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a b s t r a c t

Lumped element models, also known as, mass-spring-damper models, are widely used to
simulate deformable objects because of their simplicity and computational efficiency.
However, the parameters of lumped element models are typically determined in an ad
hoc fashion through trial-and-error, as these models are not directly based on continuum
mechanics of deformable objects. In this paper, an alternative method to determine the
elasticity parameters of lumped element models of deformable objects is presented. The
elasticity parameters are determined using an optimization that minimizes the matrix
norm of the error between the stiffness matrices of the linear lumped element model
and the linear finite element model of the same object. The method has been developed
for two-dimensions and for three-dimensional volumetric objects with tetrahedral and
hexahedral (brick) elements. The method has been validated by comparing deformation
results of the lumped element models with the deformation results given by finite element
models, under various tension, and compression loading conditions.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Dynamic simulation of deformable objects in real-time
for interactive virtual environments is an active area of re-
search. The application that motivate this study is the
development virtual environment-based surgical training
simulators, where real-time deformable tissue simulation
is one of the enabling technologies. Effective virtual surgi-
cal environments require an interactive 3D simulation
environment, where the surgeons, using a haptic interface,
can manipulate dynamically and geometrically correct
models of organs and tissues simulated on a computer.

In this paper, we present a method to determine the mass
and spring constants of lumped element (also known as
mass-spring) models of deformable objects. The proposed
method to determine component parameters is based on
approximating the input–output relations of finite element

model ‘‘elements” with lumped element model ‘‘elements.”
The spring constants are determined through an optimiza-
tion that minimizes the matrix norm of the error between
the stiffness matrices of the lumped element model and
the corresponding finite element model of the same object.

1.1. Deformable tissue modeling

The deformable tissue modeling approaches in the liter-
ature can be grouped in the following four broad categories:
lumped element models (also known as mass-spring-dam-
per models), finite element models (linear and nonlinear),
particle based models, and parametric models.

Lumped element models (LEM) are meshes of mass,
spring and damper elements (e.g. [1–3]). Lumped element
models are the most popular models for real-time surgical
simulators, because they are natural extensions of other
deformable models used in computer animation. Lumped
element models are conceptually simple, and it is possible
to construct models which can be simulated at interactive
speeds with these type of models. There are many
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applications used lumped element model, for example,
Provot [4] used a mass and spring system to model a
deformable cloth. Bourguignon and Cani [5] presented a
method to controlling anisotropy of mass-spring system
in volumetric deformable models, such as human organs.

Finite element models (FEM) are used as a step to get clo-
ser to using models with physically based parameters (e.g.
[6–8]). Linear finite element models are computationally
attractive as superposition can be used and it is possible to
perform extensive off-line calculations to significantly re-
duce the real-time computational burden. However, linear
models are based on the assumption of small deformation,
typically less than 1%, which is not valid for much of the soft
tissue manipulation during surgery. These models cannot
handle rigid motions either [9]. Linear models lose their
computational advantage under topology changes, e.g., as
a result of cutting, as the off-line calculations cannot be
used. To address this last problem, Delingette et al. [10] pro-
posed to use lumped element models locally where there is
topological change (such as cutting) and use a linear finite
element model for the rest. Nonlinear finite element models
are highly accurate models, which take into account nonlin-
ear constitutive behavior of the materials as well as large
deformation effects. They are generally regarded as the gold
standard for high accuracy computation. However, these
models are computationally very intensive and therefore
not suitable for real-time simulation in their basic form
[11,12,9]. Recently, a lot of research effort has been focusing
on improving computational performance of these models.
For example, Wu et al. proposed to use mass lumping and
adaptive mesh refinement [13], and multigrid simulation
[14] to achieve higher performance with nonlinear FEM.
Müller et al. [15,16] proposed a corotation-based approach
for finite element models to improve the artifacts from large
deformation. Nesme et al. [17] presented a FEM-based phys-
ically plausible modeling method. As well as, Irving et al.
[18] presented an invertible finite element algorithm for
simulating large deformations.

Particle based models model the deformable object con-
tinuum as a collection of loosely coupled finite volume par-
ticles, such as simulating a deformable object as a
collection of elastic spheres (for example, as proposed by
Conti [19]). The interaction of these particles between
themselves and with the external forces determine the
behavior of the deformable object. These models are not
really intended to accurately model real tissue behavior,
but to have a plausible looking tissue behavior achieved
through minimal computation.

Parametric models include commonly used free form
[20] and spline based [21] deformable models where loca-
tion of some control points determine locally the shape of
the deformable object. Another method for parametric
modeling of deformable objects is proposed by Metaxas
[3] where a very small number of parameters characterize
globally the shape of a large geometric model of a deform-
able body, e.g. using the semi-axis lengths and principal-
axes directions to parametrize an ellipsoid. Parametric
models are not physically based, and like particle based
models, not intended to accurately model real tissue
behavior, but to have fast and plausible looking interactive
responses.

1.2. Parameter determination in literature

The two most commonly used deformable object models
are finite element models and lumped element models. As
mentioned earlier, lumped element models are conceptu-
ally simple and computationally more efficient compared
to finite element models. A common problem with the
lumped parameter models used in literature is the selection
of component parameters, spring and damper constants,
and nodal mass values. There is no general physically based
or systematic method in the literature to determine the ele-
ment types or parameters from physical data or known con-
stitutive behavior. The typical practice in the literature is
somewhat ad hoc, the element types and connectivities are
empirically assumed, usually based on the structure of the
geometric model at hand, and the element parameters are
either hand tuned to get a reasonable looking behavior or
estimated by a parameter optimization method to fit the
model response to an experimentally measured response.
For example, Joukhadar et al. [22,23] used a predefined
mesh topology and then determined the element parame-
ters with a genetic algorithm search technique. Bianchi
et al. [24,25] used a genetic algorithm based method to
determine the mesh topology and stiffness of mass-spring
models by using finite element models as reference. Deus-
sen et al. [26] used a search method based on simulated
annealing algorithm to determine optimum mass-spring
parameters in two-dimensions.

