GiPSi: An Open Source/Open Architecture
Software Development Framework for Surgical Simulation

Tolga G. Goktekin?, M. Cenk Cavusoglu'
in collaboration with

Frank Tendick®, Shankar Sastry?

L:Dept. of Electrical Eng. and Computer Sci., Case Western Reserve University
cavusoglu@case.edu
2 :Dept. of Electrical Eng. and Computer Sci., University of California, Berkeley
goktekin,sastry@eecs.berkeley.edu
3 :Dept. of Surgery, University of California, San Francisco
tendick@eecs.berkeley.edu

March 12, 2004

Abstract

In this paper we propose an open source/open architecture framework for developing organ
level surgical simulations. Our goal is to facilitate shared development of reusable mod-
els, to accommodate heterogeneous models of computation, and to provide a framework
for interfacing multiple heterogeneous models. The framework provides an intuitive API
for interfacing dynamic models defined over spatial domains. It is specifically designed
to be independent of the specifics of the modeling methods used and therefore facilitates
seamless integration of heterogeneous models and processes. Furthermore, each model has
separate geometries for visualization, simulation, and interfacing, allowing the model devel-
oper to choose the most natural geometric representation for each case. I/O interfaces for
visualization and haptics for real-time interactive applications have also been provided.

Chapter 1

Introduction

Computer simulations have become an important tool for medical applications, such as
surgical training, pre-operative planning, and biomedical research. However, the current
state of the field of medical simulation is characterized by scattered research projects using
a variety of models that are neither inter-operable nor independently verifiable models.
Individual simulators are frequently built from scratch by individual research groups without
input and validation from a larger community. The challenge of developing useful medical
simulations is often too great for any individual group since expertise is required from
different fields. The motivation behind this study is our prior experience in surgical training
simulators and physically based modeling [11, 12].

The open source, open architecture software development model provides an attractive
framework to address the needs of interfacing models from multiple research groups and the
ability to critically examine and validate quantitative biological simulations. Open source
models ensure quality control, evaluation, and peer review, which are critical for basic sci-
entific methodology. Furthermore, since subsequent users of the models and the software
code have access to the original code, this also improves the reusability of the models and
inter-connectibility of the software modules. On the other hand, an open architecture sim-
ulation framework allows open source or proprietary third party development of additional
models, model data, and analysis and computation modules.

The key technical issues that need to be addressed in the development of an open source,
open architecture simulation framework are:

1. Abstraction: In the context of surgical simulation, model abstraction is an impor-
tant consideration. Within a general modeling and simulation framework, different
applications and different problems require different types or levels of abstraction for
the each of the processes and components in the model. For example in a heart model,
the beating of the heart can be modeled as an electro-chemically activated mechanical
process, or it can be modeled as a finite state machine, with each state corresponding
to a discrete phase of the heart cycle. These are different types of abstractions for the
same process. It is also possible to have different level of abstractions: by modeling
the heart muscle contraction starting at the individual cell level, or at tissue level or
at the level of the whole organ. In surgical simulations, it is most important to have
an accurate model of the mechanical manipulation of the heart. Hence, when model-

ing effects of medications in a heart surgery simulation it may be sufficient to use an
abstraction which include the aggregate physiological effects of different medications
used during the procedure to the extent they effect the electrical and mechanical ac-
tivity of the heart, instead of modeling all the processes going on at the cell or tissue
level. However, in a simulation to study the effects of an experimental drug, it would
be necessary to have a more detailed and accurate model of these processes. There-
fore, the simulation framework developed needs to be able to accommodate different
types and levels of abstraction for each of the different subcomponents in the model
hierarchy, without artificially limiting the possibilities based on the requirements of a
specific application.

. Heterogeneous physical mechanisms and models of computation: Another
issue that arises with the varying types of abstractions is the requirement on the sim-
ulation engine to be able to handle heterogeneous physical mechanisms (e.g. solid
mechanics, fluid mechanics and bioelectricity) and models of computation (e.g. dif-
ferential equations, finite state machines and hybrid systems). The simulator kernel
and the application interfaces need to have support for hybrid models of computation,
i.e. computation of continuous and discrete deterministic processes, and stochastic
processes, which can be used to model basic biological functions.

