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Abstract
Haptics is an increasingly common modality in human-computer interfacing. The focus of this paper is the problem arising
from the difference between the high sampling rate requirements of haptic interfaces and the significantly lower update
rates for physical models simulated in virtual environments. This is a critical problem, especially for applications involving
haptic manipulation of deformable objects simulated in virtual environments, such as in surgical simulation. In this paper,
a multi-rate simulation approach was developed to address this problem. The proposed method employs linear low-order
approximations to model the inter-sample behavior of the high-order non-linear deformable object models. The basic
method is also extended to achieve high-fidelity rendering of haptic manipulations involving sliding-type frictional contact.
The proposed approach uses a local geometric model in addition to the local dynamic model, and performs collision
detection and response as part of the high update rate haptic loop. Experimental results that validate the proposed methods
are also presented.
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1. Introduction

The value of haptic interaction in surgical simulation appli-
cations has led to a great deal of research interest into the
challenges involved in providing haptic force-feedback in
virtual environment simulations with deformable surfaces.
To achieve this, a key obstacle to overcome is the difference
in update rate requirements for deformable object models
and haptic interfaces. Simulation of deformable object
models are typically linked to the graphical update rate
of 10–60 Hz because of computational limitations. Haptic
interfaces, on the other hand, need to operate at update
rates within an order-of-magnitude of 1 kHz in order to
be convincing to the operator. One common method of
bridging this gulf is through multi-rate simulation. In
multi-rate simulation, the virtual environment is simulated
in its full complexity at the visual update rate, while a
simpler simulation is run in parallel at the haptic update
rate and periodically re-synchronized with the full model.

In this paper, a multi-rate simulation method that
uses a local linear low-order approximation to model
the inter-sample behavior of the non-linear full-order
deformable object model is proposed to address this
problem (Section 2). The proposed method is justified
by model reduction techniques from system theory and
the approach is applied to non-linear physical models.

This method is also extended to achieve high-fidelity
rendering of sliding-type frictional contact by employing
a local geometric model in addition to the local dynamic
model (Section 3). The local geometric model is used
for performing collision detection and response as part of
the high update rate haptic loop, with a novel constraint-
based hybrid collision response method (Section 4). Experi-
mental results that validate the proposed methods are also
presented (Section 5), followed by a discussion of the
results and related stability implications (Section 6).

1.1. Related Work in the Literature

Several different types of deformable object models have
been suggested for use in haptic interaction. Lumped mass-
spring-damper (MSD) models, such as those presented by
Terzopoulos et al. (1987), represent deformable objects
with layers of masses connected by spring-damper pairs
or damped springs. MSD models are a common choice for
surgical simulation due to their ease of implementation and
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Case Western Reserve University, Cleveland, OH, USA
Email:cavusoglu@case.edu



Jacobs et al. 1779

low computational requirements. A common alternative
to MSD systems are finite-element models (FEM), which
provide a continuum model that is strongly physically
based and were used by Bro-Nielsen (1998), Cotin et al.
(1999), and Wu and Tendick (2004). Other volumetric
methods have been suggested to capture the realism of
FEM techniques with lower computational requirements,
such as the boundary-element method (James and Pai 1999;
Renaud and Feng 2003), the method of finite spheres (Kim
et al. 2002) and the “Long Element Model” (Sundaraj et al.
2002). Although these models have been found to be useful
in haptic simulation, the discussion here is limited to the
more widely used MSD and FEM models.

The human sense of touch is remarkably sensitive, and
can distinguish between changes in force at frequencies up
to hundreds of Hertz. It is generally accepted that the update
rate of haptic interfaces must be ten to twenty times higher
than the highest frequency event that is to be simulated.
Therefore, in order to render events at a 50–100 Hz rate to
match the capabilities of the PHANTOM or similar haptic
interface, 1 kHz is widely considered the minimum update
rate for realistic haptic feedback (Choi and Tan 2004). Real-
time virtual environment simulations, on the other hand, are
tailored towards visual update rates between 10–60 Hz and
it is infeasible to significantly increase the update rate of
the physical simulation due to computational limitations.
Overcoming this orders-of-magnitude difference in update
rates is an important problem in haptics research. The
typical practice is to use the same force between the model
updates, or to low-pass filter the generated force to the
bandwidth of the model update rate. However, this is not an
adequate solution as it effectively reduces the haptic update
rate to the visual update rate.

Several methods have been proposed to solve this prob-
lem through multi-rate simulation. Multi-rate simulation
techniques aim to divide a virtual environment simulation
into two parallel simulations, one running at the visual
update rate and the other at the haptic update rate. The
visual update rate simulation models the virtual environ-
ment in its full complexity and provides visual feedback
to the user, while the haptic update rate simulation uses
a simpler and more computationally tractable model to
provide only force feedback. Astley and Hayward (1998)
took a multi-scale, multi-rate FEM approach to this prob-
lem. In their method, a coarse linear finite element mesh
modeled the behavior of the overall object and a finer finite
element mesh running at a higher update rate was used
locally where interactions occurred. Their work was based
on decoupling the coarse mesh and the fine mesh by using
Norton equivalents as interfaces. This is only applicable to
linear finite element cases and the update rates reported
were still significantly below the 1 kHz rate necessary for
haptics. In an earlier stage of this current study, Çavuşoğlu
and Tendick (2000) used a local linearization of MSD
models in a multi-rate scheme and showed that the state

variables for dominant modes of the linearized system were
primarily dependent on nearby nodes. Therefore, a local
model consisting of only a few layers surrounding the
contact point can be used to provide haptic interaction with
improved fidelity and stability.

