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Abstract— Robotic motion planning algorithms used for task
automation in robotic surgical systems rely on availability of
accurate models of target soft tissue’s deformation. Relying on
generic tissue parameters in constructing the tissue deformation
models is problematic because biological tissues are known to
have very large (inter- and intra-subject) variability. A priori
mechanical characterization (e.g., uniaxial bench test) of the
target tissues before a surgical procedure is also not usually
practical. In this paper, a method for estimating mechanical
parameters of soft tissue from sensory data collected during
robotic surgical manipulation is presented. The method uses
force data collected from a multiaxial force sensor mounted on
the robotic manipulator, and tissue deformation data collected
from a stereo camera system. The tissue parameters are then
estimated using an inverse finite element method. The effects
of measurement and modeling uncertainties on the proposed
method are analyzed in simulation. The results of experimental
evaluation of the method are also presented.

I. INTRODUCTION
Robotic motion planning algorithms being developed to

enable robotic surgical assistants (RSAs) to perform certain
surgical tasks autonomously while minimizing the damage
to the tissue and errors in the operation rely on availability
of accurate models of target tissues’ deformation. As bio-
logical tissues are known to have very large inter- and intra-
subject variability, construction of tissue deformation models
using generic tissue parameters is not desirable. However,
a priori mechanical characterization of the target tissues
before a surgical procedure is also not practical. In this
paper, a method for estimating the mechanical parameters of
manipulated soft tissue from sensory data collected during
robotic surgical manipulation is presented. The proposed
method does not rely on specialized equipment, sensors,
or characterization procedures. Instead, the method uses
data collected during typical surgical manipulations, such
as, grabbing and retracting the tissue, from a force sensor
mounted on the robotic manipulator and a stereo camera
system to estimate the tissue parameters. Specifically, the
method uses an inverse finite element method to estimate
the parameters of a nonlinear hyper-elastic material model so
as to match the estimated tissue response to measured data
(Sections III and IV). Several challenge scenarios were used
to explore the sensitivity of the iterative inverse finite element
scheme and the objective function based on uncertainties
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resulting from RSAs’ sensing (Section V-A). Results from
experimental evaluation and validation of the method are also
presented (Section V-B).

II. BACKGROUND

Research on motion planning algorithms for robotic ma-
nipulators has traditionally concentrated on manipulation of
rigid objects. Recently, however, motion planning algorithms
for manipulation of deformable objects have started to re-
ceive attention in the literature (e.g., [1–8]).

The robotic motion planning algorithms for manipulation
of deformable objects use models of tissue deformation
to estimate the behavior of the object under constraints
resulting from the manipulation. Nonlinear finite element
models based on continuum mechanics are widely used in
many surgery simulations (e.g., [9–11]) to estimate large
deformations accurately. In general, finite element methods
give higher accuracy at the cost of increased computation.
To avoid the computational costs of complex nonlinear
finite element methods, Müller et al. [12] proposed a linear
finite element method with co-rotational support to improve
the simulation accuracy under large deformations. However,
nonlinear finite element methods are preferred when accu-
rate outcomes are needed to perform in surgical simulation
[10, 11].

Different tissue models have been used to character-
ize the hyper-elastic deformable object behavior, such as
St. Venant–Kirchhoff [13], Veronda–Westmann [10, 11, 14,
15], Arruda–Boyce [16], Neo–Hookean [10, 11], etc.

Traditionally, the parameter sets of different models are
examined by performing uniaxial tests. Researchers find the
set of parameters that match stress–strain relationship from
experiments according to their strain energy model [14].
Recently, iterative parameters identification using inverse
finite element analysis has been proposed to determine the
set of parameters. Mehrabian and Samani [15] estimated
the set of parameters for tissue modeled using Veronda-
Westmann model by performing uniaxial compression testing
on polyvinyl alcohol phantom. Sangpradit et al. [16] iden-
tified the parameters of an Arruda-Boyce model by using
wheeled probe indentation on a General Electric RTV6166
silicone phantom.

