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Abstract— This paper studies the characteristics of excitable
cell mathematical models, with the goal of developing new
insights and techniques in simulating the electrical behavior of
the human heart. While very simple models of such behavior
can be simulated at real-time or better speeds on powerful
computing equipment, the use of realistic cell models or organ-
magnitude cell networks make the simulations computationally
infeasible. We present an examination of the FitzHugh-Nagumo
model and its response to stimulus and, in order to move toward
the goal of a full cardiac simulation, we present a method of
optimizing single-cell calculations through local interpolation
techniques. Additionally, we introduce a separate method of
optimizing multi-cell simulations by tracking cellular activations.

Keywords— cardiac bioelectricity modeling, FitzHugh-
Nagumo, simulation, optimization.

I. INTRODUCTION AND OVERVIEW

A computationally feasible whole-heart model could be
invaluable in the study of human heart pathology and the
development of drugs for the treatment of various disorders.
The potential value of such a complete and realistic cardiac
model is undeniable. Such a model could dramatically expand
our presently limited understanding of cardiovascular disease
and abnormality while providing a convenient, noninvasive,
and inexpensive method of proposing and testing revolution-
ary drug therapies and other treatment interventions. Present
progress (detailing approaches from the electrical, mechanical,
and fluidic standpoints) toward this goal is summarized in [1].

Development of techniques for large-scale modeling of
systems is a common theme across many fields of research
today. Cardiac modeling presents complications not found in
many modeling tasks, since excitable cell models are nonlinear
in nature, and many ordinary and valuable analysis techniques
for differential equations do not apply to nonlinear systems.
The simplest cardiac cell models have two variables while
realistic models can have dozens, and the total number of
cells in the human heart is on the order of 1010 (in the tens
of billions). Therefore, extraneous details must be abstracted
away so that only relevant information is actively simulated.

This paper explores the structure of the FitzHugh-Nagumo
excitable cell model in order to characterize which details
can be discarded through abstraction and which are important
to the model’s overall dynamics. Based upon the concept of
electrical wave propagation in the human heart, we examine
the model and generalize its response to stimuli. Using obser-
vations from this analysis, we pose a method of optimizing
calculations in the single-cell model with local interpolation

techniques and another method of speeding simulations in
multi-cell networks by tracking a list of “active” cells.

II. BACKGROUND

A. FitzHugh-Nagumo Model

Pioneered in the mid-1950s by FitzHugh [2] and based upon
research of the giant squid axon by Hodgkin and Huxley,
the FitzHugh-Nagumo model is one of the simpler excitable
cell models available. It is a reduction of the four-variable
Hodgkin-Huxley model, based upon the similarity in speed of
the dynamics of the individual variables. Though primarily
considered to be qualitative in nature, it is representative
of the excitable phenomena of cardiac cells and has been
used as a base model for testing of novel computational
methods [3]. The FitzHugh-Nagumo model equations relate
the cell membrane electrical potential (V ), and the gating
variable (also called the cell’s refractory potential, W ):
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The parameters are traditionally interpreted to have positive
values. Unless otherwise noted, we applied the following
parameter values: β = 0.7, ε = 0.2, and γ = 0.8.

B. Wave Propagation

The important feature of cardiac cellular interaction is the
propagation of potential waves through interconnected cells
in a complex network. Single cells are surrounded with an
insulating membrane (supporting a potential, V ) containing
selectively permeable ionic channels. The currents through
these channels interact with the membrane potential to regulate
the activity of the cell. Among other factors, the flow of
various ions (sodium, potassium, calcium, etc.) throughout the
cardiac tissue is responsible for the propagation of electrical
waves through heart tissue. This, in turn, provides the driving
force behind the heart’s mechanical contraction and its ability
to pump blood through the body. To model the diffusion that
allows wave propagation to occur in the system, we must alter
Equation (1) to include the appropriate term:
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Thus, a sufficient difference in potential between adjacent
cells can produce an action potential that flows across a



system. In multiple spatial dimensions, the ∂2V/∂x2 diffusion
term becomes ∇·(D ·∇V ), in which D is the diffusion tensor.

C. Other Models

Past research has developed numerous excitable cell models
of varying levels of complexity and with differing specializa-
tion. For example, C. Luo and Y. Rudy [4] pioneered a realistic
model of ion channel behavior that is composed of over sixty
equations. This model is frequently applied in computational
simulations that investigate the characteristics of real cardiac
cells [5], [6]. The Hodgkin-Huxley model [7] was developed to
simulate the activity of a nerve axon (specifically, of the giant
squid), but it shares the essential characteristic of excitability
with cardiac tissue. Other models developed between the
Hodgkin-Huxley (1952) and the Luo-Rudy (1994) model made
important contributions to the accuracy of cardiac modeling.
For a detailed overview of the evolution of such cardiac cell
models, refer to [8].

