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Abstract— It is unknown whether electroencephalography
(EEG) signal characteristics in stroke survivors with motor
deficits register enough activity for use with brain-computer
interfaces (BCIs). This research studied pre-movement EEG from
shoulder-elbow movement in stroke survivors to identify signal
characteristics potentially useful for robot-assisted stroke reha-
bilitation. Pre-movement event-related desynchronization (ERD)

was examined in the alpha band mu rhythm for control (n
= 7) and stroke subjects (n = 11). Subjects were all right-
hand dominant; stroke subjects used their impaired arm and
controls were assigned a side to match stroke subjects. Both
non-dominant-arm-tested stroke and control subjects exhibited
greater ERD intensity vs. those using their dominant arm (p <
0.05). Also, pre-movement ERD was detected in stroke survivors,
which suggests at the possibility of using ERD as a BCI system
control signal. However, the peak ERD of stroke survivors was
significantly lower than that of healthy subjects (p < 0.05), which
brings doubt to whether the intensity of ERD in stroke survivors
is large enough to be used as a BCI system control signal.

I. INTRODUCTION

Of the many complex processes that occur in the human

brain, cortical activity that drives motor-related cognitive plan-

ning has become an important field of research for studies

attempting to decode the brain’s electrical activity for use as

a control signal in brain-computer interfaces (BCIs) or brain-

machine interfaces (BMIs). Many studies reported the use of

BCI or BMI to improve the lives of people paralyzed by

spinal chord injuries (SCI) or amyotrophic lateral sclerosis

(ALS) - individuals who can plan out or imagine movements

normally, but not perform them [1]. In these studies, BCI

systems detected and translated the brain’s neural activity into

prosthesis control signals or into mouse cursor motions for

communication purposes [2]. Stroke survivors, however, differ

from SCI or ALS afflicted individuals because stroke-related

motor deficits can be rehabilitated to a greater degree than total

paralysis. Therefore, stroke survivors could benefit from BCI

not as a permanent prosthesis-driving technology, but instead

as a rehabilitation tool.

A BCI system can be paired with a rehabilitation robot to

provide adaptive therapies to motor-impaired stroke survivors.

Such a combination has the potential to outperform classical

methods in providing functional recovery and promoting cor-

tical plasticity. By plasticity, we refer to the brain’s ability

to reorganize around damaged cortical areas and recover

functions that those areas were once responsible for. Using

EEG recordings, Sterns, et al. discovered that increases in task-

related coupling between cortical areas may compensate for

brain damage after stroke [3]. They also found that some of

the increased coupling decreases as patients make a functional

recovery. If a BCI system can identify motor-related activity

in stroke survivors using electroencephalography (EEG), it can

then control a rehabilitation robot to adapt therapy sessions to

promote plasticity in the brain of the subject.

Since the 1990s, rehabilitation robots have been an effective

component of stroke therapy studies [4]. Unlike a self-evoked

motion, robots like the Interactive Motion Technologies Inc.

(Cambridge, MA) Inmotion2 Shoulder-Elbow Robot (Fig.1)

challenge and assist stroke survivors to accomplish movements

they cannot otherwise successfully perform. Lum, et al. found

that robot-assisted therapy helped stroke survivors improve

more in both functional and biomechanical measures than con-

ventional therapy [5]. A combination of robotic rehabilitation

and BCI would allow therapists to actively measure and restore

lost motor skills cortically, instead of only functionally.

However, because of the ischemia, damaged neurons, and

potentially altered neural activity, it is unknown whether EEG

in stroke survivors is compatible with BCI systems. Also,

existing studies of EEG in stroke survivors only examine

finger movements or motor tasks that the stroke subjects were

able to successfully perform [7]. Rehabilitation robots such

as the Inmotion2 are designed to target the movement of

larger muscle groups, such as shoulder-elbow motions, but the

EEG characteristics related to a shoulder-elbow movement in

healthy adults and stroke survivors is unknown.
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Fig. 1. The Inmotion2 Shoulder-Elbow Robot is used in upper extremity
physical rehabilitation therapies and only allows 2D shoulder-elbow move-
ments [6].

