Detection and Prediction of Adverse and Anomalous Events in Medical Robots

Kai Liang, Feng Cao, Zhuofu Bai, Mark Renfrew, M. Cenk Cavusoglu, Andy Podgurski, Soumya Ray
Department of Electrical Engineering and Computer Science
Case Western Reserve University, Cleveland, OH 44106, USA
{kxl307 , fxcl00, zxb31l, mark.renfrew, mccld4, podgurski, sray}@case .edu

Abstract

Adverse and anomalous (A&A) events are a serious
concern in medical robots. We describe a system that
can rapidly detect such events and predict their occur-
rence. As part of this system, we describe simulation,
data collection and user interface tools we build for a
robot for small animal biopsies. The data we collect
consists of both the hardware state of the robot and
variables in the software controller. We use this data
to train dynamic Bayesian network models of the joint
hardware-software state-space dynamics of the robot.
Our empirical evaluation shows that (i) our models can
accurately model normal behavior of the robot, (ii) they
can rapidly detect anomalous behavior once it starts,
(iii) they can accurately predict a future A&A event
within a time window of it starting and (iv) the use of
additional software variables beyond the hardware state
of the robot is important in being able to detect and pre-
dict certain kinds of events.

Introduction

Medical robotic systems are cyberphysical systems that are
used to plan and perform medical interventions with high
precision and repeatability (stereotactic surgery), to allow
access to places and scales that are not accessible with man-
ual instruments and conventional techniques (microsurgery
at small scales and minimally invasive surgery where ac-
cess is limited), or to perform surgery with the use of
large amounts of quantitative information (image-guided
surgery) (Taylor and Stoianovici 2003; Cavusoglu 2006).
These systems can improve patient health and reduce costs
by ensuring precision and accuracy, thereby decreasing time
in the operating room, speeding patient recovery time and
minimizing side effects.

An advanced medical robotic system is quite complex,
with regard to both its electromechanical design and the
software that provides its user-interface, coordinates its ac-
tivities, and controls the system’s actuators. This complex-
ity increases the risk of dangerous accidents due to hard-
ware and software malfunctions, observability limitations,
or human-machine interface problems. Indeed such events
have already occurred, as evidenced by a number of adverse

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

event reports filed by manufacturers with the Food and Drug

Administration (FDA). One such report (FDA 2008) con-

tains the following description of an event involving the da

Vinci S Surgical System (Intuitive Surgical Inc. 2009):
[D]uring a da Vinci’s beating heart double vessel coro-
nary artery bypass graft procedure at the hospital, there
was an unexplained movement on the system arm which
had the endowrist stabilizer instrument attached to it.
[This] caused the feet at the distal end of the endowrist
stabilizer instrument to tip downward resulting in dam-
age to the myocardium of the patient’s left ventricle.

The accompanying “Manufacturer Narrative” states:

The investigation conducted by an isu field service engi-
neer found the system to [have] successfully completed
all verification tests and to function as designed. No sys-
tem errors related to the cause of this event were found.
Additional investigations conducted by clinical and soft-
ware engineering were inconclusive as a root cause could
not be determined based on the event descriptions re-
ported by several eye witnesses and the review of the sys-
tem’s event logs.

In this paper we describe a prototype system to enhance the
safety of medical robotic systems by monitoring their be-
havior and detecting or even predicting where possible such
adverse and anomalous (A&A) events. This system is built
and evaluated using a simulation of a robot that we are con-
currently developing for small-animal biopsies. While work
exists that attempts to design safe systems and validate their
behavior before deployment, completely safe behavior is
difficult to guarantee in practice. Our approach is meant to
augment approaches such as FMAE analysis, model check-
ing, etc. that are applied during the design process by taking
into account how a medical robotic system behaves in the
field and how its observable behavior is related to its hard-
ware and software dynamics. This behavior can also be a
function of how clinicians employ it, how the system affects
patients and how it is affected by operating conditions.
Effectively detecting, predicting and responding A&A
events in an online manner requires the eventual solution
of several key subproblems: (1) devising efficient means of
collecting pertinent hardware and software execution data,
as well as user feedback; (2) developing statistical learn-
ing models to effectively relate the collected data to the oc-
currence of A&A events; (3) designing a robust simulation

