly weight estimates in the
horizon when calculating the control law.
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Fig. 6. Plot showing how the magnitude of the error varies throughout the
prediction horizon. The data is processed at a sampling rate of 250 Hz. The
prediction horizon used in the model predictive controller would correspond
to seven samples in length at this frequency. Additional points are displayed
to illustrate the trend.

VIII. SAMPLING TIME

Since the prediction scheme for the heart data is a system
that can be locally approximated as linear time invariant for
short periods of time, so long as the heart signal is predicted
at a sampling rate higher than the Nyquist rate, sampling rate
is theoretically arbitrary. However, in practice, this did not
prove to be the case. Running at a lower sampling rate means
that there is a larger numerical difference between samples—
important in the finite precision implementation. Also, to
predict over a fixed length horizon at a lower sampling
rate, fewer iterations of the predictor need to be computed.
Finally, for a predictor of a fixed length, the sampling rate
corresponds to how much time is between each sample—
translating to how far back the system has memory. In
Figure 1, the predictor order translates to the number of past
observations available to the predictor, whereas the sampling
rate corresponds to the spacing between those points.

The control algorithms run at a sampling rate of 2 kHz.
This is well above the Nyquist rate for heart motion signal
which, for 120 beats per minute and allowing for six har-
monics, is about 25 Hz. The effects on RMS position error
caused by changing the sampling rate are plotted in figure 7.
From this plot, it appears the ideal downsampling rate in this
controller is 15—corresponding to a processing frequency
of 133 Hz. This optimal value is a trade off between the
numerical problems associated with calculating predictions
using a finite number of samples at high sampling rates and
the inaccuracy caused by interpolation and aliasing.

IX. TEST ON 3-DOF ROBOTIC TEST BED

The proposed algorithm was tested on a 3-DOF robotic
test bed. The 3-DOF test bed is a PHANToM Premium 1.5A
haptic device which acts as our surgical robot. The trials
used the prerecorded heart data mentioned in Section III. The
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Fig. 7. The predictions can be made from a downsampled version of
the 2 kHz POI signal. High frequency processing lends to problems with
numerical accuracy and low frequency processing can misrepresent the
dynamics by excessive interpolation. This plot illustrates this tradeoff and
suggests an optimal downsampling factor of 15 for the predictor.

system was ran with a sampling time of 0.5 ms using these
data points in place of online measurements of the POI. The
encoder positions on the PHANToM were recorded at each
time sample and these positions were transformed into end
effector positions. The reported RMS errors are calculated
from the difference between the prerecorded target point and
the actual end effector position at each time sample.

The controller from [6] was modified to include the new
prediction algorithm. It was implemented in Simulink for
xPC Target and ran in real time on a 2.6 GHz Pentium 4
PC . The controller compensates for gravity and the Coriolis
effect. The linearized model was controlled using a model
predictive controller. The MPC was formulated to track the
horizon estimate weighted by a quadratic objective function.

The estimator used during these trials was a 25th order
correlated signal estimator, processing data at 133 Hz. Sim-
ulations using the estimation scheme were ran ten times with
the estimation algorithm and again with the actual heart
motion data as future signal reference for the prediction
horizon. The later case represents a ‘perfect’ estimation. The
RMS position errors in millimeters are reported in Table I
under the simulation heading. Due to the uncertain nature
of the hardware trials, the 95% confidence interval of each
RMS position error is reported in Table I.

TABLE I
RMS END-EFFECTOR POSITION ERRORS FOR 56 S OF HEART MOTION

TRACKING

Errors in mm Simulation Experiment

Exact Reference 0.283 0.2867 ± 0.0003

Estimator 0.258 0.449 ± 0.003
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Fig. 8. Plot showing The magnitude of the end effector error (below)
superimposed with the reference signal for the x-axis.

As can be seen from Table I, in the simulation the
estimator out performed the exact heart signal. This is likely
due a combination of two factors. First, the simulation model
is a linearized, reduced order model of the actual hardware.
Second, the estimator has a robustness characteristic that
makes its output less noisy than the actual heart data. The
combination of these two factors yields good results in the
linear case. However, when the experiment is performed on
the hardware, the effects of the nonlinearities are seen when
the performance of the estimator-driven controller decreases.
It should be noted that though the simulation provides
valuable insight to the effectiveness of the controller, it is the
experimental trials that are the best indicator of performance.

While the RMS end effector position error gives a sense of
the average tracking performance of the robot, it is important
to look at the large position errors to determine when and
why they occur since they are the errors that will ultimately
determine whether or not the system is effective in tracking
the POI motion. Figure 8 shows that these peaks tend to
occur periodically and at approximately the same part in the
POI’s cycle. As can be seen from the reference signal, the
POI moves very rapidly during that time period (approx-
imately a tenth of a second or less). The low bandwidth
mechanical system experiences large errors during this time.
The largest error peak observed had a maximum at 5.0 mm.
Measurements during these periods may be inaccurate due
to errors caused by the susceptibility of the Sonomicrometry
system to high frequency noise. Future data collection will
in addition have an inertial sensor, and use sensor fusion
techniques to attain an accurate measurement of the POI.

X. CONCLUSIONS

From the experiments in Sections VI through IX, the
following general conclusions were reached. Higher order
estimators yield predictions with, on average, lower error.
Since the estimation process is implemented in real time,
only lower computational complexities are possible. There-
fore, parameterizing a model that correlates motion of the
POI between axes is preferred. Also, error in the prediction

horizon increases as the predictions become further in the
future. The manner in which they increase is approximately
linear, especially for shorter prediction horizons. There is
an optimal processing rate for producing predictions. It was
found in this case to be approximately 133 Hz.

Using future heart data as the estimate of the prediction
horizon yielded an experimental RMS end-effector position
error 0.287 mm when tests were ran on a 3-DOF test-
bed. Since this case has an exact estimate of the future,
this number is considered the upper limit of performance
for the current robot and controller. Bebek [6] reported an
experimental RMS end-effector error of 0.653 mm. The
experimental RMS error of 0.449 mm obtained using the
estimator described in this paper represents a significant
improvement in prediction performance.

There is future work that still remains to be done. The
controller should be changed so that error in the horizon can
be estimated and predictions can be accordingly weighted
to improve the effectiveness of the control law. Also, the
adaptive filter will track a change in heart statistics provided
the underlying dynamics of the POI motion are slowly
varying. However, how long it takes to respond to changes,
how quickly do these dynamics typically change, and what
should be done while the estimator is readjusting to a sudden
change still needs to be answered.
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