There are several studies in the literature which deter-
mine lumped element model parameters by using contin-
uum mechanics, elasticity and finite element theory.
Gelder [27] proposed a formulation to approximate the
spring constants in triangular mesh of isotropic, linearly
elastic materials, which he also extended to three-dimen-
sions. The experimental results showed that his model
can approximate the deformation of an isotropic elastic
membrane with limit condition of Poisson’s ratio of zero.
Maciel et al. [28] proposed techniques to model a soft tis-
sue from real biological tissue properties by using a gener-
alized mass-spring model (molecular model) with four
different methods; however, none of these methods
worked unconditionally. Baudet et al. [29,30] proposed
an approach similar to Gelder but for rectangular elements.
They introduced a correction force orthogonal to the elon-
gation force to correct the effects of non-zero Poisson’s
ratio and compared results with finite element model
simulations. In 2000, Cavusoglu [31], co-author, proposed
a method to determine elasticity parameters of a lumped
element (mass-spring) model by approximating the stiff-
ness matrix of the finite element model with the stiffness
matrix of the lumped element model. More recently, Lloyd
et al. [32] introduced a method for identification of spring
constants of lumped element models from the finite ele-
ment models in triangular, rectangular, and tetrahedral
meshes. Their method produced the better approximative
results when the spring constants had been calculated for
the specific value of Poisson’s ratio with pre-strained
springs in two-dimensional element (rectangular meshes),
and with volume preserving forces in three-dimensional
element (tetrahedral meshes). Wang and Devarajan [33,34]
presented mass-spring models for one and two-dimensions
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derived from explicit continuum expressions with a preload-
ed spring model to improve the accuracy. Delingette [35,36]
show that under small deformation and when poisson ratio
is equal to 1/3, spring-mass models can be compared to St.
Venant Kirchoff hyperelastic materials, providing explicit
formulae for spring stiffnesses as well as for angular and
volumetric springs that are necessary to represent shearing
deformations.

Our method uses an approach similar to the methods of
[31,32]. However, the method proposed in this study uses
an optimization to find the lumped element model param-
eters that best fit the finite element model response, while
the method presented in [32] calculated the lumped ele-
ment model parameters from equating the stiffness matri-
ces from lumped element and finite element model.
Furthermore, in the present study, the method has also
been developed for tetrahedral and hexahedral elements,
whereas [32] is limited only to tetrahedral elements. The
proposed method is developed for two-dimensions with
triangular and quadrilateral elements and for three-dimen-
sional volumetric objects with tetrahedral and hexahedral
(brick) elements.

The rest of the paper is organized as follows. In Section 2,
the formulation of the soft object deformation using FEM
and LEM is compared to make some basic observations
and the proposed method is presented in detail. In Section
3, the experimental results are presented, followed by con-
cluding remarks in Section 4. In Appendix A, the finite ele-
ment and lumped element models are summarized in
order to formulate the problem and introduce the notations.

2. Determination of parameters

In finite element models, the parameters of the ele-
ments are determined from the constitutive properties of
the material of the object being simulated. For the lumped
element models, there is no intrinsic method to determine
the element parameters since the models are not actually
motivated from approximating the physical behavior of
the object.

As mentioned in the discussion above, one of the main
problems of LEM is the lack of a systematic way to deter-
mine element parameters. In the literature, the parameters
of the LEM models are determined through parameter esti-
mation, to fit the response of the model to an experimen-
tally measured response. If the structure allows, it may
be possible to isolate effects of some parameters or do
some approximations to isolate these parameters and
therefore simplify parameter estimation [37]. Otherwise,
this can be a very complex optimization problem depend-
ing on the number of parameters used.

Here, we will establish a parallelism between the ele-
ments in FEM and LEM, and explore methods for setting
up of the LEM mesh and selection of its parameters as a
way to approximate FEM. In the discussion below, without
loss of generality, we look at the two-dimensional case
(plane strain1) in the absence of external forces as an illus-

trative example, in order to simplify the notation and
equations.

Consider a planar 4 node C0 continuous isoparametric
element for the FEM, and a 4 mass configuration for the
LEM (Fig. 1). The masses of the LEM mesh are located at
the same spatial locations as the nodes of the FEM element.
This configuration of the LEM masses, with the intercon-
nection springs and dampers, will be used as the building
block elements of the LEM mesh. At this point, we are
not yet specifying the spring connections between the
nodes.

The equations of motion for the FEM and LEM elements,
as given in Section A, are

Me €̂xe þ Reðx̂eÞ ¼ 0;

m1 0

. .
.

0 m4

2664
3775€̂xþ Keðx̂Þ ¼ 0; ð1Þ

where superscript ‘e’ is used to denote element quantities.
The matrix Me is dense, but if we use nodal quadrature, it is
possible to get a diagonal approximation for the Me in FEM.
This is a commonly used approximation in FEM to improve
computational efficiency (e.g [13]). For the LEM, we can
choose

mi ¼ me
ii; ð2Þ

therefore getting a physically based value for the nodal
mass. Then, if we can approximate Reðx̂eÞ with Keðx̂Þ, we
can use the LEM for approximating FEM, avoiding the
parameter determination problem. If we look at the struc-
ture of the function Reðx̂eÞ,

Reðx̂eÞ ¼

Re
1ðxe

1; xe
2; xe

3; xe
4Þ

Re
2ðxe

1; xe
2; xe

3; xe
4Þ

Re
3ðxe

1; xe
2; xe

3; xe
4Þ

Re
4ðxe

1; xe
2; xe

3; xe
4Þ

26664
37775; ð3Þ

and comparing the FEM equations with the LEM equations,

Re
i ðx̂eÞ ¼

Z
Xe

0

BeT
i Sðx̂eÞdV ;

Ke
i ðx̂Þ ¼

X
fi;jconnectedg

fðxi;xjÞ; ð4Þ

we observe that the nonlinear functions Re
i ðx̂eÞ needs to be

approximated by the function Ke
i ðx̂Þ, which is the negative
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x
4

x
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(a) (b)
Fig. 1. Four node FEM (a) and LEM (b) elements.