360+

Ers : f :

—— ctuel : : H \
Reference | : : kS

| i L i i L i
BT 230 220 210 200 EED BE

Figure 1: The SABIR robot (left), a normal needle-tip trajectory in the simulation environment consisting of two “tissue” blocks
(center), and a trajectory with an A&A event caused by encoder failure (right) showing the reference and actual trajectories.

platform to reproduce observed behavior and (4) developing
clinically effective response strategies. This paper describes
approaches that address the first three subproblems. We have
built a detailed simulator of the robotic system we use and
a supervised software controller and GUI, instrumented for
data collection. A novel aspect of our approach is that we
collect both software and hardware data during operation.
Using the collected data, we learn dynamic Bayesian net-
work (DBN) models of the system’s behavior. When learn-
ing, we use the simulator of the robot as an oracle to en-
sure we obtain accurate models. In our evaluation, we show
that the models we learn are able to effectively detect A&A
events and also predict them in certain cases.

System Description

In this section, we describe our testbed robot, the simulation
environment, supervisory control software and GUI and the
statistical models we learn from the collected data.

The SABIiR Robot. In our work, we use the Small Animal
Biopsy Robot (SABIiR), designed and built in our lab (Bebek
et al. 2008). Figure 1 (left) shows an image of the robot. It is
a five-degree-of-freedom parallel robotic manipulator which
is designed to take biopsies or deliver therapeutic drugs at
targets in live small animal subjects and to achieve accuracy
better than 250m. It employs a parallel design to achieve
low inertia. The robot has high position resolution and can
realize dexterous alignment of the needle before insertion.
The design is lightweight and has high motion bandwidth,
so that biological motion (e.g., breathing, heartbeat, etc) can
be canceled while the needle is inserted in tissue.

The robot consists of a needle mechanism held by two 5-
bar linkage mechanisms, called the front and rear stages. The
front stage has two degrees of freedom (up/down, left/right)
and the rear stage has three degrees of freedom (up/down,
left/right, rotate forward/rotate backward). The stages are
driven by five tendon mechanism motors and the joint an-
gles are measured by encoders. The robot’s hardware state
is characterized by its five joint angles, and there is a one-
to-one correspondence between any position and orientation
that the needle tip can reach and the set of joint angles.

Robot Simulation and Environment. We use models for

the kinematics and inverse kinematics developed in our prior
work (Hwang et al. 2009) to create a simulation of the robot,
implemented in Simulink, in which the robot’s motors are
each represented as fifth-order transfer functions. The simu-
lator is designed to be a modular component, so that it can be
seamlessly swapped with the controller of the actual robot.

The environment of the simulated robot consists of a gel
block (to simulate “tissue”) placed in the workspace (Fig-
ure 1 (center)). A needle force model, which assumes a
stiff non-deformable needle, is used to provide a resistive
force caused by the combined frictional, cutting, and stiff-
ness forces produced when the needle is inside the gel block.
The cutting force is caused by the needletip piercing the gel
block and provides a resistance to the needle’s motion during
insertion into the gel block. The frictional force is produced
by the friction between the needle body and the walls of the
channel in the gel block, and resists the needle during inser-
tion and extraction. The stiffness force is caused by the gel
block’s tendency to resist sideways motion of the needle, i.e.,
any motion not in the direction the needle is pointing. In this
way, realistic and distinguishable forces can be produced by
any possible motion of the needle. The needle model is de-
scribed in detail in (Jackson and Cavugoglu 2012).

After calibration the robot’s initial location is called its
“home” point. The controller can then be given new points
and orientations to move the needle to. A “reference” trajec-
tory is computed using linear interpolation. Velocities along
this trajectory are set to be mainly constant, with fast accel-
eration and deceleration at the start and end (subject to a de-
sired maximum acceleration). We then use a two-layer mo-
tion control algorithm to follow this trajectory to guide the
needle to the end point. The inner layer is a pole-placement
based joint-level position controller operation at a sampling
rate of 2 kHz. The outer layer is a cartesian-space position
controller operating at 100 Hz.