A. Study Objectives

The purpose of this research was to characterize pre-

movement EEG from a shoulder-elbow movement in stroke

survivors in order to identify signal characteristics that could

potentially be used in BCI applications. Also, this study

extended existing literature in a number of ways. First, we

provided the alpha band mu rhythm event-related desynchro-

nization (ERD) characteristics of stroke-affected EEG during

a shoulder-elbow motion (with the Inmotion2 Shoulder Elbow

Robot in Fig. 1). Second, we provided new information

regarding alpha-mu ERD characteristics for dominant versus

non-dominant shoulder elbow movements for both healthy

control subjects and stroke survivors.

B. Paper Outline

First, the background section provides reviews of topics

relevant to this study. Then, we described the experiment

procedures and data analysis methods. The results section

highlights key results from this study (in terms of peak

electrode locations, average mu frequency, and peak ERD%)

and we concluded with discussions and future work for our

findings.

II. BACKGROUND

A. Brain Computer Interface

BCI systems are designed to translate the brain’s activity

during imagined movements into computer cursor or pros-

thesis control. Wolpaw, et al. at the Wadsworth Center for

Laboratories and Research in NY implemented a pioneering

EEG-based BCI system in 1991 [9]. This system measured

the amplitude of mu waves to allow a well-trained subject

to control the direction of a cursor in one dimension by

varying the amplitude of their mu waves [9]. In 2004, the

same group was able to make two dimensional control possible

using scalp-recorded EEG, even though it was widely assumed

Fig. 2. The relative locations of the 64-electrode International 10-20 EEG
electrode placement standard used in this study [8].

that only invasive recordings of brain waves can provide the

resolution needed to achieve 2D control [10].

These advancements in noninvasive EEG BCI systems are

important for developing a BCI system for stroke survivors

because invasive recordings require implanted electrodes under

the skull, which is not desirable for individuals who already

have stroke-induced damage to their brains.

B. Alpha Band Mu Rhythm

The alpha band of EEG waves is defined to be the frequency

band between 8–12 Hz. Included in the alpha band, there are

mu rhythms that are closely related to cortical motor planning.

Mu stands for “motor” and in most healthy adult subjects

the mu wave is attenuated whenever voluntary, passive, or

reflexive movements are performed or even imagined. Mu

rhythm attenuation occurs up to, and sometimes beyond,

2 s before movement onset in healthy adults and has key

harmonically independent frequency components at around 10

Hz (alpha component) and at 20 Hz [11]. The alpha component

can exist anywhere from 8 Hz to above 11 Hz in some adults

and arises from the sensory cortex, so it is usually most active

and detectable at electrode sites that overlay this cortical area

(the C and CP electrodes in Fig. 2). Attenuation of mu rhythms

occurs prior to and during movements, which is also called

desynchronization [12].

C. Event-Related Desynchronization

Event-related desynchronization refers to desynchronization

that occurs due to voluntary or involuntary activity. It is also

a reliable correlate of increased cellular excitability in the

thalamocortical systems during cortical information processing

[11]. In contrast, when the brain is idling (at rest), alpha

waves are enhanced, reflecting greater amplitudes in the EEG

data. One theory on the cause of desynchronization is that

neurons behave like weakly-coupled non-linear oscillators

which synchronize with each other when the brain is idle,
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Fig. 3. Diagram showing a healthy adult’s EEG during a shoulder-elbow
movement with corresponding MRCP (the negative potential between the
labels ‘MRCP Onset’ and ‘Movement Onset’). The rest and planning intervals
are also shown as defined for stroke subjects.

but desynchronize from the weak coupling when processes

become active in the brain [13].

To quantify the amount of EEG desynchronization, we com-

pute the percent of event-related desynchronization, defined

by:

ERD%decrease = 100 ×
Mref − Mx

Mref

(1)

where Mref is the average power in a reference interval

(typically a period of time lasting a few seconds while the

subject is at rest) and Mx is the average power in an interval of

interest with which we wish to compare the reference interval

for activity in the EEG data. A positive ERD percentage

indicates that there is a decrease in power with respect to the

reference state and a negative value means there is an increase

in power.

D. Movement-Related Cortical Potentials

Besides ERD, there is also movement-related EEG activity

in the slow, 0.1–1 Hz range called the movement-related

cortical potential (MRCP). MRCPs are negative potentials that

can be seen in the raw EEG data after averaging many trials of

the same motor task together (Fig 3). The start of the MRCP

curve is believed to be the onset of pre-motor planning and the

amplitude of the curve is correlated to the amount of cognitive

effort. Although the MRCP reflects cortical activity, it is not

practical as a BCI input signal because it is discernable only

after averaging many trials, unlike ERD. However, MRCP and

ERD share common timing characteristics, so MRCP start

times and duration can be used to help identify periods of

cortical activity in which ERD should be present [14].