Multi-rate haptic simulation algorithms using local
approximations around the point of contact have previously
been studied for rigid objects. Simple geometric shapes,
such as planar or spherical approximations were investi-
gated by d’Aulignac et al. (2000). Also, multi-resolution
methods with coarser meshes used for the entire model
and more detailed meshes for areas of local interest were
implemented in multi-rate simulation by James and Pai
(2003) and Zhang et al. (2002).

More recently, Barbagli et al. (2005) have developed
multi-rate simulation techniques that combine local model
approaches and virtual coupling to handle both single-
and multi-point contact. Also, Cho et al. (2005) have
examined control methods to avoid instability in multi-
rate environments caused by time delay in communication
channels.

High fidelity haptic rendering of high bandwidth/high
frequency interaction with deformable surfaces, such as
frictional sliding over a rough surface, is an open problem
in haptics in which there have been some advancement.
A general real-time drift-free model of friction, which did
not include the effect of normal forces on friction, was
proposed by Armstrong and Hayward (2000). In addition,
Mahvash and Hayward (2002, 2004, 2005) demonstrated
a passive multi-rate simulation for haptic interaction with
a deformable body, which included friction models. Their
algorithm achieved a haptic update rate of 2 kHz and a
global update rate of 100 Hz using pre-computed tool
contact behavior for a specific material type to reduce
computation loads. Mahvash (2006) extended the use of
pre-computed forces to simulate tissue separation in real-
time by interpolating unknown forces from pre-computed
ones. Campion and Hayward (2008) also proposed a haptic
texturing algorithm which renders frictional sliding forces
based on the height of the rendered texture.

The current work uses a multi-rate simulation approach
as a solution for real-time simulation of deformable objects.
This multi-rate approach is explained in detail in the next
section.

2. Multi-rate Simulation

The core of multi-rate simulation approaches is to divide
the necessary computational tasks into those that must
be performed at the servo-loop update rate of the haptic
interface and those that can be performed at the same rate
as the overall simulation. The algorithm is divided into two
basic blocks as shown in Figure 1. The “global” simulation
incorporates the entire virtual environment and runs at the
visual update rate in the order of magnitude of 10 Hz.
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Fig. 1. Block diagram of the basic multi-rate simulation algorithm using a local dynamic model.

A “local” simulation runs at the haptic device update rate,
and simulates the behavior of a subset of the global model.
In the proposed approach, the global deformations of the
deformable object are modeled by the full-order non-linear
model, and simulated at the visual update rate, while the
local deformations are modeled with the reduced-order
models and simulated at the haptic update rate.

After each update of the global model, a low-order
approximation model is generated and passed to a second
simulation, running either in a separate process or thread
in single-computer operation, or running on a second com-
puter in networked operation. This second simulation uses
the low-order approximation model to provide force output
to the user and then sends the state of the haptic instrument
back to the global model, which then re-computes a new
low-order approximation for the next cycle.

In the following subsections, the method for constructing
low-order approximate dynamic models will be developed
and analyzed. In this work, lumped MSD networks are used
as the underlying global dynamic model for the deformable
objects, because of their simplicity and popularity. A
similar treatment is possible using FEMs, but is not
presented here.

2.1. Multi-rate Simulation using Linearized
Approximations

In order to analyze the construction of the low-order
approximate dynamical models that can be used in multi-
rate simulation, we start with the paradigm given in
Figure 2. Linearization is a basic step. The linearized model
gives the tangential behavior of the full model. As we
want to capture the behavior in between the model updates,
the deformation will be small, and therefore, the linear
approximation will remain valid.

The model under consideration here used for deformable
objects is a network of n masses connected by damped
springs which is being deformed by a virtual instrument
at a single contact point on the outer surface of the mesh.
The outer surface of the mesh is composed of an array of
triangular polygons which are constructed using the mass
nodes as vertices. The behavior of the system is governed
by a non-linear differential equation of the form

d

dt

[
X
V

]
=

[
V

M−1f ( X , V )

]
, (1)

Fig. 2. Construction of the low-order model.

where X and V are respectively the state vectors containing
the positions and velocities of each node, f ( X , V ) is a
function that maps the state vectors to a vector of forces on
each node, and M−1 is a 3p × 3p matrix (p is the dimension
of the global model, 3 dimensions for each node) of the
form

M−1 = diag

(
1

m1
,

1

m1
,

1

m1
, . . .

1

mp
,

1

mp
,

1

mp

)
, (2)

where mi is the mass of the node with index i.
The computational requirements of this relatively simple

deformable model prevent it from being simulated at the
haptic update rate. Therefore, at each global time step,
a linearized discrete model is constructed by taking the
tangent behavior of the system

d

dt

[
X
V

]
≈

⎡
⎣ V

M−1

(
f0 + F

[
x
v

])
⎤
⎦ ,

where

f0 = f ( X0, V0)

x = X − X0

v = V − V0

F =
[

∂f

∂X

∂f

∂V

]∣∣∣∣ X=X0

V=V0

, (3)
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Fig. 3. Two dimensional lumped element mesh.

and X0, V0 are the nodal position and velocity vectors at the
global current time step.

At this point it is important to note that the linearized
system will have the same order as the full model.
Therefore, the improvement by just using a linear model
is limited and it will still be difficult, if not impossible,
to simulate in real time. Therefore, model reduction is the
critical step of the approach as it is the means of getting
a temporally local haptic model which can be simulated in
real time.