. Interfacing models of different physical processes: In order to simulate a com-
plex biological system, models of different physical processes, which may even use dif-
ferent models of computation, need to be coupled together. Therefore, it is necessary
to develop standard model interfaces in the form of software APIs for interconnection
of these models. There are two key aspects of this API: 1) interfacing multiple phys-
ical processes at the semantic level, 2) coupling multiple models of computation at
the structural level. The semantic level specifies how the different physical quantities
are coupled at the interface, including the semantics of the coupling, and the struc-
tural level specifies how the interfacing is achieved at the specifics of the individual
computational models used.

. Modularity through encapsulation and data hiding: The API and the overall
framework needs to be able to support hierarchical models and abstraction of the
input-output behavior of individual layers or subsystems for the level of detail desired
from the simulation model. The object oriented programming concepts of encapsula-
tion and data hiding facilitates the modularity of the components. This also provides
mechanisms to interface and embed the constructed models and other computational
modules to a larger, more sophisticated model.

. Validation: Validation of the models and the underlying empirical data is a basic
requirement for reusability of the models. It is also important to have mechanisms
to track the assumptions of the individual models and model data within a complex
simulation environment, to ensure that the aggregate assumptions behind the models
and the abstractions satisfy the requirements of the application at hand.

. Customization to patient specific physiology: In surgical planning and preoper-
ational rehearsals, it is necessary to use the patient specific models during simulation.

Therefore the models in the simulation need to be customizable. This actually ties
to the open architecture design of the simulation framework. The open architecture
approach should allow loading and working with custom data sets generated by third
parties.

In this report we describe GiPSi (General Interactive Physical Simulation Interface),
an open source/open architecture framework for developing surgical simulations such as
interactive surgical training and planning systems. The main goal of this framework is to
facilitate shared model development and simulation of organ level processes as well as data
sharing among multiple research groups. To address these, we focused on the first four
of the technical aspects mentioned above: Model abstraction, support for heterogeneous
models of computation, APIs for interfacing various heterogeneous physical processes, and
modularity. In addition, I/O interfaces for visualization and haptics for real-time interactive
applications have been provided. The implementation of the framework is done using C+-+
and it is platform independent.

An important difference of GiPSi from earlier object-oriented tools and languages for
modeling and simulation of complex physical systems, such as Modelica [8], Matlab Simulink
[7], and Ptolemy [3], is its focus on representing and enforcing time dependent spatial rela-
tionships between objects, especially in the form of boundary conditions between interfaced
and interacting objects. The APIs in GiPSi are also being designed with a special emphasis
on being general and independent of the specifics of the implemented modeling methods, un-
like earlier dynamic modeling frameworks such as SPRING [9] or AlaDyn-3D [6], where the
underlying models used in these physical modeling tools are woven into the specifications of
the overall frameworks developed. This allows GiPSi to seamlessly integrate heterogeneous
models and processes, which is not possible with the earlier dynamic modeling frameworks

[5].

1.1 Overview

One of the major goals of GiPSi is to provide a framework that facilitates shared develop-
ment that would encourage the extensibility of the simulation framework and the generality
of the interfaces allowing components built by different groups and individuals to plug to-
gether and reused. Therefore, modularity through encapsulation and data hiding between
the components should be enforced. In addition, a standard interfacing API facilitating
communication among these components needs to be provided.

We are developing our tools on a specific test-bed application: the construction of a heart
model for simulation of heart surgery. This test-bed model captures the most important
aspects of the general problem we are trying to address: i) multiple heterogeneous processes
that need to be modeled and interfaced, and i) different levels of abstraction possible
for the different processes. In the heart surgery simulation, several different processes,
namely physiology, bioelectrical activity, muscle mechanics, and blood dynamics, need to
modeled. Physiological processes regulate the bioelectrical activity, which, in turn, drives
the mechanical activity of the heart muscle. Muscle dynamics, coupled with the fluid
dynamics of the blood, determine the resulting motion of the heart [2]. Models for all
these processes need to be intimately coupled: the mechanical and fluid models through

Modeling Tools Computational Tools

NL Finite Element Models
Linear Finite Element Models |T~N—m7
Mass-Spring-Damper Models

e

Simulation Objects Input/Output
(Models)
>
| Haptic
Interface
S
- Visualization

T

Auxiliary
Functions

Parameters

Figure 1.1: The architecture of a GiPSi-based simulation system

a boundary interaction, and the electrochemical and mechanical models through a volume
interaction.

