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Abstract— Robotics technology promises an enhanced way
of performing off-pump coronary artery bypass graft (CABG)
surgery. In the robotic-assisted CABG surgery, surgeon performs
the operation with intelligent robotic instruments controlled
through teleoperation in place of conventional surgical tools. The
robotic tools actively cancel the relative motion between the sur-
gical instruments and the point-of-interest on the beating heart,
in contrast to traditional off-pump CABG where the heart is
passively constrained to dampen the beating motion. As a result,
the surgeon operates on the heart as if it were stationary. This
algorithm is called Active Relative Motion Canceling (ARMC). In
this paper, the use of biological signals, such as electrocardiogram
(ECG), to achieve better motion canceling in the model-based
intelligent ARMC algorithm is proposed. An ECG contains
records for the electrical activity of the heart, which forms a series
of waves and complexes. Real time identification of these waves
and complexes will improve the estimation of the future heart
motion and improve the performance of the ARMC algorithm.
Finally, the experimental results of the algorithm implemented
on a 3-DOF robotic test-bed system are reported.

I. INTRODUCTION

Off-pump coronary artery bypass graft (CABG) surgery is

performed while the heart is still beating instead of using a

cardiopulmonary bypass machine and stopping the heart to

perform the surgery. Although off-pump CABG surgery is

in a nascent stage and only applicable to limited cases, it

is preferred over on-pump CABG because of the significant

complications due to the use of bypass machine, which include

long term cognitive loss [1], and increased hospitalization time

and cost [2]. Off-pump operations constitute only a small part

of CABG surgeries. Robotic assisted teleoperation technology

promises an enhanced way of performing off-pump CABG

surgery. With the help of developed telerobotic tools and

algorithms it is aimed to attain the perfection of the traditional

on-pump operations, in the off-pump operations by actively

tracking and canceling the relative motion between the surgical

instruments and the heart [3]–[5]. Towards this direction, the

study in this paper proposes the use of biological signals, such

as Electrocardiogram (ECG), to achieve better motion can-

celing in the model-based intelligent Active Relative Motion

Canceling (ARMC) algorithm (Figure 1).

The earlier studies in the literature on canceling biological

motion in robotic assisted medical interventions are focused

on cancelation of respiratory motion. Sharma et al. and
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Fig. 1. Proposed control architecture for designing Intelligent Control
Algorithms for Active Relative Motion Canceling on the beating heart surgery.

Schweikard et al. studied the compensation of the breathing

motion in order to reduce the applied radiation dose to

irradiate tumors [6], [7]. Both studies concluded that motion

compensation was achievable. In [8], Riviere et al. looked

at the cancelation of respiratory motion during percutaneous

needle insertion. Results showed that an adaptive controller

was able to model and predict the breathing motion. Trejos

et al. conducted a feasibility study on the ability to perform

tasks on motion-canceled targets [9], and demonstrated that

tasks could be performed better using motion canceling. In

[10], Nakamura et al. performed experiments to track the

heart motion with a 4-DOF robot using a vision system to

measure heart motion. The tracking error due to the camera

feedback system was relatively large to perform beating heart

surgery. Thakral et al. used a laser range finder system to

measure one-dimensional motion of a rat’s heart [11]. Ort-

maier et al. [12] utilized ECG as biological signal in visual

measurement of heart motion using a camera system. ECG

was employed in estimation of the motion when the surgical

tools occluded the view. Heart motion estimation was not
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based on a heart motion model and completely depended on

the early recorded heart position data. Actual tracking of the

heart motion using a robotic system was presented as a future

work. More recently, in a pair of independent parallel studies

[13] and [5], motion canceling through prediction of future

signals was demonstrated. In both studies, model predictive

controllers were used to get higher precision tracking. In

the former, a high-speed camera was used to measure heart

motion. Although it yielded better results than earlier studies

using vision systems, the error was still very large to perform

heart surgery, as operation targets to be manipulated using

the robotic systems in a CABG surgery are blood vessels

with 2-mm or less diameter. Although in [5] the desired error

specifications for heart surgery were achieved on a 1-DOF

test bed system, they concluded that there still was a need for

better signal prediction.