2.2. Order Reduction for Constructing a
Low-order Linear Approximation

In order to evaluate the effectiveness of model reduction,
consider a two dimensional critically-damped 12 × 12
lumped element mesh being indented by an instrument
(Figure 3). Each node of the mesh has a lumped mass,
which is connected to the neighboring nodes (diagonal
as well as lateral neighbors) with a spring and dampers.
Three edges of the mesh are constrained to be stationary.
Linearization of this system gives a two-input two-output
524th order linear dynamical system.

With the input node set at coordinate ( 50, 0), which is the
top middle node, we performed a balanced model reduction
on this model (Zhou et al. 1996). The resulting error (due
to two degrees of freedom, two states, and five adjacent
nodes) of the 20th-order approximation of the input–
output response was less than 1% of the full-order model
(Table 2, damping ratio 1.0). This is a significant reduction
in computational complexity while virtually maintaining
the accuracy of the model. The frequency responses of
the original and reduced-order systems are shown in
Figure 4. The responses of the two systems are essentially
indistinguishable except in normal-tangential interactions,
where the response magnitudes in both conditions are very
small (less than −200 dB).

The results observed above are actually true for a large
range of material parameter values. The accuracy of the

Table 1. Model Reduction Times and Accuracy of Reduced-order
Models. The Reduced 2D Models were 20th Order (Due to Two
Degrees of Freedom, Two States, and Five Adjacent Nodes) and
the Reduced 3D Models were 102nd Order (Due to Three Degrees
of Freedom, Two States, and 17 Adjacent Nodes)

2D Nodes Full Model Order Time (s) % Error

5 × 5 76 0.07 3.89×10−6

10 × 10 356 2.93 3.96×10−3

15 × 15 836 47.14 3.83×10−2

20 × 20 1,516 293.15 2.01×10−1

25 × 25 2,396 1,172.1 3.07×10−1

3D Nodes Full Model Order Time (s) % Error

4 × 4 × 4 210 0.36 1.08×10−13

5 × 5 × 5 474 7.85 4.84×10−13

6 × 6 × 6 894 57.21 1.51×10−12

7 × 7 × 7 1,506 274.98 2.84×10−12

8 × 8 × 8 2,346 1,539.3 5.73×10−12

Table 2. Model Reduction Accuracy for Damping Ratio Varia-
tions for a 2D 12 × 12 Mesh Reduced to 20th Order (Due to Two
Degrees of Freedom, Two States, and Five Adjacent Nodes)

Damping Ratio % Error

0.001 51.1
0.01 38.4
0.1 13.7
0.2 4.24
0.6 1.46×10−1

0.7 6.41×10−2

1.0 1.95×10−2

1.5 2.91×10−3

2.0 9.70×10−4

model reduction with respect to changes in the material
properties was examined by varying the stiffness and
damping parameters for a 2D mesh with 12 nodes and
reduced the full model to a 20th-order model. Stiffness was
found to have no effect on the accuracy of the reduced
model. Damping, on the other hand, affected the accuracy
of the reduced model, as seen in Table 2. However, the error
was less than 13.7% for damping ratios higher than 0.1. The
damping ratio for each node was defined as b/

√
2mk, where

m was 0.001 kg and k represented stiffness.
Deformable materials encountered in most applications,

such as surgical simulators, typically have lumped element
models with second-order damping ratios higher than 0.1,
so this does not pose a major limitation to the proposed
method. For instance, Armentano et al. (2007) identified
the damping ratio for MSD models of the carotid artery’s
arterial walls to be 0.7–0.9, while Wakeling and Nigg
(2001) reported that the skin covering the quadriceps had
a damping ratio in the range of 0.14–0.73.
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Fig. 4. Frequency responses of the original and reduced-order systems. The solid line is the reduced-order model, the dashed line is the
full-order model. (a) Normal displacement to normal force. (b) Normal displacement to tangential force. (c) Tangential displacement to
normal force. (d) Tangential displacement to tangential force.

A similar trend is also valid when the mesh density is
increased. In Table 1, the error of the reduced models were
analyzed as a function of the mesh density in 2D and 3D
while maintaining the physical dimensions of the object.

As noted above, balanced model reduction also requires
costly calculations. Balanced optimal Hankel model
reduction (sysbal.m in Matlab) was used and has a
complexity of O( N3), where N is the order of the full-order
model. As an illustration of the typical computing times on
a modern machine, the computation times for the balanced
model reduction of different mesh sizes are reported in
Table 1. These computation times were measured on a
2.4 GHz Intel CoreDuo CPU with 3 GB of RAM running
Matlab 2009a on the Windows Vista operating system.

The original states of the system before order reduction
are the positions and velocities of the lumped masses at
the vertices of the mesh. To visualize the spatial properties
of the reduced model, the states of the new model are
shown in Figure 5. The figure shows the magnitude of the
components of the reduced-order model states with respect
to the location on the mesh.

The states of the new low-order model show that it
is a local approximation. This result is actually expected,
because stress decays inversely proportional to the square
of the distance from the load in a semi-infinite linear elastic
body under a point load (Timoshenko and Goodier 1951).

2.3. Real-time Algorithm: Construction of a
Local Low-order Linear Model

It is important to note that balanced model reduction also
requires costly calculations, which prevents the use of this
algorithm as a part of the on-line computation (computation
times are investigated in Section 5). However, the analysis
in the previous section reveals that the approximation
given by the balanced model reduction algorithm in a
homogeneous medium is a local model, i.e. the force
response depends mostly on the states spatially close
to the interaction location. Therefore, a natural way to
construct a low-order approximation with significantly less
computation is to construct a local linear model directly
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Fig. 5. Spatial dependence of the states of the reduced-order model.