The overall system architecture of GiPSi is shown in Fig. 1.1. The models of physical
processes such as muscle mechanics of the heart are represented as Simulation Objects
(Sect. 2.1). Each simulation object can be derived from a specific computational model
contained in Modeling Tools such as finite elements, finite differences, lumped elements etc
(Sect. 3.1.2). The Computational Tools provide a library of numerical methods for low level
computation of the object’s dynamics (Sect. 3.1.1). These tools include explicit/implicit
ordinary differential equation (ODE) solvers, linear and nonlinear algebraic system solvers,
and linear algebra support. The objects are created and maintained by the Simulation
Kernel which arbitrates their communication to other objects and components of the system
(Sect. 3.2.2). One such component is the I/O subsystem which provides basic user input
provided through the haptic interface tools and basic output through visualization tools
(Sect. 2.2). There are also Auxiliary Functions that provide application dependent support
to the system such as collision detection and collision response tools that are widely used
in interactive applications (Sect. 3.2.1).

It is important to note that GiPSi is intended to be a general software development
framework rather than a complete simulation engine. The framework consists of the Sim-
ulation Object API, which also includes the object interfacing API, the Visualization API
and the Haptics API. The implemented Modeling Tools and Computational Tools form an
initial set of GiPSi compliant libraries to support development of GiPSi based simulations.
The Auxiliary Functions and the Simulation Kernel are completely application dependent,
and can not be specified as part of the API.

Chapter 2

Core GiPS1 API

2.1 Simulation Objects

In this framework, organs and physical processes associated with them are represented
as Simulation Objects. These objects define the basic API for simulation, interfacing,
visualization and haptics (see Fig. 2.1a).

Each Simulation Object can be a single level object implementing a specific physical
process or can be an aggregate of other objects creating a hierarchy of models depending
on the level of abstraction desired. For example, if we were interested only in muscle model
of a beating heart, then we would define the heart as a single object that simulates the
muscle mechanics. However, if we were to model a more sophisticated heart with both
muscle and blood models, then our heart object would be an aggregate of two objects, one
implementing the muscle mechanics and the other implementing the blood dynamics. The
specific coupling of these muscle and blood objects would be implemented at their aggregate
heart object (see Fig. 2.1c).

The majority of the models in organ level simulations involve solving multiple time vary-
ing PDEs that are defined over spatial domains and are coupled via boundary conditions,
e.g. a structural model representing the heart muscles coupled with a fluid model represent-
ing the blood which share the inner surface of the heart wall as their common boundary.
Our goal is to design a flexible API that facilitates the shared development and reuse of
models based on these PDEs. Therefore it is necessary to provide: i) a Simulation API iii)
an Interfacing APL

2.1.1 Simulation API

There are many different techniques for simulating a given physical process which impose
different requirement on the simulation API. In its most general form the simulation API
can only be abstracted to a single method Simulate(). Instead of enumerating through
each of the techniques and defining a special API for it, we focused on providing one that
facilitates development of the most challenging and widely used class of models, namely
systems of differential equations, in particular PDEs.

Class SimulationObject { Class Class
Geometry DisplayGeometry; FEMObject:SimulationObject { MSDObject:SimulationObject {
Domain DomainGeometry; FEMNode *Nodes; MSDNode *Nodes;
Boundary BoundaryGeometry; FEMElement *Elements; MSDSpring *Springs;
Simulate(); Assemble();
Display(); }
Haptics(); }
} Class Electrochemical:SimulationObject
)
/I User defined custom electrochemical model
}

Class Heart:SimulationObject {

Electrochemical Bioelectricity;
MSDObject Muscle;
FEMObject Blood;

c)

Figure 2.1: a) Simulation Object, b) Examples of modeling tool and user defined objects,
c) Heart object

Simulation API for PDE Based Models

The first step in solving a continuous PDE is to discretize the spatial domain it is defined
on. Therefore, every object must contain a proper geometry that describes its discretized
domain, called the Domain Geometry. The definition of this geometry is flexible enough to
accommodate the traditional mesh based methods as well as point based (mesh free) formu-
lations. GiPSi defines a set of geometries that can be used as a domain including but not
limited to polygonal surface and polyhedral volume meshes. In our current implementation
we provide geometries for triangular and tetrahedral meshes.