This paper discusses the use of biological signals in the

model-based intelligent ARMC algorithm to achieve better

motion canceling. In the next section our research objectives

and an outline of the proposed intelligent control algorithm

is given. Section III describes the ECG and its importance

to ARMC algorithm. Section IV discuses and analyzes the

Experimental Heart Motion Data. Section V outlines the

method used in ECG wave form detection. In section VI, the

control algorithms used for tracking problem are described.

The simulation and experimental results are given in section

VII and finally the conclusions are presented and future

directions are proposed.

II. INTELLIGENT CONTROL ALGORITHMS FOR MODEL

BASED ARMC

The goal of our research is the development of intelligent

control algorithms that utilize the biological signals in a

model-based predictive control fashion. The control architec-

ture we are proposing in this research project is shown in

Figure 1. In this architecture, the control algorithms need to

fuse information from multiple sources: mechanical motion

sensors which measure the heart motion and sensors measuring

biological signals. The control algorithm needs to identify

the salient features of the biological signals and merge these

information to predict the feedforward reference signal. This

will improve the performance of the system since these signals

are results of physiological processes which causally precede

the heart motion.

The control algorithm also needs to be able to handle

changes in the heart motion, including adapting to slow

variations in heart rhythm during the course of the surgery,

as well as handling occasional arrhythmias which may have

natural causes or may be due to the manipulation of the heart

during surgery.

Motion of the point of interest (POI) has two dominant

modes of motion (Details on the heart motion data is described

in Section IV). In order to gain a better understanding of

these two modes, they are separated by using proper filters

as shown in the algorithm architecture. This paper mainly

concentrates on the upper part of the Figure 1, where the

feedforward path for tracking of the heart beat component

of the motion is followed. This part has significantly more

demanding requirements on the high bandwidth motion that

needs to be tracked (see Section IV). Breathing motion has

significantly lower frequency, it can be canceled by a purely

feedback based controller if the high frequency heart motion

component is canceled by a model based predictive controller.

In the architecture proposed (Figure 1), the robot motion

control signal will be computed by combining the feedforward

signal provided by the heart motion model and the feedback

signal measured from direct heart motion measurements. The

confidence level reported by the heart motion model will

be used to adaptively weigh the amount of feedforward and

feedback components used in the final control signal. This

confidence level will also be used as a safety switching

signal to turn off the feedforward component of the controller

if an arrhythmia is detected, and switch to a further fail-

safe mode if necessary. These safety features will be an

important component of our research. Therefore, the best

design strategies for developing feedforward motion control

was aimed. The feedforward controller was designed using

the model predictive control [15] and optimal control [16],

[17] methodology of modern control theory, as described in

Section VI.

Although, some of the system concepts in literature are

similar to ours at the most basic level, there are significant

differences including the lack of intelligent model based

predictive control using biological signals, and multi sensor

fusion with complementary and redundant sensors, which form

the core of our proposed architecture.

The system by Nakamura et al. [10] used purely position

feedback obtained from a two-camera computer vision sys-

tem. Neither biological signals were used in the system, nor

a feedforward control component was present. The system

by Ginhoux et al. [13], [14] utilized a feedforward control

algorithm, based on model predictive control and adaptive

observers, however, it did not utilize any biological signals.

Ortmaier et al. [12] utilized ECG but their research lacked the

use of any heart model in the process.

With the architecture proposed in this paper, system’s

awareness will be increased by utilizing a heart motion model

in reference signal prediction. Inclusion of biological signals

in a model-based predictive control algorithm will increase

the estimation quality, and such a scheme will provide better

safety with more precise detection of anomalies and switching

to a safer mode of tracking.

III. ELECTROCARDIOGRAM AS THE BIOLOGICAL SIGNAL

The human body acts as a giant conductor of electrical

currents. Connecting electrical ‘leads’ to any two points on

the body may be used to register an ECG. Thus ECG

contains records for the electrical activity of the heart. The

ECG of heart forms a series of waves and complexes that

have been labeled in alphabetical order, the P wave, the

QRS complex, the T wave and the U wave (Figure 2) [18].