Fig. 6. Real-time construction of the low-order model.

from the full-order model (Figure 6). The 2D and 3D local
linear approximations we will demonstrate in this paper are
shown in Figure 7. Both are critically damped and model
the local behavior of the 4 × 2 2D mesh and 4 × 4 × 2 3D
mesh near the instrument contact location. The 2D mesh
was used for the frequency response analysis while the 3D
mesh was used for the computer simulation experiments.

The frequency response of the local linear approxima-
tion, along with the frequency responses of the full linear
model and a reduced-order system with the same number
of states as the local linear approximation calculated by
balanced order reduction, are shown in Figure 8. The local
model approximates the behavior in the high frequency
range, whereas its DC gain is significantly off. However,
it is important to note that the local model is used only to

Fig. 7. The (a) 2D 4 × 2 and (b) 3D 4 × 4 × 2 local low-order
approximations.

estimate the inter-sample behavior of the full model, and
therefore only needs to be close to the full model in the
frequency range of around 10–1000 Hz, which is the case
here.

These results show that the local linear approximation is
a suboptimal approximation, as expected. However, it can
be constructed on the fly with minimal computation and
give sufficiently accurate behavior in the frequency range
of interest. This computation complexity is constant, O( 1),
and does not depend on the size or order of the underlying
full model. For example, the local low-order linear model
in the 3D case, shown in Figure 7(b), was implemented in
C and constructed in 5.3 ms on a 2.8 GHz Intel Pentium
D(TM) processor.
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Fig. 8. Frequency responses of the local linear approximation
(solid line), full linear model (dashed line) and reduced-order
model (dotted line). Note that the dashed and dotted lines overlap.
Interactions between the normal and tangential directions are not
plotted because the associated magnitudes are very small (less
than −200 dB).

Although the basic multi-rate simulation framework
enables real-time simulations, it has several drawbacks
which can be improved upon. In the next section, the basic
framework is extended by taking into account the geometric
properties of the local area around the manipulator tip.

3. Multi-rate Simulation with Local Model
Geometric Feedback

Typically, multi-rate haptic simulations follow the outline
of Figure 1; the flow of information from the local
model to the global model is very simple and consists
only of position and velocity information from the haptic
instrument. Either contact-resolving collision response is
done only on the global model, or collision response is
performed in parallel on both global and local simulations.
Usually, any deformations made to the local model are
discarded every time a new local model is constructed.

These types of algorithms have several drawbacks. First,
the rate of input from the haptic instrument to the virtual
environment is restricted to the global simulation update

rate. At first glance this may not seem to be an important
constraint since voluntary human hand motion in tasks such
as handwriting rarely exceed 6 Hz. In fact a study of eye
surgeons pins the figure even lower to 2 Hz (Riviere et al.
1997). However, in the case of sliding frictional contact,
an instrument skipping across a rough surface would be
restricted from changing mode of contact faster than the
visual update rate. Second, it introduces latency between
the haptic input and changes in the global model that may
result in a haptically apparent discontinuity for the human
operator. Also, if the post-haptic-interaction local model is
discarded at the end of the haptic time step and replaced
with a new local model, which is computed with only the
new position of the haptic instrument, the new model may
have a large discontinuity in force output. It is possible to
interpolate between force values generated at the end of
one global time-step with the initial forces generated by the
next local model. However, if the discontinuity is large and
the global time step is long, then the force output may be
perceived as being “muddy” or delayed.

The alternative method presented here is built on the
hypothesis that the aforementioned drawbacks can be
avoided by including model geometry in the feedback
from the local to the global model, as shown in Figure 9.
Therefore, any changes to the local model that have been
made at the haptic update rate are incorporated back into the
global model. This method is motivated by the assumption
that haptic fidelity can be improved by performing collision
detection and resolution at the haptic rate on a model local
to the point of haptic interaction.

The challenging case of sliding frictional contact is used
as a testbed for this algorithm. This approach has several
difficult requirements: the local model must accurately
simulate the behavior of the global model (at least for
the short time intervals and small deformations involved),
and the collision detection response algorithm needs to
operate effectively within the highly demanding 1 ms
time-step.

This approach differs significantly from previous work
in that the flow of information back from the local to the
global model includes the local mesh geometry in addition
to haptic instrument position. In addition to this algorithm,
the following section’s collision detection and response
rules were implemented in order to simulate the effects of
coulomb friction at the manipulator tip.

4. Collision Detection and Response
in Multi-rate Simulation

The collision detection and response method explored
here incorporates a novel local collision detection
algorithm. Specifically, the local simulation performs
collision detection and response “in-between” frames of the
global model. The rationale behind performing collision
detection and response at the local level is two-fold.
Firstly, it allows for a more realistic high-frequency
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Fig. 9. Multi-rate simulation using a local geometric model in addition to the local dynamic model.

interaction. In particular, intermittent contact, like dragging
an instrument across a rough surface, may be negatively
affected by latency and the low update rate of the
global model. Specifically, in a networked environment,
the computer running the local simulation must continue
to provide high fidelity interaction during unexpected
communication delays with another computer running
the global simulation. Maintaining geometric information
sufficient to perform collision response can alleviate these
issues. Secondly, for simple models, the response of the
local model may be superior to the computed response of
the global model, as the local model has more detailed
information about the trajectory of the instrument during
the global model time period.