1 Plane strain analysis is used to solve deformation in infinitely long
structures which are uniform in the third dimension.
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of the sum of the spring forces on node i. Performing an opti-
mization over the nonlinear functions Re

i ðx̂eÞ and Ke
i ðx̂Þ

would be computationally complex. Instead, we will linear-
ize the two models, and perform an optimization to identify
the LEM parameters that will most closely match the linear-
ization. This will actually have the effect of matching the
tangent behavior of the two original nonlinear models. Also,
the linear case will enable us to make some basic observa-
tion, which will give us important insights.

For the LEM element, we need to linearize expression
for the spring forces by using Taylor series expansion.
The result is

Df i

Df j

� �
¼ @fðxi ;xjÞ

@xi

@fðxi ;xjÞ
@xj

h i ui

uj

� �
; ð5Þ

where u = x � x(0) is the displacement,

@fðxi;xjÞ
@xi

¼ � @fðxi; xjÞ
@xj

¼
A

ui ;uj
1 B

ui ;uj
1;2

B
ui ;uj
2;1 A

ui ;uj
2

" #
; ð6Þ

A
ui ;uj
p ¼ ki;j 1� L0

kxj � xik
kxj � xik2 � ðxjp � xipÞ2

kxj � xik2

 !
; ð7Þ

B
ui ;uj
p;q ¼ ki;j L0

kxj � xik
ðxjp � xipÞðxjq � xiqÞ

kxj � xik2

 !
: ð8Þ

Define

Ki;j ¼ �
A

ui ;uj
1 B

ui ;uj
1;2

B
ui ;uj
2;1 A

ui ;uj
2

" #
ð9Þ

to simplify the notation. Note that Ki,j = Kj,i. Then, the line-
arized equations for LEM is

Keðx̂Þ � Keû; ð10Þ

and the K matrix has entries for each of the springs. For
example, if we consider the LEM element of Fig. 2 we get

Ke ¼

K1;1 K1;2 K1;3 K1;4

K2;1 K2;2 K2;3 K2;4

K3;1 K3;2 K3;3 K3;4

K4;1 K4;2 K4;3 K4;4

26664
37775; ð11Þ

where Ki;i ¼ �
P4

j¼1; j–iKi; j.
When the FEM element equations are linearized, we get

Reðx̂eÞ � Reû; ð12Þ

Re ¼
Z

Xe
0

BeT DBedV ; ð13Þ

where D is the matrix which transforms strain vector to
stress vector (r = De). For brevity, we are using the same
symbol for the nonlinear function and matrix for the linear
case, since they are distinguishable from the context.

At this point, to simplify the calculations, we will fur-
ther assume that the element in the reference configura-
tion is the same as the master element bX (Fig. 3) and the
deformable object is a homogeneous linear isotropic mate-
rial. Then,

Re ¼
Z

Xe
0

BeT DBe dxdy¼
Z
bX BeT DBejJjdndg¼

Z 1

�1

Z 1

�1
BeT DBejJjdndg;

ð14Þ

Re
i;j ¼

Z 1

�1

Z 1

�1
BeT

i DBe
j jJjdndg; ð15Þ

where J is the Jacobian operator relating the natural coor-
dinate derivatives to the local coordinate derivatives. For
an isoparametric element, the shape functions in the natu-
ral coordinate are

Ne
1 ¼
ð1� nÞð1þ gÞ

4
;

Ne
2 ¼
ð1þ nÞð1þ gÞ

4
;

Ne
3 ¼
ð1þ nÞð1� gÞ

4
;

Ne
4 ¼
ð1� nÞð1� gÞ

4
;

ð16Þ

and for an isotropic plane strain

D ¼
kþ 2l k 0
k kþ 2l 0
0 0 l

264
375; ð17Þ

Be
I ¼

Ne
I;1 0

0 Ne
I;2

Ne
I;2 Ne

I;1

264
375; ð18Þ

where k and l are the Lame’s constants of the material. If
we evaluate (15), we get

x1 x2

x4 x3

k1,2

k3,4

k1,4
k2,3

k2,4 k1,3

Fig. 2. A fully connected 4 node LEM element.
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Fig. 3. Four node master FEM element.
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: ð19Þ

We can make one observation here, on how to determine
the required connectivity of the LEM elements. The matrix
Re does not have a zero block. This is because the degrees of
freedom in this FEM element are all coupled. Therefore, for
the LEM element to be able to have a behavior similar to
the FEM element, it needs to be fully connected, as shown
in Fig. 2.

Since the material is assumed to be isotropic, the LEM
element has to be symmetric and Ke has only two indepen-
dent parameters, kedge and kdiag, as the following

kedge ¼ k1;2 ¼ k2;3 ¼ k3;4 ¼ k4;1
; ð20Þ

kdiag ¼ k1;3 ¼ k2;4
: ð21Þ

If we evaluate (9), we get

Ke ¼

kaa � kdd

2 �kee 0 � kdd

2
kdd

2 0 0

� kdd

2 kaa 0 0 kdd

2 � kdd

2 0 �kee

�kee 0 kaa kdd

2 0 0 � kdd

2 � kdd

2

0 0 kdd

2 kaa 0 �kee � kdd

2 � kdd

2

� kdd

2
kdd

2 0 0 kaa � kdd

2 �kee 0
kdd

2 � kdd

2 0 �kee � kdd

2 kaa 0 0

0 0 � kdd

2 � kdd

2 �kee 0 kaa kdd

2

0 �kee � kdd

2 � kdd

2 0 0 kdd

2 kaa

26666666666666666664

37777777777777777775

;

ð22Þ

where kee = kedge, kdd = kdiag, and kaa ¼ kdiag

2 þ kedge. Re for the
FEM element also has two independent parameters,
namely, Lame’s constants, k and l. Then, at first we may
think that it should be possible to construct the LEM ele-
ment which has the same input–output behavior as the
FEM element. However, it is not too difficult to see that this
is not true, if we look at the individual terms of the matri-
ces Ke and Re. Each subblock Re

i;j depends on both of the
parameters (k, l), but this is not the case for Ke

i;j, which de-
pends only on single parameter (ki,j). Therefore, in block by
block sense, the LEM element cannot represent the Pois-
son’s ratio and bulk modulus simultaneously.

The difference between the behavior of the FEM and
LEM elements comes from the fact that the interaction be-
tween the nodes are restricted to be some form of spring-
like behavior in LEM, whereas there is freedom in FEM.
This restricts the physical material behavior that LEM
models can represent.