Second, a method for solving a PDE should be employed such as Finite Element Methods
(FEM), Finite Difference Methods (FDM) or Lumped Element (e.g. Mass-Spring-Damper
(MSD)) methods. This numerical computation is performed inside the Simulate() method.
In the current implementation, basic general purpose objects that implement some of these
methods are provided as Modeling Tools, e.g. there is a general customizable FEM object
that implements a basic non-linear finite element method for solid mechanics (see Fig. 2.1b).
GiPSi also provides a library of numerical analysis tools in the Computational Tools that
can be used to solve these discretized equations. Our current implementation provides
explicit and implicit integrators, some popular direct and iterative linear system solvers
and C++ wrappers around a subset of BLAS and LAPACK functions [1].

2.1.2 Interfacing API

The simulation API also needs to provide a standard means to interface multiple objects. In
the models mentioned above, the basic coupling of two objects are defined via the boundary
conditions between them. Therefore, we need to provide an API to facilitate the passing

of boundary conditions between different models. First, we need a common definition of
the boundary, i.e. each object needs to have a specific Boundary Geometry. In our current
implementation, we chose triangular surfaces as our standard boundary geometry. Even
though the type of the boundary geometry is fixed for every object, the values that can
be set at the boundary and their semantics are up to the model developer and should be
well documented. Based on this documentation, it is the application developer’s task to
interface two objects with different semantics on the boundary. For example, a generic
fluid object can compute velocities and pressures on its boundary. In order to interface it
with a structural object that requires forces on its boundary as boundary conditions, the
application developer needs to convert the boundary pressure values to boundary forces by
integrating the pressure on the boundary.

Use of boundary conditions is not the only interfacing scheme for objects. For example,
the coupling between the electrochemical and mechanical models (excitation-contraction
coupling) in the heart is through the commonly occupied volume rather than a shared
boundary. Therefore we need a common definition of the domain, i.e. each object needs to
have a specific Domain Geometry. In our current implementation, we chose 3D point clouds
and tetrahedral meshes as our standard domain geometries. A more general information
passing over the domain is provided by a simple point and element-wise Get/Set scheme,
i.e. an object can read and write values inside another object by simply using Get(value)
and Set(value) methods provided by the object respectively. The set of values that can be
get and set by other objects and their semantics are again left to the model developer. In
the above example, the electrochemical model sets the internal stress values of mechanical
model based on the excitation level which in turn result in the contraction of the muscles.

Both interfacing through a surface via boundary conditions and interfacing through a
volume (domain) via the Get/Set scheme are achieved by the use of the Connector classes.
Since the connection of two arbitrary models is application dependent, it is the application
developer’s task to construct these connectors. Fig. 2.2 shows two connector classes that
interface three basic models contained in the aggregate Heart model. The first connector
class provides basic communication between the Bioelectrical and Muscle models through
their volumetric domain. It basically gets the excitation levels from the Bioelectric models
(Domain 1), converts them to stress and sets the stress tensor values in the Muscle model
(Domain 2). The second connector interfaces the Lumped Fluid Blood model with the
Muscle model through their surfaces via boundary conditions. In this example the commu-
nication is in both ways. The connector class reads the displacement values on the Muscle
boundary (Boundary 1), converts them into velocity and passes the velocities to Fluid model
(Boundary 2) as boundary conditions. Similarly it receives the boundary pressure values
from Boundary 2, converts them into forces and passes them to Boundary 1 as traction
values on the boundary.

2.2 Input/Output Subsystem

The Input/Output subsystem provides basic tools for visualizing and interacting with the
objects. Currently, GiPSi provides haptics tools for input and visualization tools for output.
These tools provide modularity and encapsulation of data, and define a standard API for
model developers.

Bioel ectricity (Electrochemical) Si mObject Heart Blood (FEM Fluid)
BoundaryGeometry BoundaryGeometry’
DomainGeometry DomainGeometry
GetBoundaryCondition() '—
Get()
SetBoundaryCondition()
Y

4

Muscle to
Blood Connector

Bioelectricity to
Muscle Connector

Boundary 1 | | Boundary 2
> itati Displacement to Velocit
Excitation to Stress pl y

Pressure to Force

\

Muscle (MSD Solid),

BoundaryGeometry
e ——
DomainGeometry

GetBoundaryCondition()

SetBoundaryCondition() |«

Get()

(0]

Figure 2.2: Connector class example

2.2.1 Visualization API

Visualization of an object involves displaying the geometry of the object on the screen
using a visualization library such as OpenGL, VTK, DirectX etc. The key requirement is
development of an API, such that, the actual mechanics of the display specific to a given
visualization library is transparent to the model developer. Therefore, the API needs to
separate the specifics of what needs to be displayed, which is determined by the model
developer, from the specifics of how the actual display happens.

