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Abstract— Human-computer/machine interface research ben-
efits from accurate human arm models for stability analysis,
control, and system design. The current study developed models
for human arm dynamics and variability specific to stylus-based
kinesthetic haptic interfaces. Data from nine human subjects (5
male, 4 female, ages 20–30) were collected using a three degree-
of-freedom haptic device in the X, Y, and Z axes along with a
range of grip forces (1–3N) for parametric system identification
of the human arm and hand. Variability models that accounted
for subject and grip force variation were also identified. The
arm and hand model structure consisted of a third-order linear
parametric transfer function that was paired with a previously
derived second-order model for the haptic robot. The variability
was modeled as multiplicative unstructured uncertainty using
transfer functions. All of the model parameters were identified
in the frequency domain and have force as input and position
as output.

I. INTRODUCTION
Kinesthetic haptic interfaces provide a human operator

bilateral force interaction with a remote or virtual environ-
ment. The human arm, with its amazing sensing ability,
countless configurations, and multitude of applications is by
far the most complex and variable element in any haptic
interface system. In order to develop a stable and useful
haptic interface, accurate and relevant models of human
arm dynamics are a necessity. They are critical for proper
stability analysis, interface design, and improving haptic
fidelity. However, because the human arm is so dextrous
and reconfigurable, researchers have reported that small
variations in arm configurations, grip forces, and application
environments result in the arm exhibiting a wide range
of dynamic behavior [1]–[4]. Therefore, arm orientations
relevant to a task should be considered during model identi-
fication. The current study focuses on modeling the arm and
hand for stylus-handled haptic interfaces. Stylus handles are
commonly found on commercially available haptic interfaces
and are convenient for mimicking tools such as paintbrushes,
dentistry instruments, and surgical blades.

The models developed in this study used the common
convention of force at the hand as the model input and mea-
sured hand position as model output. This formulation was
consistent with the impedance model for human interaction
and the two-port framework for haptic interfaces [5], [6].
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Also, since human subjects exhibit significant variations in
their performance, the current work developed models for
maximum inter and intra-subject variability that are valuable
for robust stability analysis of haptic interface systems.

Dynamic models for the human arm originated with
researchers investigating the body’s biomechanics [7]–[10].
As robotics and haptic technology became more mature, re-
searchers began to develop single-input-single-output models
based on mass-spring-dampers systems, which have been
shown to accurately reflect arm dynamics and are more
suitable for real-time computer implementation [10]–[13].
More recently, human arm dynamics have been modeled
using haptic interfaces in an effort to improve system de-
sign and fidelity. Hasser developed a grasping model while
operating a haptic knob [14]. Woo and Lee characterized the
inertia, stiffness, and viscosity of the arm exerting forces of
0–20 N using a one degree-of-freedom (1 DOF) robot [15].
Dong et al. described non-parametric frequency responses of
human fingers using various grip configurations subjected to
a random vibration [16]. Kuchenbecker et al. used a stylus
handle with a grip force sensor on a 1 DOF manipulator
to characterize the hand and wrist [2]. Vlugt and Schouten
modeled intrinsic and reflexive muscle parameters for the
shoulder, elbow, and wrist joints using a 2D planar robot
[17]. Speich et al. characterized human arm parameters using
a 3 DOF robot with a stylus handle [18].

The mentioned works contributed greatly to haptics
research, but what is missing from the literature are
experimentally-derived models describing the variation found
in human arm dynamics. Studies have modeled the variation
as arbitrarily-selected non-linear impedances and as unstruc-
tured/structured uncertainty, but these were derived without
human experiment [19], [20]. Others reported the amount of
variance observed in data collections and parameter identi-
fications, but the variances are not modeled in a way that
can be directly used for robust stability analysis. The current
work modeled the inter and intra-subject variability due to
grip force changes and human variation.

Also, the accuracy of existing arm dynamics models can
be improved upon by including the haptic device’s dynamics
in the model structure, which has not been done. Accurate
models for haptic robots exist, so they should be and are
included in the current work’s model structures to account
for their effects on experimental data.