One of the differences between the present study and the
earlier studies in the literature is that the parameter estimation
scheme presented here does not require any specialized
apparatus (such as those used by [17–19]), motions, or
procedures (such as the performance of a uniaxial loading
test [15]).
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Most parameter estimation studies have been focused
on simple motions such as indentations [16, 20–23] and
geometrical tension, compression, and shear test [24, 25].
The published results for more complicated motions were
lacking.

Instead, the proposed estimation scheme uses data col-
lected during typical surgical manipulation motions of the
manipulator (such as during retraction of the tissue by a
gripper). Also, in the present study, the deformations of the
object surface at multiple points were used in the estimation
(similar to [24] which used movements of multiple points
inside the tissue as observed through magnetic resonance
imaging and which fitted non-linear material to measured
force-displacement samples [21]), unlike earlier studies in
the literature that rely on collocated force-displacement mea-
surements (e.g., [16, 26]).

III. TISSUE MODELS
In this study, nonlinear finite element models were used

to model the deformation of the soft tissues. Nonlinear
finite element model stated here means the strain tensor
as well as the stress–strain relationship are nonlinear (i.e.,
both geometric and material nonlinearities are included). For
simplification, the analyses were performed for the quasi-
static case, neglecting the inertial and damping effects in
the tissue dynamics. This is not a restrictive assumption,
since manipulation velocities and bandwidths are small in
typical surgical manipulations. The finite element simulations
were performed using the Salmon finite element simulation
package [11].

The strain energy density function (SEDF) W is a function
that relates the Cauchy-Green deformation tensor C of the
material to the to the strain energy density, and is used to
characterize nonlinear stress-strain relationship of isotropic
hyper-elastic materials. In this study, the Neo–Hookean non-
linear material model was used as the underlying material
type. The Neo–Hookean model is a generalization of the St.
Venant Kirchoff model [11] and does not have the element
inversion problem [27].

The advantage of using a Neo–Hookean material is it
captures the nonlinear nature of material while its parameters
still have good physical interpretation. However, it is impor-
tant to note that the use of the Neo–Hookean material type
is not a requirement to the proposed parameter estimation
scheme, which will be introduced in section IV-A. Different
material type can be substituted without any major change
to the method.

The SEDF and stress tensor of the Neo–Hookean material
model are given by

W =
1
2

(
µ(i1−3)−µ log(i3)+λ (

√
i3−1)2)

)
, (1)

and

S = µI−µC−1 +λ (
√

i3−1)
√

i3 C−1, (2)

respectively [10, 11].
In here, λ and µ are the Lamé’s first and second pa-

rameters respectively, which can be calculated from Young’s

modulus E and Poisson’s ratio ν of the material by using
the relationship

λ =
Eν

(1+ν)(1−2ν)
, (3)

µ =
E

2(1+ν)
. (4)

i1, i2 and i3 are the invariants of the Cauchy-Green defor-
mation tensor C which are defined by

i1 = trace(C), (5)

i2 =
1
2
(
trace(C)2− trace(C2)

)
, (6)

i3 = det(C). (7)

IV. PARAMETER ESTIMATION SCHEME

The inputs to the parameter estimation algorithm are the
initial geometry of the deformable object (obtained from pre-
operative medical imaging), the motion of the robotic end-
effector grabbing the tissue (given by the joint sensors and
kinematics of the robotic manipulator), the tissue interaction
forces measured at the robotic end-effector (measured by a
6 axis force/torque sensor mounted on the manipulator), and
the motions of a set of fiducials on the surface of the de-
formable object (measured by a stereo camera system). The
robotic end-effector motions, tissue interaction forces, and
the motion of the fiducials are assumed to be synchronously
recorded trajectories.