Supervisory Software. The user interacts with the robot
through a supervisory software system built on top of the
low-level controller. This system has three components: a
GUI, a task delegator, and a robot proxy.

The software has a graphical user interface (GUI) that al-
lows a user to view the current robot state and specify high
level actions such as “insert needle.” For each such com-

Table 1: State variables in DBNs. First group: parameters,
second group: software, third group: hardware.

Description No.
Reference position, starting position, end position 1
Position and orientation where insertion begins 6
Insert distance into tissue from ready position 1
2
1

High level action, e.g. “Insert Needle”

Estimated depth of the needle inside tissue, using esti-
mated forces

Estimated depth of the needle inside tissue, assuming | 1
fixed tissue geometry

Estimated force on the needle

Estimated torque on the needle

Intermediate computation results in controller software
Position and orientation of needle tip

Positions of 5 motors

Torques of 5 motors

Error between Actual Position and Reference Position
Speeds of 5 motors

Error between Actual Speed and Reference Speed

L OV 00 W W

mand, the GUI then lists all parameters whose values need
to be input or adjusted. The data is then sent to a “task del-
egator” component. This first checks the validity of input
parameters for the specified operation; for example, it en-
sures that target locations are within the robot’s workspace.
It then decomposes a complex task into a set of basic nee-
dle motions that can be accomplished by calls to the API for
the robot (or the simulator). The delegator is equipped with
different schemas to decompose different high level tasks.
It generates reference trajectories for the tasks and invokes
the robot API to execute these tasks. As the task is being
executed, it updates the robot’s state on the GUI. If an error
occurs, it is responsible for stopping the current action and
alerting the user. The last stage, the “robot proxy,” handles
communications with the robot (or simulation) and low-level
operations and collects low-level sensor data. This ensures
that when the simulation is replaced by the actual robot, only
the last stage changes. A final point is that we designed the
entire architecture to be easy to monitor and log, so that we
can monitor the system as it executes and collect the hard-
ware/software data we need.

Modeling the State Dynamics. We use dynamic
Bayesian networks (DBNs) (Dean and Kanazawa 1990) to
model the time-evolution of the state space of the system
based on the collected data. These are first order Markov
models that represent the probability of the next state given
the current one, i.e. Pr(S¢11|S;), where each S; is described
by a vector of variables, as follows:

Pr(Si1[S:) = Pr(Vi1|Vy) = HPT(W+1|Vt)a

i=1

where V, = {V;'} denotes all of the variables in the "
time step. The structure and parameters of these probability
distributions are learned from data as described below.

We specify the conditional probability distributions
(CPDs) in the DBN in two ways. Certain state variables,

such as the x position of the needle tip, vary at a near lin-
ear rate from ¢ to ¢t + 1, for example because (in this case)
the robot controllers are designed to maintain a constant
velocity as far as possible. For such variables, we use lin-
ear Gaussian models, so for example X; 1|V ~ N(wx -
Vi, 0x). For other variables, we employ a regression tree
model (Breiman et al. 1984) for the CPD. Each internal node
of the regression tree is a test on some variable at the pre-
vious time step. Each leaf node is again a linear Gaussian
model. Regression tree models such as these are a very gen-
eral representation of nonlinear dynamics.

Since this is an engineered system, it is designed to
be sparse, i.e. most state variables tend not to depend on
too many other variables. Thus, when learning the regres-
sion tree/linear Gaussian CPDs, we use the Sparse Candi-
date (Friedman, Nachman, and Pe’er 1999) feature selection
algorithm to limit the number of parents for each variable.
Given a current structure, this algorithm first computes a
candidate parent set for each variable limited to a certain
size specified in the input, and then learns a structure with
these sets. These two steps are iterated until convergence.

There are three types of variables that are part of the sys-
tem state. Variables such as the reference trajectory to be fol-
lowed by the robot are “parameters” that do not change over
time. They help predict other variables, but are not them-
selves predicted. Other variables such as the motor torques
are “hardware variables.” These variables are obtained by
sensors on the robot, or through direct computations from
these measurements. The third set of variables are “software
variables.” These variables include flags denoting which
high level motion is being executed, which are set in the
software and variables such as “force on the needle” which
cannot be directly sensed in the hardware but can be esti-
mated in software indirectly from other variables. They also
include variables from the controller software that store in-
termediate computation results. These are included because
A&A events may originate not just from hardware malfunc-
tions but errors in the controller code as well. The full set
of variables is shown in Table 1. For each kind of variable,
“No.” refers to the number of variables of that kind, e.g. there
are 3 needle forces, one in each direction.