Two common paradigms are used for collision response
algorithms: constraint-based and penalty-based collision
response. Constraint-based methods, sometimes referred
to as geometrically-based methods, resolve the collision by
enforcing constraints that prevent the model from entering
an invalid state. For example, in a simple simulation of
a ball rolling across a surface, a constraint-based method
might apply the constraint that the ball’s position in the
normal direction must remain above the level of the surface.
Constraint-based methods have the disadvantage that they
do not directly calculate contact forces, which are necessary
for haptic feedback. Penalty-force-based methods operate
by connecting virtual springs to interpenetrating objects
that pull them apart. Penalty force methods require little
computation and compute a contact force suitable for
haptic interaction.

For this work, deformable-surface collisions with a
haptic instrument were performed using what we call hybrid
collision resolution, as described below.

4.1. Hybrid Collision Resolution in 3D
Mass-spring-damper Models

The hybrid collision resolution algorithm is illustrated in
Figure 10. First, a geometric deformation was applied direc-
tly to the deformable object (consistent with the constraint-
based method). Next, we calculate the “constraint forces”
necessary to overcome the internal forces that oppose
the deformation of the deformable-surface model. These
constraint forces are applied to the nodes of the mesh,
and are also used to compute the contact forces applied

Fig. 10. 3D hybrid collision resolution algorithm flowchart.

to the haptic interface (consistent with the “penalty” force
method).

The hybrid collision resolution model uses a Coulomb
sliding-friction model. In this model, there are three
possible modes of interaction between the haptic instrument
and the deformable surface model:

1. Pure sticking – the tip of the instrument drags the
contact point of the mesh along with it.

2. Pure sliding – the tip of the instrument pushes down
on the mesh, but exerts no force tangential to the mesh
surface (the contact is frictionless).

3. Frictional sliding – the tip of the instrument applies
both a normal and a tangential force on the surface, but
the initial contact point does not remain underneath the
instrument tip throughout the contact.

The hybrid collision response algorithm begins by
advancing the local simulation to time t + �t. The mesh is
then checked for a collision between the haptic instrument
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and a triangle of the mesh during the previous time step. If
one is found, the state of the simulation is reversed to the
time of collision, tc = t + �tc, which is identified using
binary subdivision of the time step �t.

In the case of models without friction, the mesh is
first deformed by pushing the impacted triangle away
from the instrument in the triangle normal direction. The
constraint force that will maintain the pure sliding behavior
as well as the corresponding contact force are generated
(as described in Section 4.2). The model is then advanced
by �t′ = �t − �tc to the next time step, t + �t,
while applying the constraint force to the instrument, which
will be haptically perceived by the user. For models with
friction, the mesh is first deformed by pushing the triangle
away in the direction of instrument motion. The constraint
force that will maintain the pure sticking behavior and the
corresponding contact force are calculated (Section 4.2),
but before applying them, the forces are evaluated using
a heuristic to determine if they are consistent with the
sliding friction model. The contact force is broken down
into components normal (fn) and tangential (ft) to the mesh
surface. The maximal frictional force consistent with the
friction model is calculated as

Ffr = μ‖fn‖. (4)

If the magnitude of the tangential force, ‖ft‖, is greater
than Ffr, then the evaluation heuristic rejects the forces
as inconsistent with the friction model, and therefore
unrealistic for resolving the interaction. In this case, the
frictional sliding contact and constraint forces are then
computed (Section 4.2) and applied instead. Otherwise, the
pure sticking constraint is applied.

4.2. Determination of Constraint Forces

During collision resolution, after the deformation of the
mesh, a constraint process is used to determine the contact
force. Separate constraints are used in the pure sticking,
pure sliding, and frictional sliding cases. In order to identify
particular points on the surface of a deformable triangle,
baryocentric coordinates are used. Baryocentric coordinates
are a concept borrowed from FEM techniques, where a
given point P on a triangle is identified by the areas
of the sub-triangles formed by extending lines from the
node vertices to the interior point (Figure 11). Normalized
baryocentric coordinates are used such that the position of
an interior point P on the triangle with vertices x1, x2, and
x3 can be expressed as

p = αx1 + βx2 + γ x3 (5)

where α = A1
A , β = A2

A , γ = A3
A , A is the total area of the

triangle, and ( A1, A2, A3) are the areas of the corresponding
sub-triangles (Figure 11). As A = A1 + A2 + A3, the sum
of the baryocentric coordinates of a point is unity, i.e.,
α + β + γ = 1.

Fig. 11. Baryocentric coordinates.

4.2.1. Sticking Constraint The sticking mode of interac-
tion assumes that the instrument makes contact with a
triangle of the mesh at a contact point p, with baryocentric
coordinates p = ( α, β, γ ), and stays there. Specifically, at
the end of the haptic time step, even though the positions
of the triangle nodes have changed, the instrument is still in
contact with the baryocentric point p. This constraint can be
expressed relative to p as

ṗ = p̈ = 0. (6)

The constraint (6) can be enforced by transforming the
state vectors from the canonical object coordinates to
baryocentric coordinates and canceling the corresponding
components of the nodal velocities, as follows.

Let the 9 × 9 matrix T11 be an orthogonal transformation
matrix in the form

T11 =

⎡
⎢⎢⎣

αI3×3 βI3×3 γ I3×3
...

...
...

...
...

...

⎤
⎥⎥⎦ , (7)

where I3×3 is the 3×3 identity matrix, and the empty entries
of T11 are generated using the Gram–Schmidt method. T
is defined to be a 3m × 3m transformation matrix from
the canonical object frame into baryocentric coordinates
relative to the contact triangle, where m is the number of
nodes in the model. If we assume without loss of generality
that the contact triangle has nodes x1, x2, and x3, then T is
given by

T =
[

T11 0
0 I

]
(8)

and

T

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ =

⎡
⎢⎢⎣

p
...
...