The operation of the parameter estimation algorithm is
summarized in Fig. 1 and Fig. 2. The algorithm starts
with an initial estimate of the mechanical parameters of the
target tissue being manipulated (Fig. 1). Using the estimated
mechanical parameters, the simulation loop calculates the
deformations of the tissue using a finite element model
of the tissue subject to the boundary conditions resulting
from specified motion of the robotic end-effector grabbing
the tissue. The simulation loop then returns the estimates
of the interaction forces and the motions of the fiducials
during the manipulation. These estimated interaction force
and fiducial motion trajectories are then compared with
the actual trajectories observed by the sensors by using an
objective function (described in section IV-A), and checked
for convergence. If the objective function has not converged,
the estimates of the parameters are updated, and the new
parameters are fed back into the simulation loop.

The nonlinear finite element is employed in the simulation
loop. The manipulator’s initial configuration, the initial tissue
geometry and the estimated tissue parameters are used by the
nonlinear finite element simulator to solve for the deforma-
tion of the tissue in quasi-static state. Deformation of the
tissue in subsequent time steps is then iteratively calculated
by using the nonlinear finite element model. At each time
step, the configuration of the tissue at the end of the last
time step is used as the initial tissue configuration, and the
boundary conditions are updated based on the corresponding
configuration of the end-effector. The trajectories of the
interaction forces and the locations of the fiducials on the
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Fig. 1: Flow chart describes the proposed iterative parameter
determination scheme.
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Fig. 2: The diagram illustrates the simulation loop in Fig. 1

A. The Objective Function
The inverse finite element analysis is used to find the set

of tissue’s parameters that fits the observations. Two different
sets of observations are collected from the sensory system.
The first set of observations is the interaction forces between
the end-effector and tissue during the surgical manipulation.
The second set of observations is the trajectories of the
points of interest fiducials identified on the surface of the
tissue. Young’s modulus and Poisson’s ratio are the set of
parameters that specify the tissue’s mechanical properties,
for the material type used in this study (see section III).
The objective function then has two terms. The first term
is a position sensitive term (similar to [21]) and the second
term is a force sensitive term. The objective function is then
defined as

argmin
E,ν
||xxxs(E,ν)− xxxo||2 +C || fff s(E,ν)− fff o||2, (8)

where the subscripts s and o denote, respectively, the sim-
ulation and observed outputs, fff is the vector representing
the forces exerted on the RSA’s gripper, and xxx is the
vector representing the trajectories of the points of interest’s
positions, and C is the scaling factor used to match the scales
of the force and position variables.

If desired, the scaling factor can be biased to favor one
of the two terms. However, in this study, instead of using
a prescribed set value, the scaling factor is automatically
determined for each estimate problem as

Ce =

max
E,ν
||xxxs− xxxo||2−min

E,ν
||xxxs− xxxo||2

max
E,ν
|| fff s− fff o||2−min

E,ν
|| fff s− fff o||2

. (9)

This Ce scales both terms equally in the parameter region of
interest. Assuming that the tissue simulations always have
errors in the force term, the scaling factor will be always
well-defined. In (9) both of the max terms are estimated
by sampling the region of interest of the parameters while
the min terms are determined by performing numerical
minimizations.

V. METHODS

A. Simulation Methods

In this section, results of the simulation studies of the
proposed method are presented. Several different simulation
scenarios were used to validate the proposed scheme, and
explore its performance under various types of uncertainties.

A limitation of in vivo tissue manipulation is that it is
difficult to acquire the true state of the tissue to initialize
computations and it has greater uncertainties compared to
ex vivo tests.

The first simulation scenario assumed that the tissue and
manipulation geometries were acquired accurately. The sec-
ond scenario considered the case when the tissue geometry
was not perfectly modeled. The third scenario considered the
case when there were uncertainties in positioning of the end-
effector on the target tissue. And finally, the fourth scenario
considered uncertainties in the robot’s motion.