In order to display an object we need a geometry dedicated for visualization. This
geometry is called the Display Geometry and can be of any type of geometry defined in
GiPSi. However, for modularity, these geometries need to be converted into a standard
form. This is done by the Display Managers associated with each display geometry. Display
managers convert the data in geometries into a standard format used by the visualization
module where the actual display takes place. Then the visualization tool accesses this
data through the object pool maintained by the simulation kernel and displays it. This
makes the development of visualization tools and development of models mutually exclusive
and ensures the modularity and the flexibility of the system. In our current design, the
standard format used is simply the list of vertex positions, vertex normals, vertex colors
and connectivity information. In our current implementation we use OpenGL for actual
display.

2.2.2 Haptics API

Haptic interfaces require significantly higher update rates, usually in the order of 1 kHz,
than are possible for the rest of the physical models, which are typically run at update

rates in the order of 10 Hz. It is not possible to increase the update rate of the physical
models to the haptic rate with their full complexity due to computational limitations, or to
decrease the haptic update rate to physical model update rates due to stability limitations.
GiPSi handles this conflicting requirements using a multi-rate simulation scheme proposed
by Cavugoglu in [4]. In this method, each simulation object in haptic interaction provides
local dynamic and geometric models for the haptic interface. The local dynamic model
is a low-order linear approximation of the full deformable object model, constructed by
the simulation object from the full model at its update intervals, and the local geometric
model is a planar approximation of the local geometry of the simulation object at the
haptic interfacing location. These local models are used by the haptic interface, running at
a significantly higher update rate than the dynamic simulations, for estimating the inter-
sample interaction forces and inter-sample collisions.

The Haptic I/O module completely encapsulates the haptic interface and its real-time
update rate requirements, and provides a standard API for all of the simulation objects
which will be haptically interactive. The interface between the haptic I/O module and
the simulation objects is through the local dynamic and geometric models provided by the
simulation objects, and the haptic instrument location and interaction forces provided by
the haptic I/O module. The instrument-object interaction forces are applied to the objects
through the object boundary conditions and the instrument-object collision detections are
handled no differently than the regular object-object collisions.

Chapter 3

Other Components of (GiPSi

3.1 GiPSi Toolset

3.1.1 Computational Tools

GiPSi implementation provides a set of computational tools to support the simulation of
algebraic and differential equation based models. The computational tools include basic
linear algebra operations on vectors and matrices, explicit numerical integrators, some pop-
ular direct and iterative linear system solvers, and C++ wrappers around a subset of BLAS
and LAPACK functions [1].

Basic vector and matrix operations are the backbones of any simulation framework.
GiPSi provides a C++ based matrix and vector operations toolbox. In this toolbox, ba-
sic vector and matrix classes implement the vector-scalar, vector-vector, vector-matrix,
matrix-scalar, and matrix-matrix algebraic operations, basic matrix inversions, and simple
I/O functions. Another important enabling tools required for development of numerical
simulations is the linear algebraic system solvers. Pseudo-inverse and LU decomposition
techniques are provided as direct linear system solvers by means of C++ wrappers around
LAPACK functions. Conjugate Gradient, Jacobi, and Successive Over-Relaxation algo-
rithms are the iterative linear solvers implemented. Finally, GiPSi also provides a suite of
numerical integrators: a number of popular single and multi-step explicit methods, including
Runge-Kutta and Adams-Bashford algorithms, are implemented.

3.1.2 Modeling Tools

GiPSi provides two sample modeling tools in the current implementation, namely Nonlinear
Finite Elements based solid mechanics model (FEM_Object), and a Lumped Element solid
mechanics model (MSD_Object). The FEM_Object is a basic geometrically nonlinear FEM
model which uses linear tetrahedral elements to model linear viscoelastic solid materials.
The MSD_Object is a simple Mass-Spring-Damper based geometrically nonlinear lumped
element model which can be used to model deformable solids.

10

FEM_Object

For the FEMObject we followed the formulation in [10] which uses an explicit discretization
of a geometrically nonlinear linear elasticity model.