It is also possible to consider adding angular springs
within the LEM element. This would enrich the behavior

of the LEM element. However, addition of angular springs
would decrease the computational attractiveness of the
LEM because of the increased computational complexity.
We will leave this for future work.

To approximate FEM element behavior with an LEM ele-
ment, at least for the linear case, we need to perform the
following optimization

ðkedge
; kdiagÞ ¼ arg inf

kedge ;kdiag
kReðk;lÞ � Keðkedge

; kdiagÞk ð23Þ

in some norm. There are two different norms used in this
paper, which are the Frobenius norm and induced 2-norm.
Specifically, for a given displacement vector, u, fFEM = Reu
gives the nodal forces for the FEM model, and fLEM = Keu
gives the nodal forces of the LEM model of the element.
The difference of the two force vectors, which is the output
force error between the two models, can be calculated by

fFEM � fLEM ¼ Reu� Keu ¼ ðRe � KeÞu: ð24Þ
Then, the induced 2-norm of the matrix (Re � Ke), i.e.

kRe � Kek2 ¼ sup
u

kðRe � KeÞuk2

kuk2
; ð25Þ

give the largest force error between the two models, in the
sense of the Euclidean norm of the force vectors, that can
be produced by applying unit magnitude input displace-
ments, u. Thereforce, minimizing the induced 2-norm of
the (Re � Ke) matrix would yield the set of LEM model
parameters that would minimize error between the
input–output relationships of the LEM and FEM models.
The Frobenius norm of a matrix is the square root of the
sum of squares of the elements of a matrix. Minimizing
the Frobenius norm of the matrix (Re � Ke) tries to match
the responses of the LEM and FEM models by trying to
minimize the term by term difference between individual
entries of the two stiffness matrices.

For this particular example, if we use the Frobenius
norm, the blocks will be decoupled, and we can get a sim-
ple closed form solution for the kedge and kdiag values that
minimize the error:

Re
1;2 ¼

� k
3�

l
2 � k

4þ
l
4

k
4�

l
4

k
6

" #
;

Ke
1;2 ¼

�kedge 0
0 0

" #
ð26Þ

gives

kedge ¼ k
3
þ l

2
; ð27Þ
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and

Re
1;3 ¼

� k
6�

l
2

k
4þ

l
4

k
4þ

l
4 � k

6�
l
2

" #
;

Ke
1;3 ¼

1
2
�kdiag kdiag

kdiag �kdiag

" #
ð28Þ

gives

kdiag ¼ k
6
þ l

2

� �
þ k

4
þ l

4

� �
¼ 5k

12
þ 3l

4
ð29Þ

for the element configurations we assumed.
At this point, it is important to observe that, even

though it is possible to find a unique (kedge, kdiag) pair for
every (k, l), it is not possible to make the error equal to
zero. This is because of the fact that the stiffness matrices
of FEM ‘‘elements” and LEM ‘‘elements” are structurally
different. Therefore, it is not possible to select LEM param-
eter to exactly match the FEM behavior even though they
may have same number of parameters.

If we use the 2-norm or consider different element
geometries, the unknown parameters will not be decou-
pled, and we cannot get a closed form solution; therefore,
optimization techniques need to be used to find the best
solution. This optimization to determine LEM parameters
need to be performed for every different element configu-
ration, since the linearization depends on the geometry of
the elements.

We can summarize the proposed method as follows:

1. We will construct the LEM of the deformable object as
composed of ‘‘elements” or building blocks that are
fully connected, rather than having an arbitrarily con-
nected mass-spring mesh. These building block LEM
‘‘elements” will be used to approximate the stiffness
characteristic of FEM ‘‘elements” of same size and
geometry.

2. For each of the LEM ‘‘elements”:
(a) A linearized LEM ‘‘element” stiffness matrix Ke is

calculated using (5)–(10). This stiffness matrix is
parameterized by the (unknown) spring constants
of the LEM, and gives the tangent behavior of the
LEM.

(b) A FEM element with same geometry as the LEM
‘‘element” is constructed. The stiffness matrix Re

for the FEM element is calculated with (A.4), using
a linear elastic model (e.g. (A.10)). This FEM stiff-
ness matrix is parameterized by the (known) con-
stitutive parameters of the material, and gives the
tangent behavior of the FEM.

(c) An optimization is performed to identify the LEM
element parameters that minimize the error
kRe � Kek, similar to (23), using a suitable matrix
norm (2-norm or F-norm).

(d) The nodal mass values of the elements are calcu-
lated using (2), where me

ii are given by (A.4).
3. The LEM is ‘‘assembled” by adding the nodal mass val-

ues and spring constants for overlapping lumped
masses and springs from neighboring ‘‘elements”.

As these optimizations to identify LEM component
parameters are conducted off-line when the object model
is constructed, it will not impact the on-line computational
efficiency of the LEM. This optimization can also be per-
formed at the whole object level instead of per element.
However, this would not be practical as its computation
cost will be prohibitively large and it will be prone to local
minima problems. Finally, the optimization in step 2(c) can
also be performed using the nonlinear forms of Reðx̂eÞ and
Keðx̂eÞ by evaluating these at a collection of p values,
x̂e

i ¼ x̂i; i ¼ 1; . . . ; p, and minimizing a cost functionPp
i¼1kR

eðx̂e
i Þ � Keðx̂Þk2, defined with a suitable vector norm.

However this optimization would also be computationally
intensive, and therefore has not been pursued in this
paper.