⎤
⎥⎥⎦ . (9)

In order to enforce the constraint ṗ = p̈ = 0, the P operator
is defined to be

P ≡ T−1

[
03×3 0

0 I

]
T, (10)

such that taking the product Pv will cancel out the
components of v and cause ṗ �= 0 when the simulation
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is advanced. Then, the discrete equations of motion for
advancing the simulation to the beginning of the next time
step

v( t + �t) = v( tc) + M−1F

[
x( tc)
v( tc)

]
�t′

x( t + �t) = x( tc) + v( tc) �t′, (11)

where

v( tc = t + �tc) = v( t) + M−1F

[
x( t)
v( t)

]
�tc

x( tc = t + �tc) = x( t) + v( t + �tc) �tc, (12)

become

v( t + �t) = P

(
v( tc) + M−1F

[
x( tc)
v( tc)

]
�t′

)

x( t + �t) = x( tc) + v( tc) �t′. (13)

The force on the instrument due to the collision, finstr, is
the sum of the forces on each node of the triangle required
to maintain the constraint. The operator P̃ is defined to be

P̃ ≡ TT

[
I3×3 0

0 0

]
T−T, (14)

noting the reciprocal nature of the nodal velocities and the
nodal forces. The force on the instrument is then given by

⎡
⎢⎢⎢⎢⎢⎢⎣

fc1

fc2

fc3
...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= P̃f ( x, v) ,

finstr = fc1 + fc2 + fc3. (15)

4.2.2. Pure Sliding Constraint The sliding mode of
interaction assumes that the instrument makes contact with
baryocentric point p on a triangle of the mesh and, at the end
of the haptic time step, moves to point on a plane tangential
to the triangle. This ensures that the mesh surface can move
tangentially to the instrument, but cannot inter-penetrate it
at the end of the time step. This is a weaker constraint than
the sticking case. The constraint can be expressed relative
to p and the triangle normal n as

nTṗ = 0,

nTp̈ = 0. (16)

Similar to the pure sticking case, the constraint (16) can
be enforced by transforming the state vectors from the
canonical object coordinates to baryocentric coordinates
and canceling the corresponding normal components of the
nodal velocities, as follows.

Let U0 to be a 3 × 3 orthogonal transformation matrix of
the form

U0 =
⎡
⎣ nT

· · · · · · · · ·
· · · · · · · · ·

⎤
⎦ , (17)

where the empty entries are generated using the Gram–
Schmidt method. U11 is defined as

U11 =
⎡
⎣ U0 0 0

0 I3×3 0
0 0 I3×3

⎤
⎦ . (18)

Let U be a 3m × 3m transformation matrix (where m is the
number of dimensions for the local approximation) from
the canonical object frame into baryocentric coordinates
relative to the contact triangle, assuming again without loss
of generality, that the contact triangle has nodes x1, x2, and
x3. Then, U is given by

U =
[

U11 0
0 I

]
T =

[
U11T11 0

0 I

]
(19)

where T11 is as defined above. In order to enforce the
constraint ṗ · n = p̈ · n = 0, the Q operator is defined to
be

Q ≡ U−1

[
01×1 0

0 I

]
U , (20)

such that taking the product Qv cancels out the components
of v and causes nTṗ �= 0 when the simulation is advanced.
Then, the discrete equations of motion (11) to advance
the simulation to the beginning of the next time step
become

vnew = Q( vold + M−1f ( x, v) �t′)

xnew = xold + vnew�t′. (21)

The force on the instrument due to the collision is the
sum of the forces on each node of the triangle required to
maintain the constraint. If the Q̃ operator is defined as

Q̃ ≡ UT

[
11×1 0

0 0

]
U−T, (22)

again, noting the reciprocal nature of the nodal velocities
and the nodal forces, then the force on the instrument is
given by

⎡
⎢⎢⎢⎢⎢⎢⎣

fc1

fc2

fc3
...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= Q̃f ( x, v) ,

finstr = fc1 + fc2 + fc3. (23)
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4.2.3. Frictional Sliding Contact Constraint The frictional
contact constraint is very similar to the sticking contact
constraint, except that, during frictional contact, the mesh
can slide around under the instrument tip. This is due to
the fact that the frictional force is insufficient to cause
pure sticking. The constraint forces are calculated as in
Section 4.2.1, but then divided into the components normal,
fn, and tangential, ft, to the triangle surface. The forces
tangential to the surface are bounded by μ‖fn‖, where μ

is the surface coefficient of friction, which are applied as
before. Once again, we assume without loss of generality
that the contact triangle has nodes x1, x2, and x3. The force
on the nodes is then given by

⎡
⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= f ( x, v) ,

⎡
⎢⎢⎢⎢⎢⎢⎣

f̃1
f̃2
f̃3
...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= P̃f ( x, v) (24)

using the definitions presented above for the pure sticking
case (Section 4.2.1). For each force f̃i, let f̃in and f̃it be the
components of fi in the normal and tangential directions
relative to the triangle normal n such that

f̃in = nnT f̃i (25)

f̃it = f̃i − f̃in . (26)

The constraint force f̂i are given by

f̂i = f̃in + μ‖f̃in‖
f̃it

‖f̃it‖
(27)

to be the node forces as computed for the sticking
constraint, but limited in the tangential direction by the
dynamic friction value. The resulting nodal forces for the
frictional sliding case, F , is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 − f̂1
f2 − f̂2
f3 − f̂3

f4
f5
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

The equations of motion for the frictional sliding case are
then given by

vnew = Q( vold + M−1F�t′) ,

xnew = xold + vnew�t′. (29)