MSD _Object

Lumped element models are meshes of mass, spring and damper elements. Lumped masses

at the nodes of the mesh are interconnected by spring and damper elements. Equations of

motion are the collection of the Newton’s equations written for the individual nodal masses.
For each nodal mass, the equation of motion is in the form

miX; = Fi(X,X) + F¢ (31)
with F, being the external force on the node, such as gravity, and

Fl(X) = Z f(XZ',Xj) + Z g(XZ’,Xj,XZ',X.j) (32)

{i,j connected} {i,j connected}

where f(-,-) is the force from a linear spring and the g(-,-,-,-) is the force from a linear
damper. A typical expression used for linear springs is

f(x1,%x2) = k([[x1 — xaf| — Lo)(x2 — x1)/([[x1 — x2]). (3.3)

For the linear damper, the force expression is in the form

X1 — X9 > X2 — X1 (
3.4)
|

g(Xl,Xg,Xi,X.j) =b ((Xl - X2) ' ”Xl — XQH

|x1 = xo|
These expressions are for force acting on node x1, due to the a spring and damper between
X1,X2. Lo is the rest length of the linear spring.

3.2 Other Functionality Needed for Interactive Simulation
System Development

3.2.1 Collision Detection/Collision Response

In interactive surgical simulations one needs to detect collisions to prevent penetration be-
tween objects in the system, such as organ models and tools used during surgery. Therefore
collision detection (CD) and collision response (CR) play an important role. In our frame-
work, CD module detects the collisions between boundary geometries of different models
and the CR module computes the required response to resolve these collisions in terms of
displacements and/or penalty forces and communicates the result to the models as displace-
ment or force based boundary conditions. The models process these boundary conditions if
necessary and iterate. As a result, the mechanics of contact detection and resolution is done
by the application developer, and therefore becomes transparent to the model developer.
Hence, the framework is flexible enough to accommodate a wide variety of CD/CR schemes.

11

3.2.2 Simulation Kernel

The simulation kernel acts as the central core where everything above comes together. Since
the simulation kernel completely represents the application itself, it needs to be specified
entirely by the application developer. Its tasks include the management of the top level
object pool, coordination of the object interactions, and arbitration of the communication
between the components. This involves establishing the execution order of the models and
the specific interfacing between them, allowing the application developer to properly specify
the semantics of the individual top level objects and the interfacing between them, based
on the specific application that the simulation is being developed for.

12

Acknowledgements

This research was supported in part by National Science Foundation under grants CISE IIS-
0222743, CDA-9726362 and BCS-9980122, and US Air Force Research Laboratory under
grant F30602-01-2-0588. We also would like to thank Xunlei Wu for his valuable discussions
and feedback.

13

Chapter 4

Appendix

4.1 Class Hierarchy

The class hierarchy is shown in figures 4.1-4.7.

Point

Vertex

Figure 4.1: Primitive class hierarchy

Geometry
PointCloud
[|
TriSurface TetVolume
Boundary Domain
FEMBoundary FEMDomain CardiacBioEDomain

Figure 4.2: Geometry class hierarchy

14

SimObject

[[

I

MSDObject FEM3LMObject CardiacBioEObject

Figure 4.3: SimObject class hierarchy

Connector

I

FEM3LM_LumpedFluid_Connector

FEM3LM_CardaicBioE_Connector

Figure 4.4: Connector class hierarchy

Element

[[

I |

Triangle Tetrahedra

Spring FEMElement

— 1

Triangle2DFEMElement

[

Triangle3DFEMElement

Tetrahedra3DFEMElement

Figure 4.5: Connector class hierarchy

Integrator

Euler RK3

AB3

Figure 4.6: Integrator class hierarchy

15

DisplayManager

—

TriSurfaceDisplayManager

[

TetVolumeDisplayManager

Figure 4.7: Display Manager class hierarchy

16

4.2 Core GiPSi API Specification

4.2.1 Geometric Primitives

Name | Type Description

Class Name Point Base class for all point like primitives,
e.g. vertex, node

Parent Class

Public Fields refid unsigned int Reference ID number
pos Vector<Real> | Position

Protected Fields

Constructors Point()

Public Methods

Protected Methods

Name Type Description
Class Name Vertex Base class for vertex primitive
Parent Class Point
Public Fields n Vector<Real> | Normal

valence | int Degree

color Vector<Real> | Color

texcoord | Vector<Real> | Texture coordinates
Protected Fields

Constructors Vertex()