3. Simulation results

In this section, we present simulation results that vali-
date and demonstrate our proposed method. The simulation
experiments are implemented by using Mathematica, MAT-
LAB, and C++ with GiPSi framework [38] environments. In
our simulation, the simulated objects have the Young’s
modulus of 10 kPa and the Poisson’s ratio of 0.3, unless
otherwise stated. In two-dimensional examples, a plane
stress case is used. Four different configurations of LEM
‘‘element” meshes are considered. In the planar examples,
triangular and quadrilateral meshes are used and for
three-dimensional volumetric object examples, tetrahedral
and hexahedral meshes are used. In order to provide quan-
titative results, the percentage of root mean square error,
%erms, and the percentage of maximum error, %emax, of
Euclidean distance between FEM and LEM nodes are calcu-
lated by %erms ¼ erms

omax
� 100 and %emax ¼ emax

omax
� 100, where

erms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðxFEM

i � xLEM
i Þ2

q
; emax ¼max jxFEM

i � xLEM
i j; omax is

the maximum Euclidean distance between the undeformed
configuration and the deformed configuration of FEM, n is
the number of nodes in the models, and xFEM

i and xLEM
i denote

the positions of corresponding nodes of the FEM and LEM. In
the figures showing simulation results, the color and type of
line identifies the object configuration. The original configu-
ration of object is shown with dotted gray lines, the
deformed configuration of the FEM is shown with dashed
blue lines and the deformed configuration of the LEM is
shown with solid red lines. Simulation results which com-
pare the deformation of various two and three-dimensional
test objects are reported in Section 3.1. The use of two differ-
ent matrix norms during the optimization in step 2(c) of the
algorithm are also compared in this section. The norms used
in this paper are the Frobenius norm and the induced 2-
norm. The elastic parameters are calculated symbolically
in the Frobenius norm case using Mathematica and numer-
ically in the induced 2-norm case using MATLAB. In Section
3.2, specially designed specimen are used to determine the
mechanical properties of object using the proposed method.
In Section 3.3, the relationship between the Young’s
modulus and Poisson’s ratio is explored. In Section 3.4,
simulation results which compare our method to other
similar methods in the literature by using tension, shearing,
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and torsion tests are presented. Finally, our method is
implemented in real world application to determine the
elasticity parameters of lumped element model of third
ventricle floor in Section 3.5.

3.1. Test objects

We demonstrate our proposed method with variety of
test objects. In the two-dimensional case, we use the object
shown in Fig. 4, which represents an arbitrarily shaped soft
tissue approximately 2 � 6 cm2 in size. In the three-dimen-
sional case, three objects are used. The first object is a
cylindrical object with a radius of 1 cm and a height of
2 cm shown in Fig. 5a and b. This object is discretized with
tetrahedral (Fig. 5a) and hexahedral (Fig. 5b) elements. The
second object is a cylinder with the same dimension as the
first object but with an empty spherical hole of radius
0.6 cm inside (Fig. 5c), which is discretized with tetrahe-
dral elements. The third object is a cube with dimensions
of 2 � 2 � 2 cm3 (Fig. 6), which is discretized with tetrahe-
dral (Fig. 6a) and hexahedral (Fig. 6b) elements. In each
object, the boundary is kept fixed on one side and the ten-
sion forces are applied in opposite side to make the object
deformed at least 10% of original configuration. The simu-
lation results are shown in Figs. 4–6 and quantitative
results are summarized in Table 1. When we compare
the effect of the matrix norm used in the optimization,
we observe that the 2-norm has yielded better results in
triangular and hexahedral elements, whereas the F-norm
has yielded better results in quadrilateral and tetrahedral
elements.

In order to illustrate the time complexity of our pro-
posed parameter estimation method, the computation
time for each element type and matrix norm is recorded.
The computation time is calculated by averaging the time
used in finding the solution for 100 randomly constructed
elements. The results are shown in Table 2. The computa-
tion time when F-norm used is significantly less than the
computation time when 2-norm is used. Because the com-
putation for determination by using F-norm can be solved
with algebra solver (as illustrated in Section 2), whereas
the computation for determination by using 2-norm is per-
formed numerically to find the best solution. The number
of spring constants that have to be determined also effects
the computational time.

Finally, a large deformation stretch test was performed to
evaluate if the trends illustrated by the earlier experimental
results hold for larger object deformations. Specifically, the
three-dimensional cube objects with tetrahedral and hexa-
hedral meshes were subjected to 30% stretch deformations.
The results (Table 3) show indicate that the trends observed
in the earlier results also hold for larger deformations.

3.2. Mechanical tests on specimens

It is also valuable to measure the resulting Young’s
modulus and Poisson’s ratio of the constructed simulation
models of objects to evaluate how well they approximate
the original values used. In order to accurately measure
these parameters, we have conducted mechanical tests
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1 2 3 4 5 6

-1.5
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(a) (b)
Fig. 4. Two-dimensional test object results (a) mesh with triangular elements calculated using 2-norm; and (b) mesh with quadrilateral elements
calculated using with F-norm.

Fig. 5. Three-dimensional test object results (a) cylindrical object with
tetrahedral elements calculated using F-norm; (b) cylindrical object with
hexahedral elements calculated using 2-norm; and (c) cylindrical object
with a hole with tetrahedral elements calculated using F-norm.

Fig. 6. Three-dimensional test objects (a) cube object with tetrahedral
elements calculated using F-norm; and (b) cube object with hexahedral
elements calculated using 2-norm.
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on specially designed specimens, following the experimen-
tal material characteristic literature. Specifically, the spec-
imen shape chosen is an optimal shape of thin tensile test
specimen from [39]. The specimen shape is shown in Fig. 7
with B = 1 cm. The thickness of the three-dimensional
specimen is 1 cm. The boundary on the left side is kept
fixed and the tension force for loading is applied on the

right side. The experiment procedure is as follows: First,
Young’s modulus of 10 kPa and Poisson’s ratio of 0.3 are se-
lected. Then, the spring constants of the specimens are
determined using the proposed method. The boundary
conditions and the loading force are applied to the lumped
element model and the displacements of the straight-sided
section Ls are collected. These values are then used to cal-
culate the corresponding Young’s modulus and Poisson’s
ratio of specimen. The experimental results shown in
Table 4. The results show that the proposed method can
represent the Young’s modulus close to the desired value
in meshes with triangular (2D) and hexahedral (3D) ele-
ments with both F-norm and 2-norm and in meshes with
quadrilateral and tetrahedral elements with F-norm. The
quadrilateral and tetrahedral elements with 2-norm result
in error in the Young’s modulus more than 10%.