In the simulations a tissue model in the shape of a square
patch, shown in Fig. 3, with dimensions 10×10×1 cm was
used. The center of the tissue was (0.0,0.0,0.0) in x-y-z
coordinate. The end-effector gripper was assumed to grasp
a 2× 2 cm area on the tissue without any slip. This was
modeled by anchoring the grabbed part of the tissue rigidly
to the gripper by position boundary conditions. The size of
the gripper was 2 cm in width and initially at (0.04,0.0,0.0)
m. The tissue was assumed to be anchored on the left side
and the gripper retracted the tissue by pulling in the direction
of the arrow shown in Fig. 3. The stress and strain of the
tissue are assumed to be in zero state at the beginning of the
experiment including the effect of gravity.

The Salmon [11] open source finite element modeling
and simulation package was used as the underlying FEM
simulation engine, after custom modifications. The Salmon
package offers FEM simulation with geometric and material
nonlinearities. The meshing of the geometric models to use
in the FEM simulations was done by TetGen [28].

The SQP algorithm using Quasi-Newton line search, as
provided by the MATLAB’s fmincon function, was used to
find minimum of the objective function.

All experiments were conducted on a 2.93 GHz Intel R©
CoreTM i7 CPU, and 12 GB of RAM. Salmon was imple-
mented in the C++ language and MATLAB R© was used to
implement the optimization scheme.

In the simulation scenarios, all vision and force sensing
i.e., the trajectories of the fiducials and the interaction forces,
were assumed to be perfectly measured. The reference values
of the sensing data were computed from simulations of a
finite element model with a higher density mesh, while the
estimation of the set of parameters were performed using a
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Fig. 3: The setup of the experiment shows the gripper
grasping on the right side of tissue and pulling in the
direction of the arrow.

Stereo Vision
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Fig. 4: The physical experiment setup.

finite element model with a lower density mesh. Specifically,
a mesh with 3122 nodes and 13473 elements was used to
generate the sensing data, while a mesh with 991 nodes and
3595 elements was used in the estimation process, unless
otherwise noted. The reference parameters were 15 kPa and
0.49 for Young’s modulus and Poisson’s ratio, respectively.

B. Experimental Methods

In the experiments, we used a soft tissue phantom created
using Ecoflex R© 0030, a two–part silicone rubber with Sili-
cone Thinner R© (non-reactive silicone fluid), from Smooth–
On Inc. which was used in [29]. The silicone phantoms with
two different consistencies of Silicone Thinner (see table VI)
were used in order to cover a wide range of parameter values.

The experimental setup is shown in Fig. 4. The tissue
phantoms used in the experiments were similar in shape and
size to the models used in the simulation studies described in
section V-A. Specifically, the tissue phantoms were square in
shape, with dimensions of 10×10×1 cm. The tissue phan-
toms were placed horizontally on a flat lubricated surface
anchored to a wall on their left side, while being grabbed and
retracted by a gripper towards right. The retraction action
was achieved by moving the gripper 10 steps, in 2 mm
steps, towards right, producing a 10% elongation of the
tissue phantom. 16 artificial fiducials were marked on the

top surface of the tissue and were tracked by a calibrated
stereo camera pair to measure their deformations during
retraction. A Nano17 6 axis force/torque sensor (by ATI
Industrial Automation, Apex, NC) was mounted between the
gripper and the actuator to measure the manipulation forces.
The force sensor outputs were recorded via a NI PCI–6023E
multifunction data acquisition system.

The silicone surface was labeled with colored glass beads
2 mm in diameter which were used as the fiducials. The
stereo camera pair consisted of two of Point Gray Research
(PGR) Flea 2 cameras which captured images at 640×480
pixels. The camera lenses’ focal length were 4.5 mm. The
stereo camera pair had a inter-camera distance of 35.89 mm.
The cameras were placed at a distance of 20 cm to the tissue
sample. The cameras were programmed using the (PGR)
Flycapture library and OpenCV. The camera images were
calibrated and rectified using stereo calibrate routines native
to OpenCV [30]. The image is analyzed in HSV color space.
The fiducial beads were detected using their color. Once the
fiducials were detected, each individual fiducial location was
calculated by distinguishing each fiducial in the image. After
the fiducials were detected in the stereo image pair, the actual
location of the fiducials was triangulated using the camera
calibration information.