Study Objectives

This study used data collected from human experiments to
identify a 3D Cartesian-space model of the human arm and
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Fig. 1. The experimental setup and arm configuration used for the human
experiment data collections.

subject variation using force as the model input and position
as output. The arm was modeled using five-parameter linear
transfer functions based on the dynamics of one mass, two
springs, and two dampers. Variances were modeled as mul-
tiplicative unstructured uncertainty using transfer functions
with up to five stable complex-conjugate pairs of poles and
five minimum-phase complex-conjugate pairs of zeros.

II. METHODS

A. Subjects

Nine right hand dominant subjects (4 female, 5 male, ages
20–30) were recruited with prior consent for this study and
were not compensated for their participation. Each subject
was free from movement impairments relevant to this study
and tested using their right arm. The experiment procedures
were reviewed and given exemption status by the institution’s
Internal Review Board.

B. Equipment

Experiments were performed using a PHANToM Premium
1.5a haptic interface (Sensable Technologies Corp., Woburn,
MA) equipped with a FlexiForce force-sensitive resistor to
sense grip forces (TekScan Corp., Boston, MA). A Phidgets
Inc. (Calgary, Alberta, Canada) 1018 analog-to-digital inter-
face was used to acquire data from the grip force sensor
at 65 Hz. A dual-core 2.53 GHz Xenon workstation (Dell
Corp, Round Rock, TX) ran a real-time servo loop of 1
kHz and acquired data using a PCI-6602 counter (National
Instruments Corp., Austin, TX). Output to the motor ampli-
fiers was performed using a PCI-DDA08/12 digital-to-analog
converter (Measurement Computing Corp., Norton, MA).

C. System Identification with Human Subjects

Performing system identification using input signals such
as frequency sweeps, discrete sinusoidal signals, and random
noise typically produce comparable results [21]. However,
when modeling the human arm, frequency sweeps and dis-
crete sine waves are not suitable because at low frequencies
(< 3 Hz), human reflexes make it difficult to keep the arm
passive to force disturbances. Fortunately, the more random
the force disturbance is, the less likely it will trigger the arm’s
reflexes. For this reason, the current study used Gaussian
white noise inputs with a bandwidth of 30 Hz to render the
input forces unpredictable by human subjects.

Fig. 2. Computer interface seen by the subjects. The blue cross bars give
the user a fixed coordinate frame to judge 3D motion by. The sphere is the
cursor controlled by the stylus, which changes color to correspond to the
label used for each grip force in the gauge (lower right of the screen). The
green transparent box at the center of the crossbars was the static position
subjects were instructed to maintain during the experiment.

The gaussian white noise was low-pass filtered to 30 Hz
because of the limits imposed by neural signal delay for
voluntary movement. During complex tasks, such as target
reaching, humans take up to 110 ms to respond to changes
in target position [22]. It takes approximately 75 ms for a
neural signal to travel from the brain to the ankle muscles and
back [23]. For the wrist, Marsden et al. found that it takes
approximately 50 ms to resist an extension by an external
force [24]. Since the arm is closer to the brain than the ankle
and the target in this study is static, 50 ms was assumed as
the approximate time delay for the arm in the experimental
task. Under this assumption, the bandwidth for the human
arm was approximated to 20 Hz, justifying the selection of
30 Hz noise bandwidth.

D. Arm Model Experiment Paradigm

During the experiments, hand position data in all 3 degrees
of movement (X being left and right, Y being up and down,
and Z being forward and backward) were recorded while
the subject’s arm was stimulated with random forces in only
one of the degrees of movement. The duration of stimulation
lasted 50–100 s depending on the ability the subject to
maintain a consistent grip force. A consistent grip force was
defined to be within ±0.5 N of the desired force and verified
visually by the experimenter. In order not to exceed the 3
A current limit on the PHANToM’s motors, the forces at
the stylus were limited to ≤ 5 N. Nine sets of data were
collected from each subject, one for every combination of
three grip forces (1, 2, and 3 N) and three directions of force
stimulation (X, Y, and Z directions). The grip forces were
selected because grip forces less than 1 N were insufficient
for holding onto the stylus under the stimulation forces and
forces greater than 3 N were very difficult to hold for longer
than 100 s.