Depolarization of the atria produces the P wave; depolarization
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Fig. 2. A typical scalar electrocardiogram, showing significant deflection
points.

Fig. 3. Time relationship between action potentials and mechanical force
developed by ventricular muscle. Rapid depolarization of a cardiac muscle
fiber is followed by force development in the muscle. The lag between the
excitation and the peak force is about 200 ms long (Redrawn from [20]).

of the ventricles produces the QRS complex. Repolarization

of the ventricles causes the T wave. The significance of the

U wave is uncertain [19]. Each of these electrical stimulations

results in a mechanical muscle twitch. This is called the

electrical excitation-mechanical contraction coupling of the

heart. Thus, the identification of such waves and complexes

would help determine the electromechanical coupling of the

heart. Using ECG in the control algorithm would improve

the performance of the system since these wave forms are

results of physiological processes which causally precede the

heart motion. Time relationship between action potentials and

mechanical force developed by ventricular muscle is shown

in Figure 3 [20], [21]. Rapid depolarization of a cardiac

muscle fiber is followed by force development in the muscle.

The completion of repolarization coincides approximately with

the peak force, and the duration of contraction parallels the

duration of the action potential, which are about 150 to 200

ms long. The lag between these two formations enables the

prediction of future heart activity. Although this time lag is

about 150 ms, it is sufficient for real time detection of the

waves and complexes of the ECG.

ECG signal is very suitable for period-to-period synchro-

nization with sufficient lead time for feedforward control, and

identification of arrhythmias. Biological signals other than

ECG that can be used to track heart motion are arterial and

ventricular blood pressures. Similar to ECG signal, the aortic,

atrial and ventricular blood pressures are significant indicatives

of the heart motion as they can be used to predict when

the heart valves will be opening and closing, identifying the

distinct phases of the heart cycle. These distinct phases cor-

respond to qualitatively different mechanical properties of the

heart tissue, changing the local deformation model. The blood

pressure signals also give additional independent information,

which can be used in conjunction with ECG signal to improve

noise robustness and to reliably detect unexpected rhythm

abnormalities and arrhythmias.

IV. EXPERIMENTAL HEART MOTION DATA

A. Heart Motion Data Collection

A sonomicrometry system was used to collect the heart

motion data used in this study. Sonomicrometer measures the

distances within soft tissue by using ultrasound signals. A set

of small piezoelectric crystals embedded, sutured, or otherwise

fixed to the tissue are used to transmit and receive short pulses

of ultrasound signal, and the “time of flight” of the sound wave

as it travels between the transmitting and receiving crystals

are measured. Using these data, the 3-D configuration of all

the crystals is calculated [22]. The sonomicrometry system

is more advantageous than using a vision system, which is

the sensor of choice in the earlier works in the literature, for

measuring heart motion for robotic ARMC. A vision system

is not suitable for use during surgical manipulation because

the surgical instruments (including the robotic tools) may

occlude the point-of-interest (POI) making the vision system

practically useless. The sonomicrometry system does not have

this inadequacy.

The heart motion data were collected from an adult pig. In

the experimental set-up one crystal of the sonomicrometric

system was sutured next to the Left Anterior Descending

Artery (LAD), which is on the front surface of the left

ventricle, at a point one third of the way from the starting

point of the LAD. Six other crystals were asymmetrically

mounted on a rigid base, in a circle of 50 mm diameter forming

a reference coordinate frame. This rigid plastic sensor base

was inserted behind the heart, inside the pericardial sack, and

the motion of the POI on the LAD was measured relative

to this coordinate frame. The pericardial sack had been filled

with a saline solution, completely immersing the sensor base,

which enabled the continuous contact of sonomicrometric

sensor system with the heart and proper operation. Data were

collected at a sampling rate of 257 Hz, and were processed

offline using the proprietary software provided with the system

to calculate the 3D motion of the POI. Filtering performed

on the raw data was only to remove the ultrasound echoing

effects.
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B. Analysis of Heart Motion Data

A detailed analysis of the data was presented in [3]. Here

we will describe several critical properties of the heart motion

that is relevant for the rest of the paper. The average heart rate

of the animal model was 120 beats-per-minute during the 60

seconds duration of data collection. The peak displacement of

the POI from its mean location was 12.1 mm, with a root-

mean-square (RMS) value of 5.1 mm. The Power Spectral

Density (PSD) of the motion of the POI is shown at Figure

4. Two observable dominant modes of motion can be seen in

this figure. The first mode is at 0.37 Hz and corresponds to the

breathing motion. The second dominant mode is at 2.0 Hz and

corresponds to the main mode of motion due to heart beating.