VI. RESULTS

A. Simulation Results

1) Accurate Tissue and Manipulation Geometry Acquisi-
tions: The first set of simulation studies were conducted to
validate if the proposed algorithm could accurately identify
the tissue parameters under ideal conditions, specifically,
when perfect information about the geometry of the specimen
and the geometry of manipulation (i.e., motion of the end-
effector relative to the target tissue) was available. The effect
of the density of the finite element model mesh used in
the estimation algorithm on the accuracy of the parameter
estimation was also evaluated.

In case 1, the tissue model in the estimator was discretized
into a higher density mesh. In case 2, the tissue model in the
estimator was discretized into a lower density mesh.

TABLE I: Estimation results when accurate tissue and ma-
nipulation geometry measurements are available. The com-
putation time is represented as total time, which is the
sum of the time for prescaling (9), and time for the actual
minimization (8). RMSE stands for root mean square error.

Case Case 1 Case 2

Young’s Modulus (kPa) 15.18 14.98
Poisson’s Ratio 0.4897 0.4849
Iterations (Function Counts) 9(30) 15(46)
Time (s) (prescaling+min) 2452(1469+983) 773 (450+90)
RMSE of
the fiducial’s position (m) 4.32e-6 8.30e-5
the force profile (N) 6.73e-5 2.37e-3

The results in Table I show that the proposed method
can accurately estimate the tissue parameters under low
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TABLE II: Evaluations of the method at different fractal
scale levels.

Fractal Max Height Scale 2% 4% 8%

Young’s Modulus (kPa) 17.00 19.40 23.97
Poisson’s Ratio 0.4693 0.4654 0.4607
Iter. (Func. Counts) 11(34) 14(42) 4(12)
Time (s) (prescaling+min) 375 (227+148) 897(729+168) 956(785+171)
RMSE of
the fiducial’s position (m) 1.15e-4 1.25e-4 1.36e-4
the force profile (N) 1.69e-3 1.85e-3 2.17e-3

uncertainty conditions, and the accuracy of the method does
not depend heavily on the mesh density (at least, at the range
considered here). The parameters estimated in case 2 were
reasonably close to the actual values while the complexity
is tremendously lower. Therefore, in the subsequent studies
(sections VI-A.2–VI-A.5), the low density mesh was used in
estimation while the high density mesh was used to generate
the simulated measurement data.

2) Uncertainties in Tissue Geometry: The second set of
simulations was conducted to evaluate the effectiveness of
the method when the tissue geometry was not perfectly
modeled. This was evaluated by using reference meshes
which were perturbed from the original shape, while using
the original mesh with the smooth surface in the estimation
algorithm. The high density mesh was used to generate the
test data while the low density mesh (described above) was
used in parameter estimation.

The rough surfaces in this work were generated using
the ridged multifractal terrain algorithm [31] in MeshLab
[32] to represent uncertainties in tissue geometry. The results
reported in Table II shows the sensitivity of the scheme to
the size of the perturbations, at varying 2%, 4% and 8% of
the tissue’s original thickness, as can be seen in Fig. 5.

(a) fractal maximum
height scale of 2%
of the tissue’s original
thickness

(b) fractal maximum
height scale of 4%
of the tissue’s original
thickness

(c) fractal maximum
height scale of 8%
of the tissue’s original
thickness

Fig. 5: Unknown parameter tissue with rough surface gener-
ated using the ridged multifractal terrain algorithm [31].

The results demonstrated that the proposed algorithm still
handled the problem quite well. Only the Young’s modulus
was estimated by the method was slightly off when the fractal
was higher.

The algorithm that was used to generate fractal in the
experiment also grew the tissue. That is the reason why
Young’s modulus estimated from the scheme increased as
the perturbation level increased. It is difficult to model the
tissue geometry perfectly in simulation; however, from the
experiments, the model should be accurately modeled at
around 5% of the tissue’s original thickness.