For each test, the subject was instructed to sit facing a
19” computer monitor in a chair with no arm rests and to
use their hand to hold a stylus-shaped handle attached to the
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Fig. 3. Block diagram of the human arm coupled to the PHANToM
haptic device. HARM represents the lumped model of the arm’s passive and
controlled dynamics and HPHANToM represents the position-input/force-
output dynamics of the PHANToM haptic interface as presented in [25].
Input force F represents the motor forces, Fa the force input to HARM ,
and Fp the force output of HPHANToM . Position xa = xp represents
the hand and stylus positions, respectively.

Fig. 4. Free-body diagram of the arm and the PHANToM. The dashed
box on the left corresponds to the HPHANToM block in Fig. 3 and the
components in the dashed box on the right correspond to the HARM block.
Mass Mp is the inertia of the PHANToM and mass Ma the inertia of the
arm. Elements k1 and k2 are springs, while b1 and b2 are dampers. External
force F is from the PHANToM’s motors. Position xp is the position of the
stylus handle, which is euqal to the position of the hand, xa

end-effector of the PHANToM robot as one grasps a pen.
Figure 1 shows the arm configuration and experiment setup.
Figure 2 shows the graphic user interface (GUI) presented to
the subject. The GUI displays a spheroid cursor that reflects
the motion of the stylus tip on a 1:1 scale in virtual 3D space.
The subject’s grip force was displayed in two ways: using
a gauge and by changing the color of the sphere to signal
that a certain grip force was achieved (red for 1 N, cyan for
2 N, and magenta for 3 N). The color changes prevent the
subject from diverting their attention from the cursor to the
force gauge.

Using the GUI and the PHANToM stylus, the subject was
instructed to maintain one of the three tested grip forces
throughout the duration of the trial and attempt to keep
the cursor at the static target in the center of the crossbars
(transparent green box in Fig. 2). Once the subject achieved
the desired grip force and centered the cursor within the box,
they initiated stimulation forces by pressing a button with
their untested hand. Once each trial was over, the subject
was given as much time as needed to rest. The experimenter
visually verified that grip forces did not exceed a tolerance of
±0.5 N and that the cursor position did not drift away from
the center target. Once the subject was ready again, another
random combination of grip force and stimulation direction
was tested.

E. Arm Model Structure

The model structure in Fig. 3, referred to from here on
as the ‘measured-dynamics model’, was a feedback loop
between the PHANToM haptic interface and a lumped model
of the arm’s passive and active control dynamics. In both
Figs. 3 and 4, force F represents the PHANToM’s motor
forces, which are those used for system identification. Forces
Fa and Fp in Fig. 4 are not external forces, but are the force
input to HARM (referred to as the ‘arm dynamics’ from here
on) and force output to HPHANToM , respectively. Positions
xa = xp are the measured hand and stylus handle positions,
which were assumed to be equal. The PHANToM’s dynamics
were the transfer function models described by Cavusoglu et
al. [25]. Although Cavusoglu’s models were identified at the
motors, the current study applied them to the end effector
of the haptic device by assuming that the links are rigid for
frequencies ≤ 30 Hz.

A transfer function for the arm dynamics model structure
was constructed from Fig. 4. The free-body diagram (Fig.
4) and the block diagram (Fig. 3) are equivalent by the
definitions

Fa = F − Fp (1)

where F is the force exerted by the PHANToM motors and

Fa = −(
k1(xk2 − xp) + b1(ẋk2 − ẋp)

)
,

Conveniently, all three of the PHANToM’s degrees of free-
dom behave as a simple mass for the frequency bandwidth
of interest in this study (≤ 30 Hz). Thus, for system
identification purposes, the PHANToM’s transfer function for
all 3 DOFs was modeled as

HPHANToM (s) =
Fp(s)
Xp(s)

= Mps
2,

where Fp(s) = F (s) − Fa(s), as defined in (1), Xp(s) was
the frequency spectrum of the measured stylus tip position,
and Mp was the same as in Fig. 4 approximated about the
operating point as

Mx
p = 0.09kg

My
p = 0.095kg

Mz
p = 0.091kg.