III. SINGLE-CELL MODEL ANALYSIS

In the process of developing a heart simulation, the prelimi-
nary step involves understanding the evolution of the electrical
potentials. Therefore, we pay particular attention to the unique
characteristics of the cell model.

A. Phase Plane Analysis

Perhaps the most convenient consequence of the two-
variable nature of the FitzHugh-Nagumo model is that it can
be graphically represented in the phase (V ,W ) plane. Plotting
solutions of the system in the phase plane reveals a well-
defined cycle that is robustly attractive across a wide range
of initial conditions. The normal course of this cycle, as
shown in Fig. 1, represents a single excitation of the modeled
cell, and has four distinct states [2]: regenerative, active,
absolutely refractory, and relatively refractory. An external
electrical stimulus of sufficient magnitude will initiate an
excitation cycle, in which the cell progresses through these
four states. In the regenerative phase, the cell begins a buildup
of potential across its membrane. If the initiating stimulus
is of insufficient magnitude, the cell will simply relax back
to its equilibrium, rather than experiencing a full excitation
cycle. The active phase represents the period in which the
cell’s membrane potential is temporarily suspended near a
peak value. Entering the absolutely refractory phase, the cell’s
membrane potential drops rapidly toward its equilibrium value.
At this point, as shown by the direction field, the gating
variable is at a maximum, and the cell is quite resistant
to further excitation by any external stimulus. In the final
phase, relatively refractory, it is again possible to stimulate
the cell into a renewed excitation cycle, though it will display
some resistance to such stimulation until it again reaches the
equilibrium point.

B. Diffusion Fourier Analysis

Using Fourier analysis, we can interpret the system’s fre-
quency response to various diffusive inputs, in a manner
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Fig. 1. Phase Plane with Nullclines and Sample Solution Trajectory

Fig. 2. Fourier Plots (Sinusoidal Inputs, Amplitude = 0.5, 1.0, 1.5)

analogous to forcing in a linear ordinary differential equation.
Since the favorable notion of linearity is not valid in the
excitable cell model, the response is not clearly related to
either the frequency or the amplitude of the input. Still,
we can make a number of useful observations based upon
these Fourier plots. We give three such plots that relate input
frequency to output frequency components in Fig. 2.

The most striking contrast between the Fourier plots is in the
apparent linearity in frequency of the 0.5 amplitude plot. This
is illustrative of an important feature of the system: resistance
to small inputs. For any signal of small input amplitude
(i.e. 0.5 or less), there is no prevailing excitation triggered,
resulting in little response. Instead, the system responds with
a potential signal of equal frequency and small amplitude. As a
consequence, small diffusive signals may be safely passed over
as they are incapable of triggering excitations in the system.

Turning our attention to the other plots, we note that for
a given amplitude, there is a cutoff input frequency past
which the system displays a qualitatively different response.
When driven past this frequency, the system undergoes a
single excitation cycle in normal fashion. However, following
this, the input holds the gating variable at a near-constant
value above equilibrium, preventing any further excitations.
A second, higher cutoff frequency also exists, above which
the single excitation cycle is also inhibited, resulting in an
essentially null response. In the lower frequency regions of
the second and third plot (where Amplitude = 1.0, 1.5), the
system exhibits a periodic excitation caused by the sinusoidal
input.



Fig. 3. FitzHugh-Nagumo State Transition Map (h = 1)

IV. OPTIMIZING SINGLE-CELL CALCULATIONS

In the autonomous single cell FitzHugh-Nagumo model,
variable values at particular times determine the state of the
system at all future times. Therefore, we can consider this
relationship as a nonlinear mapping between present values
and future values, given a timestep. This input/output mapping
relationship can be captured graphically (as in Fig. 3) in order
to provide a different perspective on the system’s time be-
havior. In particular, these surfaces illustrate the nonlinearities
of this cell model. Regions of sharp change (notably, on the
diagonal of the input plane) signify value pairs that can evolve
distinctly differently if subjected to small perturbations. In
contrast, there are also regions that display nearly constant or
nearly linear output, in which one variable strongly determines
a future output value, and the value of the other variable is only
weakly significant. Additionally, the smooth and primarily
continuous shapes of the surfaces suggest that the model could
be fitted by an interpolated function of the variables.