This reveals the specifications for the robotic mechanism

and ARMC control algorithm design. The control algorithm

proposed is based on the premise that the heart motion is

quasiperiodic and the motion during the previous beats can be

used, to some extent, as a feedforward signal during the control

of the robotic tool for ARMC. Here, our main concern is with

the moderate to high frequency components of the motion

since they are the most demanding for the mechanism and the

ARMC control algorithm. The low frequency components of

motion typically results from breathing with bandwidth of 0.8

Hz including the first harmonic of the breathing frequency,

and can easily be canceled using a feedback controller. The

feedforward controller is needed to cancel the high frequency

components of motion. In order to gain a better understanding

of the heart motion itself, the breathing motion was filtered

out using a high pass filter with stop band frequency equal

to 1.1 Hz. Filtered data was used in the heartbeat signal

tracking experiments that is described in Section VII. After

the breathing motion was filtered out the PSD of the motion

signal is composed of very narrow peaks at the harmonics

of the heart beat frequency. This supports the feasibility of

the ARMC algorithm by showing that the moderate-to-high

frequency component of the motion signal is quasiperiodic,
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Fig. 4. The Power Spectral Density (PSD) of the motion of the point-of-
interest (POI).

with fundamental frequency equal to heart beat rate.

V. ECG WAVE FORMS DETECTION

Several algorithms were proposed and used to detect the

ECG characteristic points with high detection accuracies [23]–

[26]. However most of them are desined for offline processing

of ECG signals and only a few of them are for real time

detection of ECG signal complexes and points [27], [28]. The

difficulty in detection arises from the diversity of complex

wave forms and the noise and artifacts accompanying the ECG

signals. In this work, the significant ECG wave forms and

points, such as P, QRS and T, were detected using wavelet

transform analysis using the method described in [28].

A short description of the ECG wave forms detection is

as follows. At the sampling frequency of the ECG data, 257

Hz, Wavelet Transform of the ECG was calculated at scales

2j , j=1...5. These energy levels cover the power spectra of

ECG signal. The energy of the QRS complex is typically

placed in the levels 23 and 24. The energies of P and T waves

are located at levels 24 and 25. To detect peaks, threshold

filters and decision making rules were used in each energy

level. First, QRS complexes were detected by locating any

peak pairs on the wavelet transforms. After the possible QRS

complexes were marked, unmarked peaks on levels 24 and

25 were marked as T waves, since both QRS and T peak

pairs appear on the same energy levels. P wave detection was

done similarly by detecting peak pairs at the energy scale 24

which corresponded to neither a QRS complex nor a T wave.

With this method, QRS-T-P waves were detected in real time.

Detected signals were fed to the model predictive controller

as shown in Figure 1.

VI. CONTROL ALGORITHMS

The control algorithm is the core of the robotic tools for

tracking heart motion during CABG surgery. The robotic tools

that track and manipulate should have high precision. During

free beating, individual points on the heart move as much as

7-10 mm. Although the dominant mode of heart motion is

in the order of 1-2 Hz, if we look at measured motion of

individual points on the heart during normal beating, there

is significant energy in the motion to frequencies up to 20

Hz. The coronary arteries that are operated on during CABG

surgery range from 2 mm in diameter down to smaller than

0.5 mm, which means the system needs to have a tracking

precision in the order of 100 μm. This corresponds to a less

than 1% dynamic tracking error up to a bandwidth of 20

Hz. It is hard to satisfy these specifications with traditional

controllers which only rely on the feedback from the sensors

that measure heart position and they do not use any model of

the heart motion. This was verified by comparing traditional

and MPC controllers in [5]. The control algorithm needs to be

able to handle changes in the heart motion, including adapting

to slow variations in heart rhythm during the course of the

surgery, as well as handling occasional arrhythmias which

may have natural causes or may be due to the manipulation

of the heart during surgery. In order to detect these changes,
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information from multiple sensors should be fused: motion