3.3. Control of young’s modulus and poisson’s ratio in lumped
element models

In order the explore the relationship between the
Young’s modulus and Poisson’s ratio of lumped element
models and how independently they can be controlled,
we conduct another set of tests. Specifically, we use a
lumped element model with only one quadrilateral ele-
ment (with size of 2 � 2 cm2) and vary the desired elastic
properties (Ein = 1 Pa to 10 kPa, min = 0–0.5). Then, the elas-
tic properties (Eout, mout) of the resulting model is compared
with the desired values. The results, show in Fig. 9, reveal
that, although it is possible to accurately control the
Young’s modulus value of the model, it is not possible to

Table 1
Summary of simulation results of test objects.

Test object Element Norm %erms %emax #node #element

Tissue tri 2-norm 2.26 4.99 210 366
F-norm 3.46 6.42

qua 2-norm 5.55 9.65 445 405
F-norm 5.14 8.44

Cylinder tet 2-norm 22.89 43.73 124 381
F-norm 11.00 24.29

hex 2-norm 5.63 18.49 675 496
F-norm 6.15 18.00

Cylinder tet 2-norm 20.53 38.96 404 1559
with hole F-norm 5.91 13.77

Cube tet 2-norm 22.52 53.51 170 592
F-norm 8.28 25.29

hex 2-norm 2.91 6.92 729 512
F-norm 14.98 25.19

Table 2
Time complexity of each element type with F-norm and 2-norm.

Time used/element(s)

Element #spring constant F-norm 2-norm
Triangular 3 0.08 1.73
Quadrilateral 6 0.32 2.26
Tetrahedral 6 0.32 2.33
Hexahedral 28 3.04 29.01

Table 3
Large deformation results of cube objects.

Test object Element Norm %erms %emax

Cube Tet 2-norm 22.30 53.35
F-norm 8.28 25.29

Hex 2-norm 2.95 14.36
F-norm 14.98 25.19

Fig. 7. Specimen shape [39] with Ls = 2B, Lt = 4B, L0 = B0, and B0 = 3B.

Table 4
Tension tests on specimen.

Element Norm Eout mout #node #element

Triangular 2-norm 10300.70 0.25 125 192
F-norm 9461.44 0.26

Quadrilateral 2-norm 11169.70 0.45 329 266
F-norm 9839.55 0.43

Tetrahedral 2-norm 12165.80 0.09 538 1500
F-norm 9697.49 0.09

Hexahedral 2-norm 9804.64 0.29 1396 843
F-norm 10228.00 0.29
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independently control the Poisson’s ratio. Such a behavior
was also observed by other researchers [29,30,32].

3.4. Comparison with other methods

As discussed in Section 1, there are several other studies
in the literature that propose methods to determine elas-
ticity parameters in lumped element models. In the two-
dimensional case, we compare our proposed method with
the methods proposed by Gelder [27] and Lloyd et al. [32]
for meshes with triangular elements (test object shows in
Fig. 8a), and the methods proposed by Baudet et al. [29]
and Lloyd et al. [32] for the meshes with rectangular ele-
ments (test object shows in Fig. 8b). We also compare
our proposed method in three-dimensional case with the
method proposed by Lloyd et al. [32] for meshes with tet-
rahedral elements (test object shows in Fig. 8c), and with
the method proposed by Baudet et al. [30] for meshes with
hexahedral elements (test object shows in Fig. 6b).2 The

comparison results are shown in Table 5. The proposed
method gives the best result except for the case with quad-
rilateral elements in two dimension, when it gives the sec-
ond best result, and the case with tetrahedral element in
three dimension. For the quadrilateral mesh case, it should
be noted that the method proposed by Baudet et al. intro-
duces a correction force which is not from a spring, and
hence it is not a pure lumped element model, and it is
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Fig. 8. Tension test on specimens (a) triangular element; (b) quadrilateral element; (c) tetrahedral element; and (d) hexahedral element.
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Fig. 9. Young’s modulus (a) and Poisson’s ratio (b) of lumped element model with quadrilateral element.

Table 5
Comparison with other methods.

Element Method E m %erms %emax

Tri Gelder 15010.80 0.27 20.08 34.58
Lloyd et al. 10855.80 0.29 5.61 10.88
Our 2-norm 10300.70 0.25 3.02 5.65

Qua Baudet et al. 10330.50 0.34 1.06 2.07
Lloyd et al. 13097.10 0.44 4.84 8.20
Our 2-norm 11169.70 0.45 3.36 5.50

Tet Lloyd et al. 8671.48 0.03 7.75 14.65
Our F-norm 9697.49 0.09 9.37 15.72

Hex Baudet et al. 10712.50 0.12 3.67 6.99
Our 2-norm 10242.00 0.14 2.88 6.05

2 In the case for meshes with hexahedral elements, the object in Fig. 6b
was used instead of the test specimen in Fig. 8d, since the method by
Baudet et al., was only for uniform (i.e. cubic) shaped elements.
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applicable only for ‘‘cubic” elements. Also, for the tetrahe-
dral mesh case our proposed method resulted in an effec-
tive Young’s modulus value which is close to the desired
value than the method by Lloyd et al., even though the
actual %erms value are slightly higher.

We have also performed shearing tests in comparison
with other methods. In the two-dimensional case, we use
a 2 � 2 cm2 square object with triangular elements (101
nodes, 168 elements) and with quadrilateral elements
(121 nodes, 100 elements). In the three-dimensional case,
we use a 2 � 2 � 2 cm3 cube object with tetrahedral
elements (170 nodes, 592 elements) and with hexahedral
elements (729 nodes, 512 elements). The results of these
test are given in Table 6. Our proposed method in shearing
test gives the best result in triangular and tetrahedral
elements, and comparable results in hexahedral element.