We can take advantage of this mapping relationship to
perform high-accuracy calculations of the system’s behavior
off-line. During a simulation, these pre-created samples can be
interpolated by algorithms such as the nearest neighbor method
and locally weighted regression [9]. The nearest neighbor
method is a straightforward algorithm that predicts an output
by proposing that it is equal to the output of the single nearest
sample. Locally weighted regression, by contrast, estimates
the output by a weighted average of the outputs of several
nearby samples. The sample weights are calculated based on
an exponential metric where nearby samples are weighted
highest. Hence, both methods can be used to reconstruct a
mapping from stored sample values. A sample reconstruction
of the V output surface from Fig. 3 is shown in Fig. 4.

Overall, these algorithms can recreate unknown output data
well. However, locally weighted regression suffers specifically
from large errors near discontinuities. This fallacy is cor-
rectable by concentrating samples within problem areas. A
primary issue with the nearest neighbor method is its inability
to generate smooth surfaces, which results in discontinuous
changes in error around the input space. This hinders its
accuracy significantly for small sample sizes. Both algorithms
have disadvantages, but are highly optimizable through the

Fig. 4. LWR Reconstruction (8192 Samples) of V Surface and Error Plot

use of clever data structures. Both algorithms are defined for
and extendable to higher-dimensional problems, an essential
feature for integration into a whole-heart simulation, in which
the problem’s dimensionality could easily increase tenfold
with the addition of a realistic model and spatial dimensions.

V. OPTIMIZING MULTI-CELL SIMULATIONS

Since the FitzHugh-Nagumo system has a stable, attractive
equilibrium point, many cells in a simulation will be implicitly
inactive, and hence it is wasteful to calculate their unchanging
membrane potentials and small propagation currents. It is
possible to use a list data structure to track the activation
of individual cells in order to avoid these calculations. As
a consequence of the mechanism of wave propagation, only
direct neighbors of activated cells can be activated in the
future. Therefore, two lists that track currently excited cells
and the neighbors of these cells will completely describe the
subset of a cell network that may be active in the successive
timestep. All other cells are assumed to be in equilibrium, so
no calculations are performed to update their state. Provided
that the computational overhead of list tracking is negligible,
this measure can only result in lower computation times. The
algorithm for tracking cell activity is as follows:

Activity Track(ActiveList)
FOR EACH celli ∈ ActiveList

Model.simulate(celli);
FOR EACH cellj ∈ celli.Neighbors

IF cellj /∈ NeighborList & cellj /∈ ActiveList
NeighborList.add cell(cellj);

FOR EACH celli ∈ ActiveList
FOR EACH cellj ∈ celli.Neighbors

Model.calculate diffusion(celli,cellj);
FOR EACH celli ∈ NeighborList

FOR EACH cellj ∈ celli.Neighbors
IF cellj ∈ ActiveList

Model.calculate diffusion(celli,cellj);
FOR EACH celli ∈ ActiveList

IF celli.equilibrium state() = TRUE
ActiveList.remove cell(celli);

FOR EACH celli ∈ NeighborList
IF celli.equilibrium state() = FALSE

ActiveList.add cell(celli);
NeighborList.remove cell(celli);



Fig. 5. Benchmark Wave Types

TABLE I
Activity List Optimization Speedups

Linear Grid(1) Grid(2) Spiral
Full-Blown Simulation 2.94 s 11.89 s 11.87 s 8.75 s
Activity List Method 0.32 s 4.84 s 6.67 s 9.48 s

Change 89.2% 53.9% 43.8% -8.3%

In order to test the viability of this algorithm, we created
four benchmarking simulation situations (shown in Fig. 5) that
are representative of the types of waves that can be produced
in a 2D simulation. They are: (1) 120 time units of a 200-
by-1 cell line, stimulated by the first cell; (2) 30 time units
of a 100-by-100 cell network, stimulated by the center cell;
(3) 30 time units of a 100-by-100 cell network, stimulated at
two cells on the diagonal; and (4) 60 time units of a 60-by-
60 cell network, stimulated to produce a spiral wave pairing.
The averaged results of three trials for each situation (on a 2.4
GHz P4 running Matlab 6.5.1 and a fourth order Runge-Kutta
solver) are presented in Table I.