TABLE III: Evaluations of the scheme at assuming incorrect
grasping points. The parameters and other values are the
results from 20 random experiments

Standard Deviation 5 mm 10 mm 20 mm

Young’s Modulus (kPa) 13.82±12% 12.06±27% 13.33±62%
Poisson’s Ratio 0.4677±4% 0.4574±9% 0.3960±28%
Time (s) 966±27% 1445±79% 1023±60%
RMSE of
the fiducial’s position (m) 6.22e-4±65% 1.71e-3±79% 2.94e-3±76%
the force profile (N) 4.22e-2±63% 1.48e-1±63% 1.63e-1±107%

TABLE IV: The results when the gripper position control sig-
nal was corrupted with different noise levels. The parameters
and other values are the results from 20 random experiments

Standard Deviation 10% 25% 50%

Young’s Modulus (kPa) 14.65±2% 13.88±8% 13.41±19%
Poisson’s Ratio 0.4852±2% 0.4733±6% 0.4508±13%
Time (s) 1174±23% 1510±36% 1190±45%
RMSE of
the fiducial’s position (m) 4.14e-4±30% 1.01e-3±29% 2.42e-3±37%
the force profile (N) 3.05e-2±44% 7.66e-2±34% 1.83e-1±66%

3) Uncertainties in the Position of the Robot’s Target:
The third set of simulations was conducted to evaluate the
effectiveness of the method when there were uncertainties in
the positioning of the end-effector on the target tissue.

The simulations were done by randomly changing the
center of the robot’s target (the grasping point) with standard
deviation of 5 mm, 10 mm and 20 mm (see Table III).

The algorithm results are acceptable when the grasping
point is mislocated up to 10mm. For 20mm mislocation, the
parameter reconstructed from the scheme had unacceptably
large variation and especially Poisson’s ratio had an unac-
ceptably large error due to the wrong assumption of grasping
location further to the anchor points.

4) Uncertainties from the Robot’s Motion: This set of
simulations was conducted to evaluate the effectiveness of
the method when there were uncertainties in robot motions.
The additive Gaussian noise was generated to study the effect
of uncertainties at 10%, 20% and 50% noise levels (standard
deviation of the Gaussian noise as a percent of the magnitude
of the position control signal.) The results are shown in
Table IV.

Noise from the control signal appears not to cause a
significant effect on the parameter estimation if the noise
level is not extremely high.

5) Parameter Estimation under Complex Motions: The
merit of this multiaxial estimation framework over uniaxial
estimation is the ability to estimate the tissue parameters un-
der complex surgical manipulations. This set of simulations
was conducted to evaluate the effectiveness of the method
when the robot had non-trivial motions during a surgical
manipulation. Fig. 6 shows the five different motions used in
the simulations. In the first test motion, the gripper diagonally
pulled the tissue on the orthogonal plane in the horizontal and
up direction. In the second case, the gripper diagonally pulled
the tissue in the tissue plane. In the third case, the gripper
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(a) “Tangent Pull” (b) “In-Plane Tangent Pull”

(c) “Gradual Tangent Pull” (d) “Side Pull”

(e) “Twist and Pull”

Fig. 6: Figures show the different types of complex end-
effector motion used to evaluate the parameter estimation in
section VI-A.5 .

horizontally pulled the tissue by simultaneously rotating the
gripper. In the fourth case, the gripper pulled the tissue
sideways in the tissue plane. And in the fifth and final case,
the gripper pulled the tissue horizontally in the tissue plane
while rotating the tissue to twist it.

The results in Table V show that the method can still
estimate the parameters with good accuracy under such
complex motions.

B. Experimental Results

Different tissue consistencies were obtained by using dif-
ferent silicone rubber and silicone thinner proportions during
the preparation of the phantoms. The parameter estimates for
the two different tissue phantoms are reported in Table VI.
For baseline comparison, the material parameters (Young’s
modulus and Poisson’s ratio) reported in the literature for the
Ecoflex 0030 for the 1:1:0 mixture proportions in [29] are
29.5 kPa and 0.5, respectively. (Actually, in [29] Poisson’s
ratio of 0.5 was assumed, not directly estimated). 1 These
reported parameter values are very close to the values
27.24 kPa and 0.43 estimated here using the proposed
method.