3.5. Real world application example

The proposed method to determine the elasticity
parameters of lumped element model is implemented
and used as part of a prototype surgical simulator, namely,
an endoscopic neurosurgery training simulator for the

third ventriculostomy procedure. The third ventriculos-
tomy procedure is used for endoscopic treatment of hydro-
cephalus, a life threatening neurological disorder which is
caused by a blockage in the ventricles of the brain and
causes an enlargement of the ventricles. Endoscopic third
ventriculostomy procedure involves making a hole at the
third ventricle floor with a catheter and enlarging the hole
with balloon inflation. This procedure allows cerebrospinal
fluid to flow normally and reduce the pressure in the brain.
The simulator has been developed by using GiPSi frame-
work [38] and tested on the Microsoft Windows XP(TM)
32-bit based workstation with Intel Pentium D 2.80 GHz,
1 GB of RAM and a PCI-express NVidia GeForce 8800 Ultra
Graphics Card with 768 MB of memory. The geometric
models of the anatomy used in the simulator are obtained
from a commercial company. The area of interest, the third
ventricle floor, is modeled by a high resolution lumped ele-
ment model by using parameters determined using the
proposed method (Fig. 10a). The overall simulation con-
sisted of 22 simulation objects, 13 texture objects and 3
connectors. The ventricle system model (excluding the
floor of the third ventricle) was composed of 9145 nodes
and 17942 faces with a quasi static spring model, and the
ventricle floor model was composed of 558 nodes and
1050 faces with lumped element model of 558 masses
and 1607 springs. The implicit Euler numerical integration
method with simulation time step of 0.01 second was used
for lumped element model in simulation. The simulator
operated at about 30 frames per second (Fig. 10b).

4. Discussion and conclusion

In this paper, a systematic method to determine mass
and spring constants of lumped element models of deform-
able objects is presented. The lumped element model
parameters are determined using a finite element model
as a reference model by minimizing the error the stiffness
matrices of the finite element and lumped element
models through an optimization. The proposed method is

Table 6
Shearing tests in comparison with other methods.

Element Method Shearing

%erms %emax

Tri Gelder 17.25 34.17
Lloyd et al. 5.04 10.73
Our 2-Norm 3.68 8.60

Qua Baudet et al. 3.60 8.28
Lloyd et al. 3.64 8.85
Our 2-Norm 3.82 11.28

Tet Lloyd et al. 5.68 15.16
Our F-Norm 5.30 14.55

Hex Baudet et al. 3.86 9.36
Our 2-Norm 3.96 9.37

(a) (b)
Fig. 10. The proposed method in real world application (a) the third ventricle floor is extracted for creating the lumped element model from geometric
model and (b) the third ventricle floor captured from simulation.
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demonstrated by several test objects in two and three
dimension with triangular, quadrilateral, tetrahedral, and
hexahedral elements. Using 2-norm yielded better results
in triangular and hexahedral elements, whereas using F-
norm yielded better result in quadrilateral and tetrahedral
elements. The time complexity by using F-norm is shown to
be an order-of-magnitude less than using 2-norm. It is also
shown that, with the proposed method, the Young’s modu-
lus of the objects are well approximated. However, it is not
possible to control the Poisson’s ratio of the lumped
element model independently as it was also observed by
other researchers [29,30,32]. The proposed method is also
shown to give results better than or comparable to other
existing methods in the literature. The proposed method
is also shown to be more flexible than existing methods
in the literature as it can be applied to any type of elements
in two or three-dimensions, and does not have any under-
lying assumptions on material parameters.

The proposed method is based on the constructing LEM
models using fully connected ‘‘elements” which are analo-
gous to elements in FEM models, so that the stiffness
behavior of the LEM ‘‘elements” are matched to that of
FEM elements. Therefore, the presented approach, in its
proposed form, is not applicable to interlaced or arbitrarily
connected LEM models. The existing approaches in the lit-
erature [27,29,30,32] try to derive analytical relationships
between LEM model parameters and the underlying mate-
rial properties. As discussed in Section 2, the LEM models
are not structurally capable of representing arbitrary mate-
rial behaviors. Therefore, such analytical approaches re-
quire a priori assumptions that make the analytical
derivations possible. For example, for triangular elements,
Lloyd et al. assumes that the material has a Poisson ratio of
1/3 and the elements are shaped as equilateral triangles (in
Section 3.3 of [32]) in order to be able to match LEM and
FEM stiffness matrices. However, such a priori assump-
tions bias these algorithms to be more accurate under
the specific conditions for which the analytical relation-
ships are derived. In contrast, the proposed approach esti-
mates LEM ‘‘elements” elasticity parameters numerically
by trying to approximate FEM input–output relationships,
and therefore, does not rely on such assumptions. It is con-
jectured that this is the reason that the proposed algorithm
produces results better than or comparable to the other
existing methods.
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Appendix A. Formulation

The basic FEM and LEM model equations are summa-
rized here in order to clarify the notation and formulations
used in the paper, and to aviod any potential errors that
may result from different notations used in the literature.

A.1. Finite element models (FEM)

Finite element method is a systematic technique for
obtaining the spatial discretization of the partial differen-
tial equation describing the continuum behavior of
deformable objects. In this section, we will introduce the
basic formulation of the finite elements method. Please re-
fer to [40,41] for detailed treatments of the finite elements
method. The formulation is based on the total Lagrangian
form of the field equations that govern the dynamic behav-
ior of elastic bodies, as given by [42–44].

We will consider the following finite element approxi-
mation on each element

xðp; tÞ ¼
XNEN

I¼1

Ne
I xe

I ðtÞ; ðA:1Þ

where x(p, t) is the deformation field of the body as a func-
tion of the material point coordinates p and time t,
Ne

I ; I ¼ 1 � � �NEN, is the isoparametric set of approximation
functions (shape functions), NEN is the number of node in
element, and xe

I ; I ¼ 1 � � �NEN, are the coordinates of the
nodes of the element.

At the element level, the FEM model equations are in
the form

Me €̂xe þ Reðx̂eÞ ¼ Fe; ðA:2Þ

where

xe ¼

xe
1

xe
2

..