In order to determine the instrument force, first let finstr

be defined as ⎡
⎢⎢⎢⎢⎢⎢⎣

fc1

fc2

fc3
...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= P̃f ( x, v)

finstr = fc1 + fc2 + fc3 (30)

as in the pure sticking case. Let finstrn and finstrt be the
normal and tangential components of that force relative
to the triangle normal. Then, the instrument force for the
frictional sliding case is

f̂instr = finstrn + μ‖finstrn‖
finstrt

‖finstrt‖
. (31)

A single time update of the local low-order linear model
using the algorithm described above was computed in less
than 1 ms on a PC with a 2.4 GHz Intel Pentium 4(TM)
processor. Therefore, a 1 kHz haptic update rate was
achieved by using the proposed algorithm.

5. Results

The first subsection presents results of the validation of the
basic multi-rate algorithm on a 3D 12 × 12 × 12 global
mesh approximated to a 4 × 4 × 4 local mesh. The next
two subsections examine the performance claims of pure
sliding and pure sticking modes of the algorithm, and the
final section presents results for the full sliding frictional
contact algorithm.

5.1. Comparison of Local and Global
Model Simulations

A simulation implementing the proposed multi-rate
simulation methods was successfully implemented in C++
using OpenGL as the graphics library. The simulation
dynamics were computed using the current algorithm and
the graphic rendering was implemented using techniques
consistent with Çavuşoğlu et al. (2006). The global
simulation was run on an IBM PC running Windows XP,
and the haptic simulation was run on an IBM PC running
the QNX real-time operating system. The global simulation
PC used dual Pentium Xeon(TM) processers running at
2.8 GHz. The local simulation PC used a Pentium 4(TM)
processor running at 2.4 GHz. A PHANTOM(TM) version
1.5 manipulator was used as the haptic interface. The two
computers were connected by a 100 Mbs ethernet network
running a custom network protocol implemented on top of
UDP. The computers were connected through a dedicated
ethernet switch to eliminate the possibility of interference
from other traffic on the network.

Two sets of tests were conducted to validate the
basic multi-rate simulation scheme. The tests presented in
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Fig. 12. Multi-rate simulation results. The dotted, smooth line is
global model running at 1 kHz. The dashed, jagged line is global
model running at 30 Hz. The solid, jagged line is local model
running at 1 kHz.

this subsection were performed using instrument motion
specified programmatically, rather than using the haptic
device for input (as it was done in the evaluations reported
in the subsequent subsections), so that the input could be
kept constant between test runs in order to establish the
difference in performance between the global and local
model simulations.

In the first set of tests, the performance of the multi-
rate simulation scheme was compared with a purely global
model-based simulation. Three test cases were constructed,
each using the same pre-determined instrument motion, in
which a single node was pulled 2 cm above the surface
of the mesh, and then released. The force exerted on the
instrument as the surfaces deforms and presses against it
was then computed.

The first test case uses the global model simulation only,
updated at 30 Hz as specified in the multi-rate algorithm,
but does not run the local model simulation. The second
test case also uses the global model simulation only, but
updates it at 1 kHz. This is not possible in real time, but this
test case provides a base line for comparison of the behavior
of the simulation. Finally, the last test case uses the multi-
rate simulation technique described above, in which the
global model runs at 30 Hz, and the local model running at
1 kHz is used to generate output “between” global updates.
The force output during the same part of the trial run is
presented in Figure 12.

The global model running at 1 kHz provides the most
accurate output; the force follows a smooth sinusoidal curve
consistent with the MSD model. The global model running
at 30 Hz exhibits the same approximate behavior, but the
force output shows a stair-step pattern due to the lower

Fig. 13. Multi-rate simulation results, y-position of test node
versus time. The solid line is global model running at 30 Hz, the
dashed line is local model running at 1 kHz.

update rate. This method results in a large discontinuity
after every global update. The multi-rate simulation follows
the tangent behavior of the system between each global
update. While there is a discontinuity as each global update
is received and a new tangent behavior is calculated, the
magnitude of the jump is much lower than the height
of the stair-step discontinuity from the global model-only
test case.

The second set of tests was performed to determine the
effect of local model reduction on the simulation. Since
in the multi-rate simulation, part of the surface local to
the instrument tip is being simulated using the local model
simulation while the rest is being simulated using the global
model simulation, tests were performed to establish if this
division resulted in inaccuracies in the model behavior. In
these tests, the instrument was held immobile over a section
of the global model, so that a patch of the surface under
the instrument tip was simulated using the local model. The
surface was then deformed programmatically by pulling the
node under the instrument tip upwards and then releasing it,
so that a wave-like motion spread through the model. The
instrument was held at a sufficient distance to ensure that it
never touched the surface during the trial. The test was then
repeated with the instrument moved away from the surface,
so that no local model was used, and the entire simulation
was performed using the global model. The position of the
deformed node along the y-axis was then compared between
the two tests, as presented in Figure 13.

The behavior of the multi-rate simulation was found to
show a high degree of agreement with the global model
only simulation, with primarily a delay of one global time
step differentiating the two.
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Fig. 14. Pure slipping dragging contact results.

5.2. Pure Slipping Constraint Results

The pure slipping case was tested by manually moving the
instrument to one edge of the mesh and dragging it over
the surface. Figure 14 shows the magnitude of the force on
the instrument normal to the mesh surface. The magnitude
of the tangential force response was zero throughout the
experiment. When the instrument is pushed into the surface,
contact forces are generated in the normal direction but not
in the tangential direction, consistent with a zero-friction
model.