Fig. 7 and Fig. 8 show that the trajectories of fiducial
positions and force profile start to deviate from the actual
trajectories for large deformations, even though there is a
good agreement between the estimated and actual trajectories

1To the best of our efforts, these were the only parameter values that we
were able to find in the literature for the Ecoflex silicone.

TABLE V: Parameter Estimation under Complex Motions

Motion Types “Tangent Pull” “In-Plane Tangent Pull”

Young’s Modulus (kPa) 14.84 14.95
Poisson’s Ratio 0.4845 0.4847
Time (s) 1715(1098+618) 3114(2750+364)
Iter. (Func. Counts) 18(54) 9(27)
RMSE of
the fiducial’s position (m) 1.00e-4 8.60e-5
the force profile (N) 1.77e-3 3.00e-3

Motion Types “Gradual Tangent Pull” “Side Pull”

Young’s Modulus (kPa) 15.09 15.85
Poisson’s Ratio 0.4720 0.4495
Time (s) 3057(2215+843) 885(869+16)
Iter. (Func. Counts) 8(29) 1(3)
RMSE of
the fiducial’s position (m) 2.17e-4 1.36e-4
the force profile (N) 2.06e-2 1.64e-2

Motion Types “Twist and Pull”

Young’s Modulus (kPa) 15.06
Poisson’s Ratio 0.4762
Time (s) 1604(1014+590)
Iter. (Func. Counts) 17(51)
RMSE of
the fiducial’s position (m) 1.68e-4
the force profile (N) 9.99e-3
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Fig. 7: The trajectories of fiducial markers from the ex-
periment with Ecoflex 0030 1:1:0 ratio. The solid circles
are the trajectories of the points of interest from the stereo
cameras, the hollow circles are the trajectories obtained from
the simulation using the estimated parameters.
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Fig. 8: The interaction force profile of the experiment with
Ecoflex 0030 1:1:0 ratio. The solid lines represent the actual
force data from force sensor in x-y-z and the dash lines
represent the force profiles obtained from the simulation
using the estimated parameters.
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TABLE VI: The parameter values estimated in the experi-
ments by the proposed method for different tissue phantom
materials. (A:B:T is proportion of part A of the silicone,
part B of the silicone and silicone thinner by mass.)

Material Types (A:B:T) Ecoflex 1:1:0 Ecoflex 1:1:2

Young’s Modulus (kPa) 27.04 6.493
Poisson’s Ratio 0.4287 0.42359
Time (s) (prescaling+min) 856(715+141) 801(676+125)
Iter. (Func. Counts) 12(36) 12(37)
RMSE of
the fiducial’s position (m) 1.59e-3 2.09e-3
the force profile (N) 1.31e-1 2.42e-2

for relatively smaller deformations. Neo–Hookean might not
be the best choice for highly nonlinear materials in some
cases.

VII. DISCUSSION AND CONCLUSIONS
This paper presented a new inverse nonlinear finite ele-

ment based scheme to estimate the mechanical parameters
of soft tissues using data collected during regular manip-
ulation of the tissue in robotic surgery. The method uses a
hyper-elastic material model for the tissue. Several challenge
scenarios and different types of complex motions were
considered to test the sensitivity of the proposed multiaxial
framework scheme. Results of the method are evaluated
and validated experimentally as well. The simulation and
experimental results indicated that the proposed scheme is
effective in estimating the parameters in general.

Typical surgical manipulation motions are relatively slow.
Therefore, the tissue deformations and interactions forces can
be approximated as quasi-static, ignoring the viscous and
inertial effects.

It is also important to note that, the choice of the
Neo–Hookean material type is not fundamental to the pro-
posed method. The same overall tissue parameter estimation
method can also be applied by using different underlying
material types.
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