(2)

The arm dynamics model transfer function was derived from
the 5 parameters Ma, k1, k2, b1, and b2 in Fig. 4 in Laplace
notation as

HARM (s) = Xa(s)
Fa(s) =

Mas2+(b1+b2)s+k1+k2
b1Mas3+(b1b2+k1Ma)s2+(b2k1+b1k2)s+k1k2

,
(3)

where Xa(s) was the frequency spectrum of the hand po-
sition and Fa(s) = F (s) − Fp(s), from (1). The closed-
loop combination of the arm and PHANToM models was
the measured-dynamics model

HCL(s) =
Position

Force
=

HARM (s)
1 + HARM (s)HPHANToM (s)

,

(4)
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which resulted in a fourth-order transfer function that was
fitted to the human experiment data to identify Ma, k1,
k2, b1, and b2. Each fit was performed using nonlinear
constrained optimization (Matlab fmincon.m function) in
the frequency domain by minimizing the cost function

k=3000∑
n=1

Wt(n)

[
20log10

(
Hexp(j2π

n

N
) − HCL(j2π

n

N
)
)2

]
, (5)

where Wt(n) was a weighting function used to fine-tune the
fit at each data sample, Hexp(jω) was the frequency response
of the human experiment data, HCL(jω) was the measured-
dynamics model’s frequency response from (4), k = 3000
was the number of data samples for 30 Hz of data, and N was
105, the number of samples from 100 s of data acquired at 1
kHz. Hexp(jω) was calculated from the 81 total measured-
dynamics frequency responses (9 subjects, 3 axes, 3 grip
forces) as described in the next two sections. Each individual
measured-dynamics frequency response was computed by
taking the FFT of the measured time-domain position output
data and dividing it by the FFT of the generated time-domain
white noise force input signal, both windowed by 100dB
sidelobe Chebyschev windows (using Matlab’s fft.m and
chebwin.m functions).

Equation (5) was used as the cost function to identify two
sets of arm dynamics model parameters Ma, k1, k2, b1, and
b2, as follows:

1) Set 1: Grip-Force-Dependent Arm Model Parameters:
Parameters for the first set were derived from nine measured-
dynamics model fits, one for each grip force at each axis.
In each model, Hexp(jω) from (5) was defined as the 81
measured-dynamics frequency response averaged over all
subjects, resulting in nine grip-force-dependent arm models.
These models are presented in Sec. III-A.

2) Set 2: Nominal Arm Model Parameters: Parameters in
the second set were identified from three measured-dynamics
model fits, one for each axis. The fits were obtained by defin-
ing Hexp(jω) from (5) as the median of the 81 measured-
dynamics frequency responses over all subjects and all grip
forces. Then, the identified parameters were used to compute
the nominal arm model transfer function, referred to from
here on as ĤARM (s), using (3). These models do not include
the PHANToM dynamics, are reported in Sec. III-B, and
were used as the nominal models to calculate unstructured
uncertainty in the following section.

F. Variability Model Structure

Consistent with robust control theory, the variability of
the system was considered to be unstructured multiplicative
uncertainty [26]. In this formulation, the uncertainty model
is defined as follows:

For a system with plant transfer function P (jω),

P (jω) ∈ {P̂ (jω)
(
1 + Wu(jω)Δ(jω)

)
: sup|Δ(jω)| ≤ 1},

Δ ∈ R
where P̂ (jω) is the nominal plant transfer function, Wu(jω)
is the uncertainty weighting function, and R is the set of

proper real rational functions. The uncertainty weighting
function Wu(jω) has the relationship

|Wu(jω)| ≥
∣∣∣∣∣
P (jω)
P̂ (jω)

− 1

∣∣∣∣∣ (6)

and can be interpreted as the percentage uncertainty relative
to the nominal plant P̂ (jω) at frequency ω.