Public Methods Initialize
void init (unsigned int refid, Real *pos, Real *n, Real *color)

Protected Methods

Name Type Description
Class Name Element Base Element Class
Parent Class
Public Fields refid unsigned int | Reference id
Protected Fields
Constructors Element|()

Public Methods

Protected Methods

17

Name Type

Description

Class Name Triangle Basic triangular element
Parent Class Element
Public Fields n Vector<Real> | Normal vector

vertex[3] | Vertex*

Vertices

Protected Fields

Constructors

Triangle()

Public Methods

Initialize

void init(unsigned int refid, Real *n, Vertex **vertex)

Protected Methods

Name Type Description
Class Name Tetrahedra Simple Tetrahedral element
Parent Class Element
Public Fields vertex|[4] Vertex* | Vertices
Protected Fields
Constructors Tetrahedra()
Public Methods Initialize

void init(unsigned int refid, Vertex **vertex)

Protected Methods

18

4.2.2 Geometry API

Name Type Description
Class Name PointCloud Base class for point cloud geometry
Parent Class Geometry
Public Fields vertex Vertex * | Vertex array
num_vertex int Number of vertices
Protected Fields

Constructors

PointCloud(float r, float g, float b, float a)

Public Methods

Loader for .obj files
void Load(char*)

Translate object in space
void Translate(float tx, float ty, float tz)

Rotate object in space
void Rotate(Real angle, Real ax, Real ay, Real az)

Scale dimensions of the object
void Scale(float sx, float sy, float sz)

Protected Methods

Name Type Description
Class Name TriSurface Base class for simple triangular geome-
try class
Parent Class PointCloud
Public Fields face Triangle * | Face array
num _face int Number of faces
Protected Fields

Constructors

TriSurface(float r, float g, float b, float a)

Public Methods

Loader for .obj files
void Load(char*)

Calculate surface normals
void calcNormals(void)

Protected Methods

19

Name Type Description
Class Name TetVolume Tetrahedral volume geometry
Parent Class PointCloud
Public Fields face Triangle * Face array

num_face int Number of faces

tet Tetrahedra * | Tetrahedra Array

num_tet int Number of tetrahedra
Protected Fields

Constructors

TetVolume(float r, float g, float b, float a)

Public Methods

Initialize
void init(int num_vertex, int num_face, int num_tet)

Loader for .obj files
void Load(char*)

Loader for Pyramid files
void Load(LoadData*)

Calculate Normals
void calcNormals(void)

Protected Methods

Name Type | Description
Class Name Boundary Base Boundary class
Parent Class TriSurface
Public Fields
Protected Fields
Constructors
Public Methods
Protected Methods
Name Type | Description
Class Name Domain Base Domain class
Parent Class TetVolume

Public Fields

Protected Fields

Constructors

Public Methods

Protected Methods

20

4.2.3 Explicit Numerical Integrators API

Name

Type

Description

Class Name

Integrator

Basic explicit numerical integration class
(Templated with system class)

Parent Class

Public Fields

Protected Fields

Constructors

Public Methods

Integrate one time step
virtual void Integrate(S &system, Real h)

Protected Methods

21

4.2.4 Simulation Object API

Name Type Description
Class Name SIMObject Base Simulation Model class
Parent Class
Public Fields displayMngr | DisplayManager * | Display manager associated
with this model
Protected Fields name char * Name of the model
geometry Geometry * Display geometry
boundary Boundary * Boundary geometry
domain Domain * Domain geometry
time Real Local time
timestep Real Local time step

Constructors

SIMObject(char* name, Real time, Real timestep)

Public Methods

Get name of the model
char* GetName(void)

Set name of the model
void SetName(char* newname)

Get models’s local time step
Real GetTimestep(void)

Set models’ local time step
void SetTimestep(Real dt)

Get model’s local time
Real GetTime(void)

Set model’s local time
void SetTime(Real t)

Get pointer to the display geometry

Geometry™* GetGeometryPtr(void)

Get pointer to the boundary geometry

Boundary* GetBoundaryPtr(void)

Get pointer to the domain geometry
Domain* GetDomainPtr(void)

Load model

virtual void Load(char* filename)

Display model

virtual void Display(void)