III. EXPERIMENT PROCEDURES

A. Subjects

Twenty right-hand-dominant subjects were selected and

gave consent to enroll in this study. This study was conducted

according to the Declaration of Helsinki and oversight was

provided by the IRB of the Louis Stokes Cleveland Veterans

Affairs Medical Center. Ages ranged from 48–72 years old,

with a mean age of 61. Twelve of these subjects had chronic

(> than 12 months) arm coordination deficits following stroke

and eight subjects were age-matched, healthy individuals.

B. Experiment Paradigm

All of the subjects were seated before a computer screen

with either their right or left hand gripping the end-effector of

an Inmotion2 Shoulder Elbow Robot. Control subjects were

randomly assigned to use their left or right arm while stroke

survivors used the arm suffering coordination deficits. The

subjects were then presented with a motor targeting task that

required an accurate 14 cm, linear movement in the horizontal

plane beginning at the center of the workspace and moving to a

target in a direction directly in front of the subject. This motor

task requires shoulder flexion and elbow extension, which each

subject performed 50 times with a 2 minute recess between

every 10 trials. Not all stroke survivors could accomplish the

motor task, but all of them made their best effort to do so.

C. Data Acquisition

Simultaneous data recordings were obtained for EEG, elec-

tromyography (EMG), and movement onset (with a custom go-

niometric device). EEG data was obtained using Compumedics

NeuroScan Ltd. (El Paso, TX) devices and software. The data

was recorded using Acquire 4.3.1 software, a 64-electrode

Quick-Cap EEG cap, and a Synamps amplifier system (500

gain, sampling rate of 1000 Hz, bandpass filter 0.1–40 Hz).

All electrodes on the EEG cap were 8 mm in diameter with a 5

mm cavity depth and were arranged on the scalp in compliance

with the International 10-20 standard [15]. Each recording was

referenced to the common linked left and right mastoid surface

electrodes. All electrode-to-scalp impedances were reduced to

less than 10 kΩ using electrically conductive gel and real-time

electrode impedance measurements provided by the Acquire

software.

IV. DATA ANALYSIS METHODS

The EEG data was first examined and filtered for noise.

Then, we optimized the SNR of the EEG data by using spatial

filtering and searched for any contamination by scalp or facial

muscle EMG signals. Finally, we analyzed the locations of

greatest brain activity and the corresponding amounts of peak

ERD% during pre-movement motor planning.

A. Noise Rejection

The EEG data was first visually inspected by an expert to

reject trials containing blink artifacts or abnormalities in the

baseline data. Upon further analysis, an unknown noise source

with a center frequency at 20 Hz was observed in all of the

subjects’ data. The noise existed approximately between 19–

21 Hz and was non-uniformly distributed across the electrode

locations. To suppress the noise, we applied a 48 dB/octave

bandstop filter from 19–21 Hz. However, because the beta

band component of mu waves in normal adults is most active

at approximately 20 Hz, the noise prevented accurate analysis

of the beta band for cortical activity [11]. Therefore analysis

was performed only on the alpha band for this study.
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B. Spatial Filtering

Using NeuroScan Edit 4.3.1, a common average reference

(CAR) was performed on all 64 electrodes in order to produce

a “reference-free” version of the EEG data. CAR was chosen

base on its superior SNR characteristics as reported in a study

performed by McFarland, which compared several spatial

filtering techniques for improving the SNR of EEG signals

for BCI use and concluded that the CAR had the best SNR

[16]. In the calculation of the CAR, the average value of all 64

electrodes is subtracted from the channel of interest for each

sample of data. Specifically, the formula for CAR was:

V CAR

i = V ER

i −
1
64

64∑
j=1

V ER

j (2)

where Vi
ER is the potential between the ith electrode and the

reference electrode. The effect of the CAR spatial filter was

that any noise common to all the electrodes was reduced from

the EEG data.

C. Scalp and Facial Muscle EMG Noise Rejection

We observed that some of the stroke survivors exerted

considerable effort while attempting the motor task, which

lead to the possibility that their facial muscles were strained

or teeth were clenched. These muscle contractions introduce

EMG activity that could be sensed by the EEG electrodes and

subsequently recorded along with cortical activity.