sensors and sensors measuring biological signals. Within this

framework, three different variations of the MPC algorithm

were studied for tracking: MPC, Signal Estimated MPC and

Biological Signal added MPC. The basic MPC algorithm

uses the actual heart motion for the future desired trajectory,

therefore it has the maximum achievable tracking performance

in the linear controllers. Therefore, the results of the MPC

algorithm were used to crate a basis for the performance index.

Other algorithms were designed to increase the performance

of predictive tracking.

A. Model Predictive Control

Model Predictive Control (MPC) is an acausal algorithm

used for trajectory tracking. MPC algorithm uses system model

to predict future outputs. The future outputs are compared

to a desired reference signal and used to calculate gains. In

MPC generally there is a knowledge of the future reference

signal. A typical MPC algorithm contains three characteristics.

A model is used to find the future outputs; the control

output sequence are calculated by minimizing a cost function;

and the gains are calculated by solving the linear quadratic

optimal controller with a receding horizon where furthermost

point ahead considered to be moving one step ahead for

every control cycle [16], [17]. In MPC, as the horizon value

increases, the error decreases. Using this algorithm, horizon

values starting from 5 to 200 were tested. As the horizon was

increased linearly, an exponential decay in the position error

was observed. A trade off between computational effort (long

horizon) and large error (short horizon) was done. An optimum

value of 100 was selected and used in all three algorithms.

Knowing the future reference signal for the MPC algorithm

is close to perfect tracking. However using the future signal

in heart tracking is not feasible as this makes the algorithm

acasual. In this case it was used to show the base line

performance.

B. Signal Estimated Model Predictive Control

In the MPC algorithm the future signal is assumed to

be known a priori. If the MPC algorithm has high enough

precision to perform the necessary tracking then the tracking

problem can be reduced to predicting the desired future signal

effectively. In design, there are not any explicit specifications

on estimation error. The main specification is for the tracking

error, as described earlier.

Heartbeat is a quasiperiodic motion with small variations

in every beating cycle. If the past heartbeat motion cycle is

known, it can be used as an estimate reference signal for

the future cycle. Using an averaged heartbeat period that was

calculated offline, the last beating signal was buffered. The

stored beating cycle was used as the approximate future ref-

erence beating signal in MPC algorithm. In Signal Estimated

MPC, one cycle of heart motion ahead is more then enough

information to perform tracking with the MPC algorithm, since

it needs only a future signal with the length of horizon.
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Fig. 5. Future Signal Estimation during control action. Observe the horizon
signal where the offset between the current position and estimated signal is
added gradually starting from current time to horizon steps ahead.

Using the last cycle as an exact future reference would result

in large errors due to the quasiperiodic characteristics of the

heart motion and other irregularities of the signal. Instead of

using the past beating cycle in the gain iterations directly,

the reference beating signal was processed online to meet

requirements. Any position offset between the past cycle’s

starting point and future cycle’s starting point, that is current

position, were lined up by subtracting the difference. The

added offset was gradually decreased using a second order

error correction function. So, only some percentage of the

current error were added to the future signals, and no error

was added to horizon steps ahead (Figure 5). This maintained

the continuity of the signal estimate and converges it onto the

actual signal within the horizon ahead.

C. Model Predictive Control with Reference Estimation Using
Biological Signal

Although the position offset between the last and future

beating cycles was eliminated in Signal Estimated MPC algo-

rithm, the error due to changes in heartbeat period remained.

Because heartbeat is a quasiperiodic motion with small period

variations in every beating cycle, these period changes could

result in large offsets in the estimated signal. Although the

offset between cycles were removed gradually, it still could

have caused jumps during the tracking.