Since it is impossible to know ahead of time what sort
of A&A events to expect, we learn DBNs to model “nor-
mal” state transitions. To do this we generate sequences of
normal trajectories from our simulation and estimate the
CPDs for these variables from them. CPD parameters are
estimated using maximum likelihood; for linear Gaussian
models, this is equivalent to linear regression and yields
closed form solutions. For regression tree models, we use
the standard greedy top down recursive decomposition ap-
proach (Breiman et al. 1984), where the goodness of a split is
computed by the improvement in the % measure. We make
one modification to this tree construction procedure. Nor-
mally, the number of datapoints decreases deeper in the tree
because of recursive partitioning. However, since we have a
simulator, we use the simulator as an oracle to generate dat-
apoints as needed. These points are generated using a form
of rejection sampling; a random trajectory is sampled and a
point on it is evaluated to see if it satisfies the checks at the

Table 2: Average test r2 for normal state trajectories.

Model Hardware | Software | All
HS 1.000 0.9784 0.9817
HS10 1.000 0.9582 0.9654
HWOnly | 0.9996 N/A N/A

Table 3: Detection and Prediction times (ms) at FPR=0.06.

Model Detection Prediction, Sweep
Encoder | Sweep || £=1000 | £=2000
HS 1 - 1518 -
HS10 10 10 5136 4614
HWOnly 1 - 1526 1899

internal nodes. If so, it is kept, or else discarded. This proce-
dure ensures that we have enough points at each node in the
tree to make good decisions about the choice of splits. As
we show in the following section, this approach yields very
accurate models of the system dynamics.

Empirical Evaluation

In this section we evaluate how well our models represent
the robot, and how accurately they can detect and predict
A&A events of certain types. We perform these experiments
with our simulator, which is an accurate simulation of the
robot. In these experiments, the simulation environment is
set up with two blocks of “tissue” of different characteristics,
one contained within the other (Figure 1 center). The task for
the robot is to insert the needle tip a specified distance within
the tissue. We consider three kinds of A&A events. The first
is an “encoder failure” event, where at some point within the
trajectory, the hardware element reporting a motor’s position
is lost, so the system can longer track that motor’s position
(Figure 1 right). The second is a “sweep” event, where prior
to needle insertion, the needle tip strays and grazes the tissue
surface. The third is an “out-of-workspace” (OOW) event,
where a check for an illegal target position that is outside
the robot’s workspace is missing in the controller software,
and such a target is input at runtime. We generate trajectories
for each such event. Since actual A&A events are rare, we
restrict the proportion of such “A&A data” in our datasets
to 1.25%. We evaluate three DBNs: a model using all the
variables in Table 1 (HS), a model using only the “parame-
ter” and “hardware” variables (HWOnly) and a model using
all variables but making 10-step predictions (i.e. modeling
PI‘(St+10|St)) (HS1 O)

Modeling normal trajectories. We first evaluate how
well our DBNs can model normal trajectories. We gener-
ate a test set of 400 normal trajectories and sample 20, 000
(8¢, St4+1) pairs from them. Using the s; values, we use the
DBNs to predict 3; 4, and compute an r? metric measuring
the accuracy of these predictions. From the results, shown
in Table 2, we observe that the DBNs can perfectly capture
the time-evolution of the hardware variables. It is more dif-
ficult to predict the software variables, however, as we show
below, the accuracy is high enough to allow us to detect and

predict A&A events. Finally, we observe that when using
the HWOnIly model, the accuracy of prediction on the hard-
ware variables is marginally less than when using the HS
model. Although the difference is very small, this suggests
that the software variables add value to the DBN, and using
them results in more accurate predictions. This is substanti-
ated further in the results below.