The following methods for EMG detection are largely based

on the results of a study by Goncharova on the character-

istics of facial and scalp muscle EMG signals as measured

through EEG recording equipment [17]. The EMG detection

and rejection were done for both the pre-movement planning

interval and the rest interval of each trial because EMG noise

in either interval would have decreased the accuracy of ERD

calculations. The planning state was approximated as the 3 s

interval preceding movement onset and the rest state was a

separate 3 s interval preceding the planning state.

EMG from the frontalis and temporalis muscles can be a

source of noise when examining EEG signals because the

range of frequencies spanned by EEG and EMG overlap.

Clinically relevant scalp EEG signals range from 0.1–100

Hz, but EMG exists from 0 to >200 Hz [11]. The frontalis

muscle (which moves the eyebrows) shows maximum EMG

activity from 20–30 Hz and the temporalis muscles (which

are contracted when teeth are clenched) have maximum EMG

activity from 45–70 Hz. Even with weak contractions, EMG

data is detectable at the vertex of the scalp in the 8–12 Hz

frequency band (exactly our frequencies of interest), so it was

important to reject any trial suspected of having EMG signals

from the frontalis or temporalis muscles.

To determine whether a trial might contain EMG noise,

data was analyzed from 4 electrode locations that were most

susceptible to EMG contamination, which will be referred

to as the “primary” electrodes for EMG rejection. AF7 and

AF8 are most affected by the frontalis muscles, and FT7 and

FT8 are most affected by the temporalis muscles [17]. At

these electrodes, the 45–70 Hz frequency band power was first

computed in each trial because scalp muscle EMG exhibits

peaks in this frequency band, but EEG signals do not. The

power was calculated using the formula:

Power45−70Hz =
1

N2

70N
fs∑

k= 45N
fs

(|X(k)|2 + |X(N − k)|2) (3)

where N is the total number of samples in the rest or planning

state and X(k) is the kth FFT coefficient, and fs is the sampling

frequency.

In any of the 50 trials, if the 45–70 Hz band power for a

primary electrode exceeded one standard deviation above the

50-trial mean for each respective electrode, then five imme-

diately adjacent electrodes were analyzed. The goal was to

determine if the 45–70 Hz power value from the same trial at

adjacent electrodes also exceeded the mean plus one standard

deviation. Finally, if three of the five adjacent electrodes had

power values that exceed one standard deviation above the

mean, then the suspected trial was rejected from analysis.

We experimentally chose to use three adjacent electrodes as

the decisive number. EEG data was recorded from a healthy

adult performing the experimental motor task with and without

intentional frontalis and temporalis muscle contractions. Then,

a dataset of 50 trials was randomly created out of 36 EMG-free

trials and 14 frontalis and temporalis EMG-contaminated trials

in order to test the EMG detection algorithm described above.

The algorithm performed best using 3 adjacent electrodes as

the decisive number and rejected 6 of the 14 contaminated

trials. Using 4 and 5 adjacent electrodes as the decisive number

resulted in detection of only 4 of the same 14 contaminated

trials.

Mean plus one standard deviation was chosen as a threshold

in the algorithm because we found that rejecting trials outside

this threshold preserved roughly 85% of uncontaminated data,

20% of frontalis contaminated data, and 0% of frontalis and

temporalis contaminated data.

V. ERD DATA PROCESSING

For each subject, the ERD% for each trial was computed

and averaged. Matlab, Compumedics NueroScan Edit 4.3.1,

and procedures consistent with existing literature were used

[11].

First, the electrode with greatest alpha band pre-movement

activity was identified. Subsequently, the frequency component

in the alpha band with the greatest change in amplitude was

identified as the mu frequency. Next, the data was bandpass

filtered at the mu frequency ± 1 Hz, all the accepted trials

of data were averaged, and the ERD percentage value is

calculated for each sample of data.

The electrode with the greatest pre-movement planning

activity was identified by comparing the average power of

a subject’s rest state to their planning state for the alpha

band. For control subjects the motor planning state was

identified as the period 2 s preceding movement onset while

the rest state was a 2 s interval that began 5 s before the
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active interval. These periods were identified using the MRCP

timing characteristics for each subject, which identified when

cortical planning began. The mean MRCP start time for the

control subjects occurred 1.466 ± 779 ms (approximately 2 s)

before movement onset [18]. For stroke survivors performing a

shoulder-elbow movement, Daly, et al. found that the average

sensorimotor MRCP start time (2.734 ± 1.205 ms) varied

much more than that of the control subjects. In light of this

fact, the active state for stroke subjects was chosen to be the

time between the start of the MRCP and movement onset [18].