As described earlier in the Section III, ECG signal is very

suitable for period-to-period synchronization. In this algorithm

QRS, P, and T waves were used as check points for detecting

current heart beating period.

The current heart beat period was calculated by averaging

the periods of these three wave forms. The period was updated

continuously as new wave forms were detected. Due to the

reading noises in the ECG signal, ECG wave forms could be

missed. This is understood when the next ECG wave form

is detected. Note that wave forms are always lined up in the

same order (QRS-T-P). So, if any ECG wave forms are missed

by ECG detection algorithm, the missed signal’s period is

doubled. Some upper and lower period boundaries are put to

eliminate any misses by the detection algorithm. In Figure 6

the estimated signals just before and after the detection of a
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Fig. 6. Reference Estimation with Biological Signal. A - Just before T Wave
was detected: Estimated Heart Signal did not fit well with the Actual Heart
Signal. B - T Wave has been detected: Heart Period and Estimated Signal were
adjusted. Observe that the beginning of the previous heartbeat period marker
(·–·–) was shifted back in time as a result of the increase in the heartbeat
period. Accordingly, Estimated Heart Signal was changed to adjust with the
new period. RMS estimation error was decreased from 0.8871 mm to 0.4561
mm with the shift.

new wave form are shown. In Figure 6-B, observe that after

the T wave was detected, the past heartbeat period time mark

was shifted back in time as a result of the increase in the

heartbeat period. In the example shown with Figures 6-A and

6-B, RMS estimation error for one heartbeat period ahead

decreased from 0.8871 mm to 0.4561 mm after the shift. With

the use of ECG in ARMC algorithm, heart beating period can

be adjusted online.

VII. SIMULATION AND EXPERIMENTAL RESULTS

A. Test Bed System

In order to develop and test the algorithms, a hardware

test bed system, PHANToM® Premium v1.5, was selected

and modeled. For detailed information on the mathematical

modeling of the PHANToM robot, see [29]. The PHANToM

robot possesses similar characteristics of an actual surgery

robot. Its lightweight links, low inertial axes and drive system

allows sufficient motion and speed abilities for tracking the

heart beat signal (Figure 7).

Experiments were executed on a 2.6 MHz Intel® Pentium®

4 PC running MATLAB® xPC Target v2.6.1 real-time kernel

with a sampling time of 0.5 ms. PHANToM does not come

with a built-in homing option. In order to improve the accuracy

of the experiments, before every experiment, the robot was

brought to a home position where the tracking was started. In

the experiments prerecorded heart motion signal-with filtered

out breathing motion-and ECG signal were used. Raw Heart

Position data was re-sampled in order to use in the control

algorithms and experiments with PHANToM from 257 Hz to

2 kHz by cubic interpolation. In MPC algorithm, heart position

data was used as future signal. A buffer of length horizon was

used to store the future heart signal and passed to the model

predictive control algorithm. In signal estimation algorithms,

the buffers that were used in heart motion signal were 1300

elements long. Only the recently stored part of the buffer, in

the length of current heartbeat period, was used for estimation.

B. Experimental Results

In both simulation and experiment, same methods and

position data were used. Some slight differences in parameters

were observed due to the modeling of the robot. Matrix

weighting parameters of the optimal index were tuned to min-

imize error. Parameters were selected in order to accentuate

the states and hence regulate more quickly, with the loss of

higher control efforts.

In MPC, the feedback gains were calculated offline, before

the control loop, on the other hand, the feedforward portion

was iteratively calculated during the control. The feedback and

feedforward portions both used the same parameters in their

calculations. The most intense calculation was occurred during

the backwards iteration calculation of feedforward gains. With

the addition of the heart motion signal buffers for reference

signal estimation, task execution times were peaked up to %90

of the sampling time.

For each algorithm, experiments on PHANToM robot were

repeated 10 times. Among these results, the maximum values

for the End-effector Position Error and Control Effort are

summarized in Table I to project the worst case. Tabulated

values are the RMS position error of the end effector in 3D

and sum of the RMS control action values of all three axes.