Detecting A&A events. Next we consider how quickly
our models can detect A&A events after the event has oc-
curred. Of course, we would like not just to detect these
events but to predict them, and we discuss prediction be-
low. However, some A&A events, such as our encoder fail-
ures, may be unpredictable in that the trajectory appears
completely normal until the point when the event happens.
Therefore it is still valuable to ask, given that an A&A event
has happened, how quickly a model such as we use detects
it. To measure this we use a test set of 400 normal trajecto-
ries and 5 trajectories for each of the A&A events. In this
case, the “ground truth” is set as follows: every point after
an A&A event until the end of the event receives a label
“positive,” while every other is labeled “negative.” We use
the DBNs to check every (s, s;+1) and associate each point
with a smoothed negative log likelihood (NLL) score, where
the smoothing is done over a window of 50 previous time
steps. The smoothing helps to reduce error in intermediate
short regions where the DBN’s estimate is poor. We then
use the smoothed NLL score to construct an ROC graph,
shown in the top row of Figure 2. Further, for FPR=0.06,
we also compute the average time-to-detect an A&A event,
by finding the first point after an A&A event that exceeds
the associated threshold. These times-to-detect are shown in
Table 3 (lower is better).

From these results we observe that while all the mod-
els are good at detecting encoder failures, the HS10 mod-
els have an advantage. This is probably due to the built-in
“lookahead” in these models. For the sweep event, we ob-
serve that the HS10 and HS models are more accurate than
HWOnly. This is likely because the sweep event is easier
to detect with software variables than hardware variables
alone; when the needle grazes the tissue, the software vari-
able “estimated depth” becomes nonzero when it should be
zero in a normal trajectory. For the OOW event, it is interest-
ing that though it is caused by a software bug, HWOnly de-
tects it quickly. This is likely because this bug produces very
bad behavior in our controller, and causes the needle to move
wildly, which is easily detectable by HWOnly. Finally, from
Table 3 (left) we observe that all models can quickly de-
tect encoder failures (within 1-10ms after it happens) !, and
HS10 also quickly detects sweep events. (The other models
do not detect any sweep events at FPR=0.06.)

Predicting A&A events. Finally, we consider the task
of predicting A&A events. Imagine that the model is being
used in an online setting where at every step it can make a
determination as to whether an A&A event is likely to occur
in the next k steps. To do this, at every point ¢, we obtain

"For the “-” entries, in each case, only one event trajectory was
correctly identified at FPR=0.06. These do not produce reliable es-
timates, so we have left them out.

1 — 1
08 || 1 0.8
© i
© !
o 06 1 0.6
= |
£ i
8 |
o 04 1 0.4
2
=
0.2 Hs 1 0.2 Hs
HS10 HS10
o HwOnly ------ 0 HWOnly ------
01 0.2 03 0.4 03 0.4
1 1
0.8 0.8
Q
[
g 06 0.6 |
3
=
S 04 0.4
3 ;
=
0.2 HS 1 0.2 HS
HS10 HS10
o) HWOnly ------ 0))) HWOnly ------
0 0.05 0.1 0.15 0.2 0 0.05 0.15 0.2 0 0.05 0.1 0.15 0.2

False positive rate

False positive rate

False positive rate

Figure 2: ROC graphs for detection and prediction of A&A events. The x-axes are truncated to better illustrate differences at
low false positive rates. Top row: Detection of A&A events. Left: OOW, middle: encoder failure, right: sweep. Bottom row:
Prediction of sweep. Left: £ = 100, middle: £ = 1000, right: k& = 2000.

k points S¢y1, ..., Stk from our DBNs conditioned on s;.
These k points are the means of the associated Gaussian dis-
tributions, so this is the most likely trajectory conditioned on
s¢. From these points we pick the needle tip positions and
measure the average NLL score compared to the reference
trajectory provided as input. (We use only the needle tip po-
sition because that is the only information in the reference
trajectory.) Thus we are evaluating, given the current state,
how likely it is that the most likely needle tip trajectory k
steps later will be significantly different from the reference.
Each s; is then associated with this average NLL score. The
ground truth for each s, is as follows: if an A&A event does
happen within k steps, it is labeled “positive,” else negative.
We then construct an ROC graph from these predictions. In
the bottom row of Figure 2, we show the results for £ = 100
(0.05s), k = 1000 (0.5s) and k£ = 2000 (1s) for the sweep
event. We also measure the time-to-event (Table 3 right).
This is the average time between when the event was first
predicted to when it happens, at a threshold corresponding
to an FPR of 0.06. Higher is better.