From the time data of simulations run with and without the
optimization, it is apparent that the improvement in compu-
tation time is dependent on the relative level of activity in
the system. This conclusion agrees with the basic idea of the
optimization: when very few cells are active, there is relatively
little to calculate, but when a large portion of cells are active,
there is no room to save on calculations. This is apparent from
the spiral wave case; most cells are kept active throughout the
entire simulation due to the self-reinforcing nature of the wave,
so very few cells are skipped by the algorithm. This creates
a negligible increase in computation time corresponding to
the overhead associated with initializing and maintaining the
lists. In the first three cases, the activity lists ensure that
cells reaching equilibrium after the passage of a wave are
again removed from the set of updated cells. This reduces
the computation time roughly proportional to the spatial size
of the propagating wave.

VI. DISCUSSION AND CONCLUSIONS

The computation times for full-blown simulation of our
benchmark problems are predictable based on the number of
cells involved in the simulation and the timescale. Assuming
the overhead of the simulation is small (i.e. the simula-
tion is reasonably large), these benchmarks require roughly
1.5 µs/cell · timestep. It is interesting to note that a simple
extension of this idea leads to a predicted requirement of
roughly four hours to simulate one second of the FitzHugh-
Nagumo dynamics at the magnitude scale of the human heart

using the full-blown approach. Further accounting for the
added complexity of a realistic cell model quickly makes the
simulation a dauntingly unrealistic task. To make these high-
level simulations feasible for use in heart pathology and drug
research, it would be necessary to improve the computational
cost by several orders of magnitude. Clearly, our optimization
technique is only a precursory step toward such a goal.

In this paper, we outlined some of the basic characteris-
tics of the FitzHugh-Nagumo excitable cell model and ex-
tended the analysis to the periodicity conditions and prop-
erties of the system. By examining the time evolution of
variables, we introduced the idea of using nearest neighbor
and locally weighted regression methods to capture the in-
put/output relationship of the model. Additionally, we showed
that an activity-list-based optimization technique demonstrates
marked benefits in speeding calculations for simulations that
involve some degree of inactivity (i.e. cells at equilibrium).
The extendibility of this technique to realistic, quantitative
models has yet to be verified, but we expect that it will
have greater benefits as the overhead of list tracking becomes
insignificant compared to the problem magnitude. Further-
more, we hope to find novel ways to apply locally weighted
regression to a simplification of the multi-cell simulation
environment. Considering the computational complexity of
problems in this field and the present level of development,
there is wide latitude for innovation toward full-scale simula-
tions.
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REFERENCES

[1] P. Hunter, A. Pullan, and B. Smaill, “Modeling total heart function,”
Annual Review of Biomedical Engineering, vol. 5, pp. 147–177, 2003.

[2] R. FitzHugh, “Impulses and physiological states in theoretical models of
nerve membrane,” Biophysical Journal, vol. 1, pp. 445–466, 1961.

[3] J. Rogers and A. McCulloch, “A collocation–Galerkin finite element
model of cardiac action potential propagation,” IEEE Transactions on
Biomedical Engineering, vol. 41, pp. 743–757, 1994.

[4] C. Luo and Y. Rudy, “A dynamic model of the cardiac ventricular
action potential: Simulations of ionic currents and concentration changes,”
Circulation Research, vol. 74, pp. 1071–1096, 1994.

[5] Y. Wang, R. Kumar, M. Wagner, R. Wilders, D. Golod, W. Goolsby, and
R. Joyner, “Electrical interactions between a real ventricular cell and an
anisotropic two-dimensional sheet of model cells,” American Journal of
Physiology – Heart and Circulatory Physiology, vol. 278, pp. 452–460,
2000.

[6] N. Otani, “Computer modeling in cardiac electrophysiology,” Journal of
Computational Physics, vol. 161, pp. 21–34, 2000.

[7] A. Hodgkin and A. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve membranes,”
Journal of Physiology, vol. 117, pp. 500–544, 1952.

[8] D. Noble and Y. Rudy, “Models of cardiac ventricular action potentials:
Iterative interaction between experiment and simulation,” Philosophi-
cal Transactions: Mathematical, Physical and Engineering Sciences,
vol. 359, pp. 1127–1142, 2001.

[9] S. Schaal, C. Atkeson, and S. Vijayakumar, “Scalable techniques from
nonparametric statistics for real time robot learning,” Applied Intelligence
– Special Issue on Scalable Robotic Applications of Neural Networks,
vol. 17, pp. 49–60, 2002.


	code: 0-7803-8439-3/04/$20.00©2004 IEEE
	01: 3027
	header: Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA • September 1-5, 2004 
	02: 3028
	03: 3029
	04: 3030