A more detailed listing for all three axes are given in Table

II. Similarly the worst cases were presented here. We noted

that the deviation between the trials are relatively small. MPC

tracking results of the 3-axes of the PHANToM are shown in

Figure 8. Biological signal added reference signal estimation

results for axis 3 only are shown in Figure 9.

Fig. 7. Zero Configuration of the PHANToM manipulator, also showing the
axes movements and spatial and tool frames.
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TABLE II

3 AXES SIMULATION AND EXPERIMENTAL RESULTS : Summary of the maximum end-effector RMS position error and RMS control effort values for the

control algorithms used. Position values correspond to the end point of each axis’ link.

Tracking Results Simulation PHANToM

For All 3 Axes RMS Error RMS Control RMS Error RMS Control

Units mm Nm mm Nm

Axes No Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

MPC 0.2485 0.2131 0.1539 0.0266 0.0089 0.0084 0.1832 0.2201 0.1663 0.0860 0.0469 0.0296

Signal Estimated MPC 0.4037 0.3395 0.2796 0.0341 0.0103 0.0090 0.3922 0.4574 0.4117 0.0933 0.0435 0.0349

SE MPC with Bio Signal 0.3468 0.3148 0.2454 0.0330 0.0117 0.0108 0.3440 0.4568 0.3939 0.1107 0.0431 0.0385

C. Discussion of the Results

As predicted, the MPC with ECG added signal estimation
algorithm outperformed the signal estimated MPC algorithm.

Results proved that by using ECG signal in the motion

estimation, heart position tracking was not only improved but

also became more robust. Our tracking results are 2.5 times

much better than the reported in the literature [14]. Comparing

the results with the baseline performance, results of the MPC,

there is still room for improving the estimation algorithm.

High jumps in the position error are due to the noisy

data collected by sonometric signal. Although high frequency

parts of the raw data are filtered out, relatively low “high

frequency” components are intact. It is unlikely that POI on

the heart is capable of moving 5 mm in milliseconds time.

Heavy filtering would have been performed to delete the high

frequency motions, but they were kept in order to measure the

performance of the system.

CONCLUSIONS AND FUTURE WORK

In this paper, the use of biological signals in the model-

based intelligent ARMC algorithm to achieve better motion

canceling was presented. Tracking problem was reduced to

TABLE I

END-EFFECTOR SIMULATION AND EXPERIMENTAL RESULTS: Summary of

the maximum end-effector RMS position error and RMS control effort values

for the control algorithms used.

End-effector Simulation PHANToM

Tracking Results Error Control Error Control

Units mm Nm mm Nm

MPC 0.3612 0.0146 0.3285 0.0539

Signal Estimated MPC 0.5962 0.0178 0.7270 0.0566

MPC with Bio Signal 0.5280 0.0185 0.6930 0.0638
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Fig. 8. PHANToM 3D - MPC Tracking Results. Reference and Position
signals of all three axes are shown.
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reference signal estimation problem with the help of model

predictive controller. Estimated signal was created by using

the last heart beat cycle with cancelation of the position offset.

Due to the quasiperiodic nature of the heart motion, heartbeat

period could change in time. In order to reduce the error ECG

wave forms were detected and used to adjust heart beating

period during the tracking. Experimental results showed that

using ECG signal in ARMC algorithm improved the reference

signal estimation.

Besides ECG, additional biological signals may enhance

the tracking performance. Using the blood pressure signals,

noise robustness can be improved and unexpected rhythm

abnormalities and arrhythmias can be detected.

In addition to sonometric sensors in sensing motion of the

POI, more mechanical position sensors can be introduced.

Merging the sensor data from multiple sources would increase

the accuracy of motion detection and improve tracking results.

Weighting parameters of the MPC algorithm were hard to

tune during experiments. Although the weighting parameters

were tuned to get minimum RMS error values, a more com-

prehensive study can be conducted to find optimum values.

During parameter tuning experiments, significant noise due to

the coupling of the axes were observed. Some high frequency

noise was introduced to the system due to the inertial coupling

of the upper two axes of the PHANToM robot. One of the next

steps of the research will be focusing on to the elimination of

such noises from the system by better modeling of the axes.
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