In this study, the haptic device dynamics were assumed to
have no uncertainty, so Wu(jω) represented the variability
of the experimental arm dynamics (excluding the PHANToM
dynamics) with respect to the nominal arm model described
in Sec. II-E.2. In order to satisfy (6), Wu(jω) was selected
to be the maximum of the right side of (6) at each frequency
with P (jω) defined as the derived-arm-dynamics, refered to
as Hexp

ARM (s), and P̂ (jω) defined as the nominal arm transfer
functions ĤARM (s). Consistent with Fig. 3, the derived-arm-
dynamics

Hexp
ARM (s) =

Xa(s)
Fa(s)

were computed using Welch’s transfer function estimation
(Matlab’s tfestimate.m, with four Hamming windowed
segments and 50% overlap) with time-domain measured arm
position, xa(t) as the transfer function input and time-domain
force Fa(t) as the output. Fa(t) was derived by removing
the PHANToM dynamics from the measured experimental
frequency response using the relationship

Fa(t) = F (t) − Fp(t),

from (1). F (t) was the generated white noise system iden-
tification input forces and Fp(t) was approximated by the
second derivative of the measured hand position, xa(t), as

Fp(t) = Mp

(d2xa(t)
dt2

)
,

with Mp as defined in (2) and the second derivative approx-
imated by

d2x[n]
dt2

=
xa[n + 1] − 2xa[n] + xa[n − 1]

Δt2

with Δt as 0.001 s.
For each axis, the uncertainty was modeled by a stable

and minimum-phase transfer function of the form

Ŵu(s) = K

∏Nn

i=1(s − zi)∏Nd

i=1(s − pi)
(7)

with a scaling term K , stable poles pi, numerator order
Nn, minimum-phase zeroes zi, and denominator order Nd.
This model was fitted to envelope the maximum uncer-
tainty observed in all subjects and all grip forces using
the Matlab’s fmincon.m function. Each transfer function
was constrained to have Nn ≥ Nd so that the modeled
uncertainty would not asymptotically approach zero. The cost
function used was
k=3000∑

n=1

Wt(n)
[
20log10

(
Ŵu(j2π

n

N
) − Wmax

u (j2π
n

N
)
)2

]
,
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TABLE I
ARM MODEL PARAMETERS FROM SYSTEM IDENTIFICATION

X-axis Ma (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
1N grip 0.1925 85.48 704.2 7.410 2.477
2N grip 0.2037 76.29 785.4 7.598 2.532
3N grip 0.2057 88.91 784.3 7.592 2.525

Y-axis Ma (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
1N grip 0.2775 91.48 649.4 7.217 4.314
2N grip 0.2984 84.85 779.8 7.632 4.919
3N grip 0.2954 86.84 775.1 7.719 4.541

Z-axis Ma (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
1N grip 4.374 4877 200.4 55.85 32.96
2N grip 2.250 2196 181.1 40.83 30.56
3N grip 3.107 3289 120.8 50.16 29.70

TABLE II
NOMINAL ARM MODEL PARAMETERS

Axis Ma (kg) k1 (N/m) k2 (N/m) b1 (N·s/m) b2 (N·s/m)
X-axis 0.2277 59.39 628.0 5.514 9.161
Y-axis 0.4142 98.27 421.2 5.720 9.766
Z-axis 1.628 564.7 130.6 37.14 35.36

TABLE III
UNCERTAINTY WEIGHTING FUNCTION POLES AND ZEROES

X-axis Y-axis Z-axis
K 1.2252 0.6247 1.7911

Zeros 1 −1.859 ± 2.731j −1.798 ± 4.368j −25.89 ± 69.80j

Zeros 2 −8.135 ± 13.27j −7.786 ± 43.84j −6.240 ± 19.61j

Zeros 3 −38.59 ± 21.41j −22.03 ± 137.2j −12.02 ± 56.21j

Zeros 4 −2.862 ± 47.72j −239.3 ± 67.64j –
Zeros 5 −35.79 ± 6.553j −11.05 ± 29.71j –
Poles 1 −4.082 ± 48.37j −26.36 ± 133.6j −6.505 ± 19.85j