From these results, we observe that HS10 does very well,
closely followed by both HS and HWOnly. HWOnly is
comparable to HS and even better for large k. This may be
because in this scenario, only (a subset of) the hardware vari-
ables are evaluated to calculate the NLL scores (because the
reference trajectory has only those variables). As a result,
the advantage of predicting the software variables may be
limited in this setting, and it is likely that most of the benefit

of HS10 comes from the lookahead. From Table 3 we see
that the HS10 model is also able to predict this A&A event
much earlier than the other models.

To summarize, all of the DBNs we test perform well in
our experiments; however, the DBN that models both hard-
ware and software variables and also looks ahead, HS10,
consistently works better at both detection and prediction.
These results also indicate that DBNs of the type we use can
be successful in identifying A&A events and modeling el-
ements of the software state can be helpful in classification
and detection of these events.

Related Work

Most related research on the safety of medical robotic sys-
tems in the literature primarily focus on design of intrin-
sically safe systems, e.g. (Taylor and Stoianovici 2003;
Davies 1996; Dombre et al. 2001; Duchemin et al. 2004;
Ellenby 1994). A related approach in hybrid systems is pa-
rameter synthesis (Donzé, Krogh, and Rajhans 2009). Here
system parameters, such as joint limits, power levels, mass,
etc. are designed in such a way as to produce good behavior
and minimize or eliminate risk and/or the system is designed
to fail in a safe manner and come to a controlled halt so that
it can be removed and the procedure completed manually.
This is typically achieved by using actuators with limited
power and speed, current limiters, etc. There are also studies
which lay out approaches based on identification of potential
hazards and mitigating them throughout the development

lifecycle using hazard analysis and formal methods (Jet-
ley, Iyer, and Jones 2006; Fei et al. 2001; Hu et al. 2007;
Varley 1999). These approaches are generally complemen-
tary to ours, which uses statistical learning methods to ana-
lyze observed behavior.

Online fault detection and diagnosis is a very well stud-
ied problem in general robotics and other hybrid systems
(e.g. (Halder and Sarkar 2007; MclIntyre et al. 2005; Verma
et al. 2004)). A common approach is to use probabilistic se-
quence models to represent the system and to perform online
inference to detect when the system is in a faulty state. These
models typically focus on modeling the hardware and devote
attention to efficient inference algorithms to account for the
online setting. Recent work on diagnosis has started to look
at software as well (Mikaelian, Williams, and Sachenbacher
2005). Our work also uses statistical models, but is different
in that (i) our models are learned using a simulation of the
system as an oracle, (ii) we focus primarily on A&A events
in medical robots and (iii) we consider the joint hardware-
software state of the system in our models.

In software engineering, prior work has analyzed safety-
critical systems, such as spacecraft (Lutz and Mikulski
2003), and recommended the use of runtime monitoring to
detect faults. Unlike our work, this work is typically not in
the context of robotic systems or medical robots, however.

Conclusion

In this paper, we have described an approach to detecting
and predicting A&A events in medical robots. Our results
indicate that the approach is capable of accurately modeling
our testbed robot. We are currently concurrently improving
the simulation and controller by adding path planning and
a simulation of image-guidance and improving the software
architecture to enable more complex high level actions to
be performed and to collect more data about the software
execution. In the modeling framework, we are working on
active-learning framework for more efficient training.

Acknowledgments

This work is supported in part by NSF CNS-1035602. Ray
is supported in part by CWRU award OSA110264.

References

Bebek, O.; Hwang, M. J.; Fei, B.; and Cavusoglu, M. C. 2008.
Design of a small animal biopsy robot. In 30th Intl. Conf. of the
IEEE Engg. in Medicine and Biology Soc., 5601-5604.

Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984.
Classification and Regression Trees. Wadsworth and Brooks.