The rest interval was chosen as an interval equal in length to

the active interval and ended 3 s before the start of the active

interval, as seen in Fig. 3.

Matlab’s periodogram function was used to compute the

power spectral density (PSD) in the alpha band for electrodes

overlaying the sensorimotor cortex (FCZ, FC1-6, CZ, C1-

6, CPZ, and CP1-6). The level of activity at an electrode

was computed by subtracting the rest PSD from the active

PSD and integrating over all frequency components from 8–

12 Hz. The electrode with the greatest difference in power was

identified as the one with peak activity. We excluded the data

of two subjects from analysis because their data did not show

desynchronization in the alpha band.

The individual frequency component where activity peaks

was identified at the peak electrode by finding the frequency in

the alpha band that exhibited the greatest change in amplitude

between the rest and active state.

ERD% was then calculated for the alpha band mu frequency

± 1Hz using the Event Related Band Power (ERBP) function

in NeuroScan Edit 4.3.1.

Statistical Analysis

Each subject’s peak ERD% during the planning interval

was recorded and used as the independent variable in a

series of analyses of variance (ANOVA). One-way ANOVA

models were analyzed for dominant (right-arm-tested) control

vs. stroke subjects, non-dominant (left-arm-tested) control vs.

stroke subjects, and for all control vs. all stroke subjects.

VI. RESULTS

A. Brain Region and Frequency of Greatest Activity

In a normal adult performing a single-handed motor-task,

the greatest motor-related cortical activity will occur at ap-

proximately 10 Hz on the side of the brain contralateral to

the side of motion, which we will refer to as the “working

side” [11]. Electrodes directly overlaying or adjacent to the

motor cortex (FC, C, and CP electrodes) on the working side

of the brain are commonly the most active, though it is not

uncommon for the medial Z electrodes to be equally as active.

We noted from Table I that 5 of the 7 Control subjects

showed peak activity at electrode locations on the working

side of the brain, four of which occur at CP electrodes. It is

unknown why subjects number 4 and 6 exhibited more activity

on the non-working side. In general, the control subjects

showed the greatest activity in the central-parietal region of

the brain.

TABLE I

RESULTS OF DATA ANALYSIS

Subject No. Peak Electrode Mu (Hz) Peak ERD (%)

A) Control - Dominant (Right) Arm Tested

1. CPZ 8.5 72.0

2. CP5 10.0 63.6

4. C6 8.0 47.4

8. C5 10.0 55.8

Mean 9.1 (±1.0) 59.7 (±10.5)

B) Stroke - Dominant (Right) Arm Tested

10. C6 11.4 45.1

12. FC1 8.2 30.6

16. FC6 8.0 48.1

18. CZ 8.5 47.1

19. C6 9.0 64.8

20. FC5 8.5 42.8

Mean 8.9 (±1.0) 46.4 (±11.0)

C) Control - Non-Dominant (Left) Arm Tested

3. CP2 9.0 96.7

6. FC5 8.0 81.9

7. CP6 10.4 93.2

Mean 9.1 (±1.2) 90.6 (±7.7)

D) Stroke - Non-Dominant (Left) Arm Tested

9. C6 11.2 57.5

11. FC1 9.5 52.2

13. FC6 9.7 77.8

14. CZ 8.0 80.1

17. C6 8.2 64.2

Mean 9.3 (±1.3) 66.4 (±12.3)

The ‘Peak Electrode’ column is the electrode location at which the greatest
pre-movement activity occurred. The ‘Mu’ column reports the frequency at
which there was the greatest difference in amplitude between rest and motor-
planning state PSDs. The ‘Peak ERD’ column reports the greatest amount of
ERD in the pre-movement planning state for each subject. Also provided are
the mean and standard deviation values for the ‘Mu’ and ‘Peak ERD’ data.
A) and B) are both dominant-arm-tested subjects while C) and D) are both
non-dominant-arm-tested subjects.

In contrast, only 4 of the 11 stroke survivors exhibited peak

electrode activity on the working side of the brain. Also, 6

of these subjects had peak activity in the fronto-central brain

region. These results showed that the stroke survivors differ

from the expected peak pre-movement mu rhythm activity

locations.

We also noted that both stroke and control subjects had mu

frequencies identified at approximately 9 (± 1) Hz, which was

within the expected healthy adult norms.