Poles 2 −5.473 ± 12.19j −144.8 ± 25.81j −11.30 ± 62.12j

Poles 3 −15.08 ± 34.74j −8.834 ± 38.78j −31.10 ± 74.87j

Poles 4 −1.535 ± 1.709j −2.796 ± 3.038j –
Poles 5 −69.14 ± 3.793j −28.95 ± 38.84j –

where Wt(n) was a weighting function, Ŵu(jω) was the
transfer function model in (7), Wmax

u (jω) was the maximum
value of the right side of (6) at each frequency across all
subjects and grip forces, k = 3000 was the number of data
samples for 30 Hz of data, and N was 105, the number of
samples from 100 s of data accquired at 1 kHz.

III. RESULTS

A. Grip-Force-Dependent Measured-Dynamics Models Re-
sults

Nine measured-dynamics models were identified in total,
each with force as input and position as output. For each of
the three tested grip forces, an X-output/X-input, Y-output/Y-
input, and Z-output/Z-input model was identified. All the
fitted parameters are in Table I and Bode plots of the models
are shown in Fig. 5.

Each model was identified to accurately reflect the exper-
imental data across 0.1–30 Hz and also capture the resonant
peaks observed at approximately 15 Hz for the X and Y axes
and 5 Hz for the Z-axis.

B. Variance Model Results

A total of three unstructured uncertainty variance models
were identified, one for each of the X, Y, and Z axes. The
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Fig. 5. (a)–(c) The thicker lines are the frequency responses of the grip-
force dependent X, Y, and Z-axis measured-dynamics models, which include
the PHANToM dynamics. The thinner lines are the frequency response of
the experimental measured-dynamics. The model parameters are in Table I.
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Fig. 6. (a)–(c) For each axis, black dash-dot lines are the frequency response of the nominal arm models, ĤARM (s) as described in Sec. II-E.2. The
multiple thin lines show the 81 derived-arm-dynamics frequency responses described in Sec. II-F. The parameters of the nominal arm models are given in
Table II. The nominal arm models were used in (6). (d)–(f) Magnitude response for the inter/intra-subject unstructured uncertainty weighting functions of
the X, Y, and Z axes (solid lines) are plotted along with the maximum uncertainty they were modeled after (dots).
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HARM (s) model (black dashed line).

Fig. 8. Speich et al.’s model magnitude response (solid lines) plotted over
experimental data (dots). Reprinted with permission from [18].

variance models captured the maximum uncertainty observed
in all of the nine subjects and 1–3N grip forces for 0.01–
30 Hz. The fit parameters are listed in Table III. Each
variance model was a transfer function consisting of up to
five stable complex-conjugate pole pairs and five minimum-
phase zero pairs. Figure 5.d–f shows the frequency response
of each variance model (solid lines) enveloping the maximum
experimental uncertainty (dotted lines).

Also, in order to calculate the unstructured uncertainty,
three nominal arm-dynamics models were identified. The
nominal model parameters are listed in Table II and their
frequency responses are plotted in Fig. 6.a–c (thick dot-
dashed lines) along with the 81 individual derived-arm-
dynamics frequency responses of each subject (thin solid
lines).

IV. DISCUSSION

The proposed measured-dynamics model structure accu-
rately matched the overall frequency response of the ex-
perimental data between 0.1–30 Hz for the X and Y axes
and 0.1–10 Hz for the Z-axis. The Z-axis was not fitted
to the experimental data between 10-30 Hz because in that
frequency range, the measured magnitude response rose at
a rate of approximately 15 dB/dec. This gives rise to the
possibility for a resonant peak existing beyond 30 Hz, which
may be the result of coupling effects between the Y and
Z axes caused by the kinematics of the arm during the Z-
axis stimulation. Specifially, The elbow joint was observed
to stiffen when the subject maintains a grip force and tries to
stabilize the stylus. However, since the force input bandwidth
was limited to 30 Hz, further study is required in order to
determine how to best model the z-axis frequency response
past 10 Hz. Therefore, the Z-axis model’s frequency response
was designed to be dominated by the Ma mass parameter at
frequencies past 10 Hz, which is why the model’s frequency
response falls off at 40 dB/dec between 10–30 Hz (Fig. 5.c).