Cavusoglu, M. C. 2006. Wiley Encyclopedia of Biomedical En-
gineering. John Wiley and Sons, Inc. chapter Medical Robotics
in Surgery. M. Akay, editor.

Davies, B. L. 1996. Computer-Integrated Surgery: Technology
and Clinical Applications. R. H. Taylor et al., ed.s, 287-300.

Dean, T., and Kanazawa, K. 1990. A model for reasoning about
persistence and causation. Comput. Intell. 5(3):142-150.

Dombre, E.; Poignet, P.; Pierrot, F.; Duchemin, G.; and Urbain,
L. 2001. Intrinsically safe active robotic systems for medical

applications. In Proceedings of the 15t IARP/IEEE-RAS Joint
Workshop on Technical Challenge for Dependable Robots in
Human Environments.

Donzé, A.; Krogh, B.; and Rajhans, A. 2009. Parameter synthe-
sis for hybrid systems with an application to Simulink models.
In 12th International Conference on Hybrid Systems: Compu-
tation and Control, 165-179. Springer-Verlag.

Duchemin, G.; Poignet, P.; Dombre, E.; and Peirrot, F. 2004.
Medically safe and sound [human-friendly robot dependabil-
ity]. Robotics & Automation, IEEE 11(2):46-55.

Ellenby, S. B. 1994. Safety issues concerning medical robotics.
In IEEE Colloquium On Safety and Reliability of Complex
Robotic Systems, 3—10. 1IET.

FDA. 2008. Adverse event report 2955842-2008-01144: In-
tuitive surgical inc., Da Vinci S Surgical System endoscopic
instrument control system.

Fei, B.; Ng, W. S.; Chauhan, S.; and Kwoh, C. 2001. The safety
issues of medical robotics. Reliability Engineering & System
Safety 73(2):183-192.

Friedman, N.; Nachman, I.; and Pe’er, D. 1999. Learning of
Bayesian network structure from massive datasets: The “sparse
candidate” algorithm. In Fifteenth Conference on Uncertainty
in Artificial Intelligence. Stockholm, Sweden.

Halder, B., and Sarkar, N. 2007. Robust fault detection of a
robotic manipulator. Int. J. Robotics Research 26(3):273-285.
Hu, Y.; Podder, T.; Buzurovic, I.; Yan, K.; Ng, W.; and Yu,
Y. 2007. Hazard analysis of EUCLIDIAN: An image-guided
robotic brachytherapy system. In 29th IEEE Engineering in
Medicine and Biology Society (EMBS).

Hwang, M. J.; Bebek, O.; Liang, F.; Fei, B.; and Cavusoglu,
M. C. 2009. Kinematic calibration of a parallel robot for small
animal biopsies. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, 4104—4109.

Intuitive Surgical Inc. 2009. Da Vinci S Surgical System.

Jackson, R. C., and Cavusoglu, M. C. 2012. Modeling of
needle-tissue interaction forces during surgical suturing. In
Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA).
Jetley, R.; Iyer, S. P.;; and Jones, P. 2006. A formal methods
approach to medical device review. Computer 39(4):61-67.
Lutz, R. R., and Mikulski, I. C. 2003. Operational anomalies
as a cause of safety-critical requirements evolution. Journal of
Systems and Software 65(2):155-161.

MclIntyre, M. L.; Dixon, W. E.; Dawson, D. M.; and Walker,
I. D. 2005. Fault identification for robot manipulators. /IEEE
Transactions on Robotics 21(5):1028-1034.

Mikaelian, T.; Williams, B.; and Sachenbacher, M. 2005.
Model-based monitoring and diagnosis of systems with
software-extended behavior. In Proc. 20" Natl. Conf. on Al
Taylor, R. H., and Stoianovici, D. 2003. Medical robotics in
computer integrated surgery. IEEE Transactions on Robotics
and Automation 19(5):765-781.

Varley, P. 1999. Techniques for development of safety-related
software for surgical robots. IEEE Transactions on Information
Technology in Biomedicine 3(4):261-267.

Verma, V.; Gordon, G.; Simmons, R.; and Thrun, S. 2004. Real-
time fault diagnosis. /EEE Robotics & Automat. 11(2):56-66.