5.3. Pure Sticking Constraint Results

The dragging contact experiment was also repeated to test
pure sticking contact to simulate a “sticky” high co-efficient
of friction surface. A tangential as well as a normal force
was observed, with a tangential force often larger than the
normal, as the motion of the instrument is mostly in the
tangential direction.

5.4. Sliding Frictional Contact Results

In this section, the full sliding frictional contact algorithm
was tested. The algorithm was allowed to switch between
pure sticking and frictional sliding, and the dragging
contact experiment presented in the pure sticking constraint
results above was repeated. The test was performed with a
coefficient of friction (μ) of 1.0, with results as shown in
Figure 16. The tangential force is bounded by the normal
force, since ft ≤ μfn. Therefore, when the force generated
by the sticking constraint rises above the normal force, the
algorithm switches from pure sticking to frictional sliding,
leading to a decrease in force. A typical transition event
can be seen at t = 61.8. Before the transition, the mesh

Fig. 15. Pure sticking contact results. The solid line is magnitude
of normal force, the dotted line is magnitude of tangential force.

Fig. 16. Hybrid sliding frictional contact dragging results, co-
efficient of friction 1.0. The solid line is magnitude of force
normal, and the dotted line is magnitude of tangential force.

is being dragged under the instrument tip by the sticking
constraint. As the mesh is deformed, the force required to
maintain the constraint increases, leading to an increase in
both the normal and tangential force. In the pure sticking
results presented above, the tangential force increases above
μ times the normal force, since the dragging motion is
mostly in the tangential direction. However, in the frictional
sliding case, the algorithm transitions and the tangential
force decreases.

6. Discussion

In this paper, a multi-rate simulation method to handle
the difference between the sampling rate requirements
of the haptic interfaces and physical models during
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Fig. 17. Oscillations observed when the local linear approxima-
tion was not used.

haptic interaction with simulated deformable objects, was
presented. The proposed method used model reduction and
linear approximation to model the inter-sample behavior
of the non-linear full-order model. Based on an order
reduction analysis, a simple local linear approximation
scheme, which can be computed in real-time, was
developed. The method was then extended to achieve high-
fidelity rendering of sliding frictional contact by using a
local geometric model, in addition to the local dynamic
model, and performing collision detection and response
as part of the high update rate haptic loop. Experimental
results that validated the proposed methods were also
presented.

The proposed linearization method was found to produce
high quality force output at the haptic update rate.
In addition, it was established experimentally that the
linearization could be constructed and simulated both
within the time constraints of the global and haptic update
rates and also with a high degree of accuracy.

Model reduction analysis revealed that the accuracy of
the reduced-order models decreased as the mesh density
increased and as the damping of the nodes decreased. This
was not a surprise since more nodes and less damping
would lead to higher-order behavior which the reduced-
order models would have difficulty preserving.

MSD models are not physically based, meaning that there
is no straightforward method of determining MSD mesh
parameters from physical substances, like human tissue.
Therefore, evaluation of the algorithm remains largely
qualitative. Also, the mesh used in the MSD model was
relatively coarse, leading to discontinuities in force when
traveling over triangle boundaries.

It is important to note that the local linear approximation
used here is not the only choice. For example, it is possible
to construct a local model which better approximates the
low frequency behavior by extending the outer layer of
spring and dampers of Figure 7 to the outer edges of

the body and suitably scaling their parameters to reflect
the change in equivalent stiffness/damping as the mesh
depth changes. These different local approximations and
constraints for the local model were explored in detail in
Çavuşoğlu (2000).

The major limit of this method is that the local states
must be the dominant ones. This could be violated if the
material was inhomogeneous, for example, if the deep
tissue were significantly more compliant than at the surface
so that most of the deformation occurred in states far
from the interaction. In this case, the method by Astley
and Hayward (1998) would be useful, if the model was
linear. Other effects that could violate the dominance of
local modes include significant geometric non-linearities
or discontinuities in the tissue that produced large local
stresses away from the instrument contact. However, the
locality of the dominant modes can always be checked
by performing off-line model reduction, as shown in
Section 2.2.

6.1. Stability Implications

Stability of haptic interaction with virtual environments is
important in haptic interface design. One of the critical
determinants of the stability during interaction is the
simulation update rate, where an increase in the update
rate of the model improves stability (Minsky et al. 1990;
Colgate 1993). In the proposed method, having the low-
order linear model running at a faster update improves the
stability of the haptic interaction as the virtual environment
model runs at 1 kHz instead of 10 Hz. This effect can
also be observed in the implementation of our method
described above. However, stability of our method is
difficult to prove analytically because the resulting system
is a multi-rate non-linear sampled-data system. In our
simulations, when the local linear approximation was
not used, the haptic interface tended to have oscillatory
behavior when the operator loosens his/her grip (Figure 17).
This oscillatory behavior was not present with the local
linear approximation even when the operator completely
released the instrument.

6.2. Future Work

The limitations found in the testing of the implementation
of this project suggest several fruitful avenues for future
work. The coarse granularity of the mesh was found to
cause discontinuities and loss of contact as the instrument
rolls over triangle boundaries. Multi-resolution methods
that dynamically re-triangulate the mesh are one possibility
to overcome these issues. Work has already begun to
adapt methods from this study to the GiPSi simulation
framework, an open source simulation framework for
surgical simulation with haptic feedback (Çavuşoğlu et al.
2006).
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