.

xbe
NEN

266664
377775; ðA:3Þ

and,

Me ¼
R

Xe
0

NeTq0NedV is the element mass matrix;

Re ¼
R

Xe
0

BeT SðNex̂eÞdV is the stress divergence term;

Fe ¼
R

Xe
0

NeT b0dV þ
R
@Xe

0\S20
NeT�sdA is the external force vector:

ðA:4Þ

In (A.4),

Ne ¼ Ne
1I Ne

2I � � � Ne
NENI

� �
; ðA:5Þ

Be ¼ Be
1 Be

2 � � � Be
NEN

� �
; ðA:6Þ

Be
I ¼

Ne
I;1 0 0

0 Ne
I;2 0

0 0 Ne
I;3

Ne
I;2 0 0

0 Ne
I;3 0

0 0 Ne
I;1

Ne
I;3 0 0

0 Ne
I;1 0

0 0 Ne
I;2

26666666666666666664

37777777777777777775

; ðA:7Þ

b0 is the body force, q0 is the mass density at the reference
configuration, Xe

0 is the regular region in R3 that is
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occupied by the element in the reference configuration, �s is
the surface traction that may be prescribed as part of the
object boundary conditions, @Xe

0 \ S20 is part of the bound-
ary of the element where surface traction is prescribed
(which may be an empty set), and

S ¼

rxx

ryy

rxz

rxy

rxz

ryz

2666666664

3777777775
ðA:8Þ

is the stress vector. r�� are the components of the Cauchy
stress tensor. The subscript notation is used in (A.7); for
example, n3,1 is the partial derivative of the third compo-
nent of n with respect to its first variable.

In the element equations, the matrix Me is dense since the
element shape functions Ne

I are not typically mutually
orthogonal. The matrix Me is sometimes approximated with
a diagonal matrix by using nodal quadrature to decrease
computational cost, but this is by no means inherent to the fi-
nite element method. The same is true for the function Re, i.e.
the ‘‘force” on any node depends on the nodal variables of all
the other nodes within the element, as given above in (A.4)
and (A.2). Therefore, in FEM formulation, the degrees of free-
dom are fully connected within an element.

After the element level equations are assembled, the
resulting system is in the form

M€̂xþ Rðx̂Þ ¼ F; ðA:9Þ

which is a system of ordinary differential equations.
For the assembled set of equations, the variables for the

elements are connected only by the degrees of freedom
shared between elements. This results in a typical banded
structure for the matrix M and a similar dependence in the
function R.

A.2. Linear elastic material properties

If the displacement gradient is small and the residual
stress in reference configuration vanishes, then the
stress–strain relationship of the material can be approxi-
mated by linearization. Specifically, for an isotropic mate-
rial, the stress–strain relationship can be parameterized
by k and l, which are called the Lame’s constants.

For three-dimensional elasticity, six components of
stress and strain exist and the stresses are related to the
strains by Hooke’s law as follows:

rxx

ryy

rzz

rxy

rxz

ryz

2666666664

3777777775
¼

kþ 2l k k 0 0 0
k kþ 2l k 0 0 0
k k kþ 2l 0 0 0
0 0 0 l 0 0
0 0 0 0 l 0
0 0 0 0 0 l

2666666664

3777777775

exx

eyy

ezz

2exy

2exz

2eyz

2666666664

3777777775
:

ðA:10Þ

where e�� are the components of the infinitesimal strain
tensor.

Two-dimensional elasticity is categorized into two
cases: plane strain and plane stress. Plane strain is used
when the thickness of an object is large, while plane stress
is used when the thickness of an object is small compared
to its overall dimensions. Both cases are subset of general
three-dimensional elasticity problems. The stress strain
relation in plane stress case is given by:

rxx

ryy

rxy

264
375 ¼

4lðkþlÞ
kþ2l

2kl
kþ2l 0

2kl
kþ2l

4lðkþlÞ
kþ2l 0

0 0 l

2664
3775

exx

eyy

2exy

264
375; ðA:11Þ

and for the plane strain case, it is given by:

rxx

ryy

rxy

264
375 ¼ kþ 2l k 0

k kþ 2l 0
0 0 l

264
375 exx

eyy

2exy

264
375: ðA:12Þ

A.3. Lumped element models (LEM)

Lumped element models are meshes of mass, spring
and damper elements. Lumped masses at the nodes of
the mesh are interconnected by spring and damper ele-
ments. The equations of motion are the collection of the
Newton’s equations written for the individual nodal
masses.

For each nodal mass, the equation of motion is in the
form

mi€xi þ KiðxÞ ¼ Fi ðA:13Þ

with Fi being the external force on the node, such as grav-
ity, and

KiðxÞ ¼
X

fi;jconnectedg
fðxi;xjÞ þ

X
fi;j;kconnectedg

gðxi;xj; xkÞ; ðA:14Þ

where f(�, �) is the force from a linear spring and the g(�, �, �)
is the force from an angular spring. A typical expression
used for linear springs is

fðx1;x2Þ ¼ kðkx1 � x2k � L0Þ
x1 � x2

kx1 � x2k
: ðA:15Þ

For the angular springs, the force expression is in the form

gðx1; x2;x3Þ ¼ kðh� h0Þ
x1 � x2

kx1 � x2k
� x2 � x3

kx2 � x3k

� �
� x1 � x2

kx1 � x2k
: ðA:16Þ

These expressions are for negative force acting on node x1,
due to the a spring between x1, x2 and an angular spring
between x1, x2, x3. L0 is the rest length of the linear spring
and h0 is the rest angle of the angular spring. The angular
springs are typically used to enforce C1 continuity in the
mesh. In this work, we use only linear spring for simplicity.

The connectivity in LEM depends on the types of the
springs used. The force on any node depends on the nodes
that connected to through springs. This results are in a
sparse system of equations, similar to the finite element
models.
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[38] M.C. Çavus�oğlu, T. Goktekin, F. Tendick, GiPSi: a framework for open
source/open architecture software development for organ level
surgical simulation, IEEE Transactions on Information Technology
in Biomedicine 10 (2) (2006) 312–321.

[39] T. Klemens, E. Lund, B.F. Srensen, Optimal shape of thin tensile test
specimen, Journal of the American Ceramic Society 90 (2007) 1827–
1835.

[40] J.N. Reddy, An Introduction to the Finite Element Method, second ed.,
McGraw-Hill, Inc., 1993.

[41] K. Bathe, Finite Element Procedures, Prentice-Hall, Inc., Englewood
Cliffs, NJ, USA, 1996.

[42] M.E. Gurtin, An Introduction to Continuum Mechanics, Academic
Press, New York, NY, USA, 1981.

[43] M.E. Gurtin, Topics in Finite Elasticity, Society for Industrial and
Applied Mechanics, Philadelphia, PA, USA, 1981.

[44] J.E. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity,
Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1983.
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