B. Peak Event-Related Desynchronization

The peak ERD% at the mu frequency was determined by

finding the greatest ERD% in the interval of time between

the onset of the MRCP and movement onset. The onset of

the MRCP reflects the beginning of motor planning and the

timing of ERD and MRCP coincide, so any ERD occurring

in this time interval reflected cortical activity most relevant to
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motor planning of the motor task [14].

First we examined the effect of handedness on control

subjects. The mean peak ERD% for right-arm-tested control

subjects was 59.7 (± 10.5)% and the range was 41.4–71%. For

left-arm-tested control subjects, the mean ERD peak was 90.6

(± 7.7)% with a range of 81.9–96.7%. The ranges of the left

and right-arm-tested control subjects did not overlap and an

ANOVA model showed that they were significantly different

(p = 0.008).

Then, we examined the effect of handedness on stroke

survivors. Right-arm-tested subjects had a mean peak ERD

of 46.4 (± 11)% and a range of 42.8–64.8% while left-arm-

tested stroke subjects had a mean peak ERD of 66.4 (± 12.3)%

with a range of 52.2–80.1%. An ANOVA model revealed a

significant difference between the left and right-arm-tested

stroke survivors (p = 0.01).

Next, we examined the effect of stroke on the dominant-

arm group and found that control subjects who used their

dominant arm did not have significantly greater peak ERD%

than post-stroke subjects who used their dominant arm (p =

0.09). However, we performed a statistical power analysis and

found that p < 0.05 could have been achieved if we had 30

dominant arm subjects.

For the non-dominant-arm group, all of the stroke survivors

had peak ERD% below the range of the left-arm-tested control

subjects. An ANOVA model confirmed that there is a signifi-

cant difference between the left hand tested stroke and control

groups (p = 0.02).

Finally, an ANOVA model for all 7 control subjects vs. all

11 stroke survivors revealed a statistically significant differ-

ence between the control and stroke groups (p = 0.04).

VII. DISCUSSION

These results extended existing literature about the effects

of hand dominance on pre-movement brain activity. Current

studies show that there is more pre-movement cortical activity

in healthy adults for non-dominant hand finger movements

versus the dominant hand [12], [19], [20]. Specifically, Stancak

[12] and Bai [20] both found that ERD occurs at significantly

higher percentages for healthy adults moving fingers on the

non-dominant hand versus the dominant hand.

We showed that the effect of hand dominance on ERD%

for shoulder-elbow motion is consistent with literature; both

control and stroke subjects showed significantly higher peak

ERD% when the non-dominant arm was tested versus the

dominant arm (p < 0.05).

This observation showed that handedness significantly in-

fluences pre-movement brain activity for shoulder-elbow mo-

tion in stroke survivors and highlights hand-dominance as

an important independent variable in the design of future

experiments on stroke survivors.

VIII. CONCLUSION

The present research study found that a certain amount

of pre-movement ERD is detectable in stroke survivors for

shoulder-elbow movement. This finding suggests that it might

be possible to use ERD as a BCI system control signal for

robot-assisted rehabilitation of stroke survivors. However, the

peak ERD% of stroke survivors was found to be significantly

lower than that of healthy subjects, which brings doubt to

whether the intensity of ERD in stroke survivors is large

enough to be used as a BCI system control signal. This

requires further studies.

Future Work

Due to the limitations of this study, the beta band compo-

nent of mu waves could not be studied, but it is known to

exhibit ERD during pre-motor cortical planning in the hand

movements of healthy adults and in stroke survivors [7], [11].

Therefore, an investigation into the behavior of shoulder-elbow

pre-movement ERD is one area of future study.

In addition to mu waves, high-frequency EEG waves are

also known to reflect cortical activity, but have yet to be

studied in stroke survivors. A study on monkeys by Heldman

has reported that waves of frequencies ranging from 31–200

Hz (high frequency waves) contain signal characteristics that

can be used to predict arm velocities during a circle drawing

task (high frequency waves were not analyzed in this study

because amplifier filters were set to cutoff frequencies above

40 Hz) [21]. Heldman’s study used intracortical electrodes,

which have much higher frequency resolution than scalp-

mounted electrodes, but scalp electrodes are routinely used

to study frequencies up to 100 Hz and even higher-frequency

recordings are recommended by the emerging Full-band EEG

(FbEEG) recording standard [11], [22]. Investigations of high-

frequency EEG characteristics in stroke survivors do not exist

in literature, but this is an area of future study with potentially

important findings.
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