The identified models also captured local minima in the
magnitude response observed for the X and Y axes centered
around 10 Hz (Fig. 5.a–c). Similar local minima in the arm’s
experimental magnitude response were found in Speich et
al.’s study, which also modeled the human arm using a 3
DOF stylus-based manipulator [18]. Speich’s results (Fig.
8) show the local minima for the experimental magnitude
response (blue dots) centered around 10 Hz for the X-axis
and 4 Hz for the Y-axis.

However, the models proposed by Speich et al. [18],
Kosuge et al. [13], Lawrence [12], and Tsuji et al. [10] did
not exhibit this resonant depression behavior. Speich et al.
used a five-parameter model (similar to the current work, but
without including the haptic device dynamics), which can
be expressed as in (3). Tsuji, Kosuge, and Lawrence used
3-parameter models (mass m, spring k, damper b) resulting
in a second-order transfer function expressed by

position

force
=

1
ms2 + bs + k

.

Figure 7.a shows that the current models’ frequency re-
sponses were within the range of previous studies and exhibit
high-frequency dynamics absent from existing models. The
plotted 1N X-axis Harm(s) dynamics were computed by (3)
using parameters from Table I. Speich et al.’s model has
a relative order of 1, so the drop off is 20 dB/dec after
about 3 Hz. The other three models in Fig. 7 are all second
order, droping off at 40 dB/dec even earlier, from 1–2 Hz.
The current model, however, maintains valuable dynamics
that occur past 10 Hz and then falls off at 40 dB/dec.
This was consistent with both the experimental data and the
expectation for the arm to behave like a mass at frequencies
beyond those relevant to voluntary control, which should
behave as a second order system falling off at 40 dB/dec.

It was also observed that the identified parameters of
the current model structure were in the range of existing
results. As reported in Table I, the mass parameters of the
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TABLE IV
ARM MODEL PARAMETERS FROM LITERATURE

Ma(kg) k1(N/m) k2(N/m) b1(N·s/m) b2 (N·s/m)

Speich X 0.85 122 330 12.9 12.9
Speich Y 4.03 108 104 9.20 47.6
Speich Z 0.68 81.4 13.0 17.6 13.5

Speich 1DOF 1.46 48.8 375 4.5 7.9
Kosuge 11.6 243 – 17 –

Lawrence 17.5 175 – 175 –
Tsuji 3.25 300 – 20 –

current models were identified to be between 0.19–4.37 kg,
which overlaped the range of 0.68–17.5 kg reported by
previous studies (Table IV). This study’s identified stiffness
parameters ranged from 76–4877 N/m for k1 and 120–785
N/m for k2, which overlaps and slightly exceeds the range of
48.8–300 N/m reported in literature. The current results also
showed that damping parameters ranged between 7.22–55.9
N·s/m for b1 and 2.47–30.56 N·s/m for b2, which was in the
range of 4–175 N·s/m reported by literature.

The variance models identified by the current study were
new to literature, so they cannot be directly compared
to others. However, they were able to capture all of the
experimental variation from the nine subjects and three grip
forces. Also, the variance models were computationally-
simple, minimum-phase and stable transfer functions that
are useful for robust stability analysis and haptic interface
design. Specifically, the models introduce experimentally-
derived uncertainty bounds for the human operator, which
can be used to evaluate the H∞ robust stability of a haptic
interface system as described in [26].

V. CONCLUSION

In conclusion, a unique model structure of the arm and
hand dynamics, including the dynamics of the PHANToM
haptic interface, was introduced for the human arm using a
stylus-based haptic device. The identified parameters were
consistent with literature and the models were shown to
exhibit frequency responses accurate with respect to the
experimental data. Also, the current work introduced a set of
experimentally-derived variance models for the X, Y, and Z
axes that were new to literature and useful for haptic interface
stability analysis and design.
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