Setup display maqgnager and data for the model
virtual void SetupDisplay(void)

Simulate the model
virtual void Simulate(void)

Protected Methods

22

4.2.5 Connector API

Name Type Description

Class Name Connector Base connector class

Parent Class

Public Fields

Protected Fields boundaries | Boundary * | List of connected boundaries
domains Domain * List of connected domains

Constructors

Public Methods

Perform communication between the connected models
virtual void process(void)

Protected Methods

4.2.6 Display Manager API

Name Type Description
Class Name DisplayManager Base display manager class
Parent Class
Public Fields
Protected Fields display DisplayArray | Standard display data filled

in by the manager

Constructors

DisplayManager(const DisplayHeader &inheader)

Public Methods

Get header information
void GetDisplayHeader(DisplayHeader &outheader)

Set header information
void SetDisplayHeader(const DisplayHeader &inheader)

Get pointer to display data
DisplayArray™* GetDisplay(void

Display (i.e update the display array)
virtual void Display(void)

Protected Methods

23

Name Type

Description

Class Name

TriSurfaceDisplayManager

Display manager
for the triangular
surface geometry

Parent Class DisplayManager

Public Fields

Protected Fields geometry TriSurface * | The triangular
surface geometry
to display

Constructors

TriSurfaceDisplayManager

(TriSurface* ingeometry, DisplayHeader &inheader)

Public Methods

Display (i.e update the display array)
void Display(void)

Protected Methods

Name Type

Description

Class Name

TetVolumeDisplayManager

Display manager
for the tetrahe-
dral volume ge-
ometry

Parent Class DisplayManager
Public Fields
Protected Fields geometry TetVolume * | The tetrahedral

volume geometry
to display

Constructors

TetVolumeDisplayManager

(TetVolume* ingeometry, DisplayHeader &inheader)

Public Methods

Display (i.e update the display array)
void Display(void)

Protected Methods

24

Bibliography

[1]

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du
Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’
guide (3rd ed.). STAM, 1999.

R. M. Berne and M. N. Levy, editors. Principles of Physiology. Mosby, Inc., St. Louis,
MO, third edition, 2000.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for sim-
ulating and prototyping heterogeneous systems. Int. Journal of Computer Simulation
special issue on Simulation Software Development, 1994.

M. C. Cavusoglu and F. Tendick. Multirate simulation for high fidelity haptic inter-
action with deformable objects in virtual environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2000), pages 2458-2465,
April 2000.

S. Cotin, D. W. Shaffer, D. A. Meglan, M. P. Ottensmeyer, P. S. Berry, and S. L.
Dawson. CAML: A general framework for the development of medical simulations. In
Proceedings of SPIE Vol. 4037: Battlefield Biomedical Technologies I, 2000.

A. Joukhadar and C. Laugier. Dynamic simulation: Model, basic algorithms, and
optimization. In J.-P. Laumond and M. Overmars, editors, Algorithms For Robotic
Motion and Manipulation, pages 419-434. A.K. Peters Publisher, 1997.

Mathworks, Inc. Simulink. http://www.mathworks.com/products/simulink/.

Modelica — A Unified Object-Oriented Language for Physical Systems Modeling; Lan-
guage Specifications 2.0. The Modelica Association, 2002. http://www.modelica.org/.

K. Montgomery, C. Bruyns, J. Brown, S. Sorkin, F. Mazzella, G. Thonier, A. Tellier,
B. Lerman, and A. C. Menon. Spring: A general framework for collaborative, real-

time surgical simulation. In J. Westwood et al., editor, Medicine Meets Virtual Reality
(MMVR 2002), Amsterdam, 2002. I0S Press.

James F. O’Brien and Jessica K. Hodgins. Graphical modeling and animation of brittle
fracture. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pages 137-146. ACM Press/Addison-Wesley Publishing Co.,
1999.

25

[11] F. Tendick, M. Downes, T. Goktekin, M. C. Cavusoglu, D. Feygin, X. Wu, R. Eyal,
M. Hegarty, and L. W. Way. A virtual environment testbed for training laparoscopic
surgical skills. Presence, 9(3):236-255, June 2000.

[12] X. Wu, M. S. Downes, T. Goktekin, and F. Tendick. Adaptive nonlinear finite elements
for deformable body simulation using dynamic progressive meshes. In Proceedings of
the EUROGRAPHICS 2001, September 2001.

26

